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Abstract: The main goals of the following paper are to evaluate the performance of two multispectral
airborne sensors and compare their image data with in situ spectral measurements. Moreover, the
authors aim to present an enhanced workflow for processing multitemporal image data using both
commercial and open-source solutions. The research was provoked by the need for a relevant com-
parison between airborne and ground sensors for vegetation analysis and monitoring. The research
team used an eBee fixed-wing platform and the multiSPEC 4c and Sequoia sensors. The authors
carried out field measurements using a handheld spectrometer by Trimble—GreenSeeker. There
were two flight campaigns which took place near the village of Tuhan in the Czech Republic. The
results from the first campaign were discouraging, showing less possibility in the correlation between
the aerial and field data. The second campaign resulted in a very high percentage of correlation
between both types of data. The researchers present the image processing steps and their enhanced
photogrammetric workflow for multitemporal data which helps experts and nonprofessionals to
reduce their processing time.

Keywords: NDVI; sensors; agriculture; python; gdal; pyQGIS

1. Introduction

Information about the status of a certain agricultural crop could be used to improve the
managerial processes that take place on any farm. Image data provides us with a promising
contactless tool for monitoring vast fields. Vegetation has been monitored from space
since the beginning of the 1970s [1]. Nonetheless, multispectral photogrammetric mapping
is demanding, and it could theoretically differ from classical photogrammetric imaging.
Spectral bands other than the classic red, green, and blue bands usually have lower image
resolution than RGB (red-green-blue) ones, which directly affects the planning of unmanned
flights. Scene reconstruction and reflectance orthomosaics depend on many factors, but
most importantly, they are dependent on the overlap between neighboring images [2].

Imagery data could help generate maps of current plant status as well as produce
yield maps. The latter could show yield patterns within the monitored area. The maps
could also improve field characteristics such as drainage, land levelling, irrigation, fencing,
and so on [3]. Sensors and platforms have become financially accessible, which has led
to a great abundance of these devices on the market. Researchers have begun comparing
consumer-grade sensors to expensive ones [4–6].

The topic investigated here is very popular at present, with numerous studies and tests
published in books and journals [7–10]. One of the most common studies is the comparison
between in situ data and aerial data where the research team showed great potential correlat-
ing the two types data [5]. Another study claims that there is a higher correlation between a
spectrometer and a multispectral camera rather than a modified one [4].
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The great abundance of sensors and remotely piloted aircraft sometimes makes it
difficult to choose the right technologies for a certain task [11]. As the available technology
and market sales increase by leaps and bounds [12], today, one can find economically
affordable four-band sensors combining bands with near-infrared to infrared [13]. However,
multispectral mapping still possesses certain ambiguities which may lead to erroneous
image postprocessing. One very popular problem as far as multispectral sensors are
concerned is the inner correlation between data [14].

Remotely sensed data are crucial for agricultural analyses because they provide vari-
able chlorophyll content, biomass, and so on [9]. However, for automatic calculations from
remotely sensed data, a calibrated sensor, atmospheric effects, and bidirectional reflectance
properties of the surface must be taken into account. Most sensor manufacturers provide
a calibration procedure [13,15]. Despite that, recent researchers published laboratory and
field test calibrations which significantly increase the one stated by the manufacturer [16,17].
Nonetheless, there are few research papers evaluating the performance of two different
sensor types. Moreover, sensors differ in their performance. In order to use a near-infrared
camera for multitemporal analyses, one must be acquainted with the sensor stability during
different conditions.

There are many unsolved issues concerning multispectral mapping. Some of them
are considered as errors and a potential threat to commercial unmanned flying [16]. For
example, a firmware update might cause performance changes [18]. Another issue might
be precise geolocation of the mapped object which is corrected by using ground control
points providing georeferencing to the dataset. However, the most common problem is
sensor performance which is guided by the radiometric calibration applied.

However, the following study focuses on evaluating the performance of two near-
infrared sensors during different conditions and comparing the image values with ground-
measured data. The authors compare the image values from two aerial sensors with
one handheld spectrometer for ground measurements. The first sensor multiSPEC 4c is
a four-band multispectral camera with a predefined calibration procedure. The second
aerial sensor is the Sequoia which captures image information in RGB, red-edge, and
near-infrared bands. It possesses a sunshine irradiance which is claimed to improve the
calibration [19]. The manufacturer has a predefined calibration procedure as well. Both
cameras are presented to be professional in the agricultural field. That is why, the authors set
their goal to investigate whether they perform in a similar way under the same conditions.
Moreover, one of the team targets was to compare the aerial data with in situ information.

From a user point of view, it is important to choose the most user-friendly option to
monitor the current state of the crops. On the other hand, from a scientific point of view,
it is necessary to investigate if these sensors perform somewhat similarly or equally. The
article will give the answers to these questions.

Gathering multitemporal aerial data for any research, the authors encounter numerous
problems with regards to computing vegetation indices and storing data. Therefore, an
enhanced workflow is presented where commercial and open-source solutions are applied.

2. Materials and Methods

The following research was conducted in 2020 at the Department of Geomatics at the
Czech Technical University in Prague. The authors used a fixed-wing eBee platform, two
aerial sensors compatible with it, multiSPEC 4c and Sequoia, and a handheld spectrometer for
ground data. The goal of the authors was to evaluate the performance of two mainstream aerial
sensors, multiSPEC 4c and Sequoia, both manufactured by AIRNOV and senseFly [13,20].

The multiSPEC 4C sensor can capture images outside of the visible parts of the
spectrum with central wavelengths of its four bands as follows: green 550 nm, red 660 nm,
red-edge 735 nm, and near-infrared 790 nm [13]. The imagery produced by this camera
is an 8-bit single-band grayscale image. The photometric interpretation is BlackIsZero,
meaning the value 0 is represented as black. Band characteristics of the multiSPEC 4c are
summarized in Tables 1 and 2.
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Table 1. Band characteristics of the multiSPEC 4c.

Bands Central
Wavelength

Band
Sensitivity Band Width Exposure To

Green 550 [nm] 1 40 [nm] 0.0006377
Red 660 [nm] 0.8 40 [nm] 0.0005781

Red-edge 735 [nm] 0.5 15 [nm] 0.0015666
NIR 790 [nm] 0.3 40 [nm] 0.0003865

Table 2. Camera and image characteristics of the multiSPEC 4c.

Aperture Focal
Length IW IH

Image
Depth

Field of
View MP

1.8 mm 3.6 mm 1280 960 8 bit 69.5◦ 1.2

The Sequoia sensor is a five-band camera capturing images in both visible and near-
infrared spectra. The output imagery is grayscale. The camera possesses a sunshine sensor
and provides irradiance corrected data. Due to the latter, the Sequoia sensor is claimed to be
an advanced camera created especially for agricultural mapping. The sunshine sensor has
the same filter for 4 spectral sensors, GPS, inertial measurement unit, and magnetometer.
The near-infrared images have a 1.2 Mpx resolution, and the RGB have 16 Mpx. Unlike
the multiSPEC 4c bands, the green and near-infrared bands are narrower. The Sequoia
characteristics are listed below in Table 3.

Table 3. Sequoia band characteristics, central wavelength, and bandwidth.

Bands Central Wavelength [nm] Bandwidth [nm]

Green 550 40
Red 660 10

Red-edge 735 10
NIR 790 40

A handheld spectrometer, the GreenSeeker from Trimble [21], was also used in order
to compare its results with the aerial ones. This is an optical sensor used for measuring
crop biomass and directly computing NDVI values. The spectrometer is supposed to be
held 60 ÷ 120 cm above a crop (see Figure 1). Its field of view has an ecliptic form that
becomes larger, the higher the sensor is held. When held 60 cm above the ground, the a-axis
is approximately 12 ÷ 13 cm.

The measured data are stored in the inner memory of the instrument and can be later
downloaded into *.csv format. Unfortunately, the GreenSeeker does not have a GNSS
receiver. For that reason, in situ data were georeferenced with a geodetic GNSS receiver.
The spectrometer was kindly leased by the Czech company Leading Farmers, S.R.O., solely
for the purpose of this research.

Photogrammetric flight campaigns were carefully planned in advance in order for the
specified research purposed to be fulfilled. Flight plans were programmed in eMotion 3
using senseFly. A triple image overlap was insured to eliminate radiometric ambiguities
when orienting the images.
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taken on 29 May 2020. 

During the second flight campaign on 29 July 2020, flights with both aerial sensors 
were planned around sunrise, at noon, and before sunset. The exact timing of the un-
manned flights is summarized in Table 4. 

Two types of ground control points (GCP) were used to georeference the datasets. 
Altogether ten points were measured with five classic checkerboards and five boards 
wrapped in aluminum. GCPs were measured using a GNSS receiver in JTSK Krovak and 
later transformed into a JTSK Krovak East (epsg: 5514). The authors decided to test the 
stability of the handheld sensor. For that, eight specific points were measured during the 

Figure 1. (Left) GreenSeeker spectrometer for ground measurements (photo: Paulina Raeva), (right) func-
tionalities during NDVI field measurements.

During the first flight campaign on 29 May 2020, in situ measurements were carried
out with the handheld spectrometer in a grid of approximately 2 m (see Figure 2). Every
single NDVI ground measurement was georeferenced with a GNSS receiver. Altogether
ninety-five field measurements were taken. Ground control points were set for better
georeferencing between the different sets.
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Figure 2. Study points in the examined field where regular in situ NDVI measurements were taken
on 29 May 2020.

During the second flight campaign on 29 July 2020, flights with both aerial sensors
were planned around sunrise, at noon, and before sunset. The exact timing of the unmanned
flights is summarized in Table 4.
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Table 4. Time schedule of all photogrammetric flights conducted on 29 July 2020.

Sequoia (Start, CET) multiSPEC 4c (Start, CET)

5:40 6:06
14:01 13:45
19:20 19:49

Two types of ground control points (GCP) were used to georeference the datasets.
Altogether ten points were measured with five classic checkerboards and five boards
wrapped in aluminum. GCPs were measured using a GNSS receiver in JTSK Krovak and
later transformed into a JTSK Krovak East (epsg: 5514). The authors decided to test the
stability of the handheld sensor. For that, eight specific points were measured during the
campaign with the GreenSeeker. The measurements took place five times during the day
of 29 July. The field points were also georeferenced with a GNSS receiver. These points
had a significantly different texture than the surroundings (see Figure 3) which made them
distinguishable in the aerial imagery.
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Figure 3. Eight study points in the examined field where regular in situ NDVI measurements were
taken on 29 July 2020.

The authors chose to perform photogrammetric flights around sunrise, noon, and
sunset on 29 July. In that way, it would be possible to monitor the performance of the
aerial sensors and estimate the influence of the sun on the resulting maps. All multispectral
flights during 29 July were mapped according to the sun elevation on that day (see Figure 4).
Performing numerous flights leads to generating big imagery data which sometimes might
be hard to handle and process immediately.

Figure 4 shows the time schedule of all flights during 29 July 2020. On the chart of the
solar elevation for the certain day, the field measurements were also charted. The correct
starting times of the flights are summarized in Table 4.
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3. Methodology

In the following chapter, the image preprocessing steps will be explained. These
technological steps refer only to the aerial sensors used. Moreover, it will discuss the solu-
tion of the authors to process numerous imagery datasets. Creating the photogrammetric
framework was one of the research goals.

Image preprocessing was performed with the Swiss software pix4Dmapper [22]. This
software product uses the structure-from-motion method [23]. The authors claim that post-
processing in pix4Dmapper is the best option when mapping with a senseFly sensor as
pix4Dmapper can read coded Exif metadata from the senseFly images that other products
cannot [24]. The processing scheme follows classical steps when processing photogrammet-
ric measurements.

Image processing is crucial, especially when processing multispectral imagery which
has a lower resolution than classic RGB imagery. This process consists of extracting identical
points or key points as named in the pix4Dmapper. These points are later matched with
their counterparts from the overlapping images. The authors planned all flights with a
triple image overlap in order for radiometric ambiguities to be eliminated. When the
identical points are matched, this lays the foundation for computing the automatic aerial
triangulation and bundle block adjustment [23].

When mapping with a multispectral sensor, the geometry of the object and camera is
important, but one must also consider how the object reflects energy. In the initial steps
of preprocessing, one is extracting the properties of the reflecting energy, which is later
compared with other datasets.

In practical terms, image orientation and model reconstruction depend on matching
based on identical points between images. All forms of infrared imagery which should be
extracted are crucial for image alignment.

The software product that the authors chose can extract important information from
the Exif metadata. The initial processing extracts parameter values such as exposure time
or ISO. These are used for basic radiometric corrections.

Two aspects affect the image preprocess: dark current and vignetting. Dark current
shows the dark or black current, the measured values without any light. The values for dark
current are uniform for all pixels. The important metadata that an image should contain
are their Exif, Xmp.Camera.BlackCurrent, as stated in the image tag. Image vignetting
is a reduction in the size of the entrance pupil for off-axis objects caused by the physical
properties of the lens. Usually, cameras transmit more light in the center than in the corners.
Thus, vignetting could be represented by a raster map that has a center value equal to 1 and
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corner values smaller than 1. Vignetting can be represented in the form of a 2D polynomial
or as a radial polynomial. The 2D polynomial is defined according to the formula:

ν =
N

∑
i,j=0

cij

( x
w

)i(y
h

)j
(1)

The radial polynomial is in the form of the following equation:

ν = 1 +
N

∑
i=1

ciri, (2)

where r =
√
(x − cx)

2 +
(
y − cy

)2 and the values
(
cx, cy

)
are read from the Xmp.Camera.

VignettingCenter and the coefficients read from the Xmp.Camera.VignettingPolynomial
from the Exif data.

The process of geometric camera calibration consists of optimizing the internal and
external parameters of the camera. Due to the low image resolution, a higher image overlap
was set.

The unmanned flights were prepared in the senseFly software eMotion 3.4.0. The goal
was to set a desired image resolution (10 cm) and create an overlap of 90%. This could be
achieved by using a triple overlap, namely, flying from east–west, west–east, south–north,
and north–south. In that way, the authors presumed that ambiguities with the radiometric
calibration of the corner pixels will be eliminated.

For the postprocessing scheme, the authors chose a geometric calibration method that
excluded the oblique images. This method requires at least 75% of geotagged images. An
oblique image in that case means an image that has a yaw angle higher than 35◦. Not using
such a geometric camera calibration might lead to reconstruction obstacles [25].

A radiometric calibration procedure was carried out during each flight campaign. The
radiometric panel was put horizontally on the ground with no objects casting shadows
or blocking the panel. These images were later processed in the software, where raw
reflectance digital numbers (DN) were computed to absolute reflectance values. The
purpose of this operation was to quantify incoming radiation (irradiance) dependent on
the measurement site. The spectral reflectance of the object was computed by rationing the
reflected energy measurement in each band. The result of such computation is often called
the reflectance factor. This factor is defined as the ratio of the radiant flux reflected by a
sample surface to that which would be reflected into the same geometry by an ideal surface
(Lambertian) in the same way.

Another possible measurement of the reflectance factor is when one direction is associ-
ated with the sample viewing angle (0◦), and the other direction is that of the illumination
of the sun (defined by the solar zenith and azimuth angles).

The amount of reflected energy can be characterized by the spectral reflectance ρ(λ)
defined as at the ratio between the intensity of the incident radiation Mi and the intensity
of the reflected radiation Mr.

ρ(λ) =
Mr(ρ)

Miρ)
·100[%] (3)

The reflectance values provided by the manufacturers of both near-infrared cameras
are summarized in Tables 5 and 6. Small differences between the values are noticeable and
the fact that the values for the multiSPEC 4c are provided with higher accuracy.
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Table 5. Reflectance values for the green, red, red-edge, and near-infrared bands of the Sequoia camera.

Band Reflectance Values [%] Reflectance Values

Green 17.1 0.171
Red 21.3 0.213

Red-edge 26.3 0.263
NIR 36.9 0.369

Table 6. Reflectance values for the green, red, red-edge and near-infrared bands of the multiSPEC
4c camera.

Band Reflectance Values [%] Reflectance Values

Green 17.12 0.1712
Red 20.32 0.2032

Red-edge 24.68 0.2468
NIR 35.13 0.3512

Reflectance values theoretically are represented in percentages. The authors added the
decimal values which must be set in the processing software.

Reflectance R [%] is computed according to a formula, where DN stands for a digital
number, and a and b are coefficients:

R = aiDN + bi (4)

Reflectance maps were created for each band to compute vegetation indices. The pixel
size for such maps depends on the ground sampling distance. All datasets were resampled
to have the same pixel size of 12 cm.

4. Results
4.1. Postprocessing Enhancement Scheme

Multispectral datasets are extremely complicated to process simultaneously. The task
is even harder when one wishes to generate weekly or monthly mapping over the same
area. This is because a huge amount of data is created, and it must be stored according to a
clear pattern so that it can be understood by other users.

The computation of multiple vegetation indicators is also a burdensome task. Unfor-
tunately, by the time this research was conducted, none of the photogrammetric software
products offered multiple computations of vegetation indices. The pix4dmapper software
has one drawback in terms of saving project data. The project structure is very strict, and
the individual processing steps are named in a predefined way. It is also possible to draw or
import working polygon vectors into the software (only *.shp is available). To compute an
NDVI, for example, one needs to choose the working polygon vector within the index that
will be computed. The results are visualized and stored in a project tree. If a user chooses to
compute an NDVI for a second polygon, the output raster from the first computation will be
rewritten, and thus, the data will be lost. It is, of course, possible to rename the first output
so that it will not be rewritten. This method is a manual process and is time consuming.

The above Is a quite relevant issue in the age of ‘big data’, especially if one deals with
a great number of datasets and needs to compute numerous datasets at once. In such cases,
working with pix4Dmapper might be quite unnerving.

The authors concluded that it would be necessary to use a third-party solution to
prevent dealing with predefined project structures (see Figure 5). The pix4mapper software
was used to apply the photogrammetric work scheme mentioned in Figure 6. The vegetation
indices and other analyses had to be conducted outside of the software. The authors chose
to write a script that would be capable of the automatic computing of all possible indices
for the cameras, multiSPEC 4c and Sequoia, used during this project. The open-source
platform Python [26] was chosen. This programming language, along with its libraries, is
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one of the most popular programming languages in the geospatial world. Computation
took place in the QGIS Python console [26]. In order to code in QGIS, one must download
the entire OSGeo4W package from the official QGIS website. Coding additional functions
based on Python in the QGIS interface is very user-friendly, which enables coding and
visualizing data at the same time.
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Figure 6 shows the photogrammetric workflow chosen by the authors. The workflow
was created after repeatedly processing and reprocessing the multispectral data. Unique in
the following scheme is the fact that vegetation computing and statistical analyses were
carried out in the open-source QGIS software, and an automatic algorithm was created to
speed up the process of multiple VI computing, saving, clipping, and viewing of the rasters.

Working with multitemporal raster data can lead to accumulating a great amount
of information. Moreover, for a basic user, it might even be impossible to visualize the
proposed data, making it difficult to operate and cooperate with other people [27]. Storing
big data locally prevents other team members from sharing information. One solution for
bridging the gap between different expert teams is to create a spatial database for storing
and archiving geospatial information. The authors decided to use a PostgreSQL database
for this purpose, created with the extension postgis and postgis_raster using the Query tool
in pgAdmin [28].

4.2. Image Data Analyses

The results from the field tests illustrate the accuracy of the aerial sensors under typical
conditions. For a better understanding of what the relationship between the aerial and
ground sensors is, the measurements from 29 May between the Sequoia and Trimble sensor
were compared using a linear regression. This regression model is simple as it involves the
variables y and x, which are related by:

E(y) = α + βx. (5)

One variable is called ‘dependent’, and the other one is ‘independent’.
The output of the model indicated the relationship between the two variables in which

the values of the one change at a constant rate as the other increases. This is called a trend
or linear trend [29]. The trend between the field NDVI values and the ones extracted from
the raster is shown in Figure 6.
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Figure 6. Finalized photogrammetric framework created by the authors. Pix4D served for photogram-
metric processing only. Further computations were conducted in pyQGIS. The output rasters were
added to a geospatial dataset using PostGIS.

The proportion of the variance for the dependent variable is presented by R-squared
or R2. It gives us information on how much the dependent variable would be explained by
the independent variable in the regression model. This number is between 0 and 1, where 1
indicates a strong correlation. In our case in May 2020, the correlation between the in situ
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measurements and the raster NDVI values were computed as R2 = 0.504, a relatively low
but positive correlation (see Figure 7).
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For the second flight campaign, eight specific field points were measured. It was
important for the authors to evaluate how stable the field NDVI values were. This is
why the eight points were measured five times on 29 July 2020. These points had more
distinctive texture than their surroundings.

The values from each field measurement are summarized in a Table 7. The NDVI
measurements from the GreenSeeker appeared to be stable throughout the day. Due to the
similarity of the measurements, an average value for all of the NDVI measurements was
used to correlate with the aerial image data.

Table 7. NDVI values measured on the study points by a handheld spectrometer at 5 different times
on 29 July 2020.

No 8:30 a.m. 1:00 p.m. 2:15 p.m. 7:00 p.m. 8:40 p.m.

1 0.16 0.15 0.15 0.15 0.14
2 0.82 0.81 0.82 0.82 0.81
3 0.29 0.20 0.19 0.21 0.22
4 0.20 0.19 0.18 0.18 0.18
5 0.79 0.79 0.80 0.78 0.79
6 0.37 0.33 0.31 0.33 0.34
7 0.81 0.82 0.83 0.82 0.81
8 0.83 0.84 0.81 0.79 0.81

The results from the correlation between the aerial values and the field ones measured
at the eight study points are summarized in Figures 8–10. The results of the correlation
between the field and the raster NDVI values are summarized in Figures 11–13.

Before comparing the image NDVI values with the field ones, an average of the NDVI
values in Table 7 was computed. The averaged NDVI value was correlated with each raster
dataset from both of the aerial sensors. Despite the low number of observations, the results
prove a very high correlation—see Figures 8–10.

Like the first flight campaign on 29 July 2020, the field points were measured in a grid
of 2 m. These points were measured only once. Their values were compared to the raster
values from all datasets from both sensors—see Figures 11–13.
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The results from Figures 10, 11 and 13 show great potential in the correlation between
the field and aerial NDVI measurements. The NDVI value measures from the Sequoia
showed a higher correlation coefficient in the morning on 29 July. The lowest correlation
was shown in the evening, whereas the multiSPEC 4c sensor showed relatively good
continuity in the correlation.
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5. Conclusions

The following research was dedicated to a comparison of different aerial sensors with
ground-measured spectral data. Moreover, the research had to improve the postprocessing
of the multitemporal image data. The main objectives were to evaluate the performance of
the airborne sensors throughout the day as the weather conditions change and compare
the image data to in situ data. The goals of the authors were fulfilled through field tests
and laboratory procedures.

The multiSPEC 4c and Sequoia multispectral cameras were compared to in situ NDVI
data measured by a handheld spectrometer. The research consisted of multitemporal
image capturing which led to accumulating big data. As the authors experienced technical
limitations, an enhanced photogrammetric workflow was presented. The workflow is based
on numerous image pre- and postprocessing attempts. The authors claim that this workflow
may be used for any other aerial multispectral sensor. Using a third-party software solution
enabled the research team to quickly postprocess their output rasters without any technical
limitations by the state-of-the-art software. This leads to the conclusion that the authors
fulfilled one of their research goals, namely, to enhance the postprocessing algorithm.

Two flight campaigns took place in 2020 on 29 May and 29 July. During the first
campaign, several field points were measured in a grid of 2 m with a handheld spectrometer.
The points were georeferenced with a GNSS receiver. The results from the correlation were
discouraging because of the low biomass present in May.

During the second flight campaign, the authors expanded their evaluation as multiple
flights were conducted on the same day but under different conditions in the morning, at
lunch, and in the evening.

The authors tested the stability of the handheld spectrometer by performing sev-
eral measurements. Eight study points were chosen to be measured by the spectrom-
eter and georeferenced using a GNSS receiver. The points were measured five times
on the same day (early in the morning, at noon, and in the evening). The field NDVI
measurements proved to be quite stable. The average value from the measurements
was correlated with the NDVI values extracted from the raster datasets produced by
the Sequoia and multiSPEC 4c. The results show more than 80% correlation between
the spectrometer and the sensors. The Sequoia had a higher correlation early in the
morning, whereas the multiSPEC 4c had a higher correlation at noon and in the evening.
Moreover, a few dozen of evenly distributed study points were measured by the same
spectrometer. The in situ measurements were again correlated with the image values.
The experiment indicated a very strong positive correlation. Like the previous evalu-
ation, the Sequoia values had the highest correlation coefficients early in the morning
(R2 = 0.914), declining slightly in the evening to R2 = 0.776. The multiSPEC 4c had the
highest correlation to the field data in the afternoon (R2 = 0.937 and R2 = 0.881). The overall
results show that all three types of sensors showed similar output NDVI values. More than
80% of the aerial and field data correlated in a positive trend.

One of the main objectives of the study was to evaluate two different airborne sensors
and compare their image data to field spectrometer data. The results of the evaluation
show that both sensors are reliable for multitemporal mapping over arable land. Improving
the correlation between in situ and aerial measurements could be achieved by special
radiometric calibration which was not the topic of this study. The authors concluded that
for a small farm, a four-band sensor, such as the multiSPEC 4c, can play a significant role
in crop mapping. In other words, farmers are not obliged to purchase expensive cameras
without a specific need.

Even though extracting NDVI along a field is fast and cheap with a handheld spec-
trometer, this method had several disadvantages. The in situ data were not georeferenced
in the device, and for an average data user, it could be quite difficult to create a visual
representation from its measurements. GreenSeeker may be the best choice for conducting
local measurements because the sensor showed it is stable, and its values highly correlate
with the radiometrically corrected multispectral aerial data.
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A further contribution to the research work was the expanding of the realm of knowl-
edge for the practical analyses of infrared data. The results from the experiments apply only
to the specific aerial sensors which were used, but the established workflow for postpro-
cessing is intended to serve the geodetic and photogrammetric community more broadly,
so that they can better understand the nature of image infrared data. The workflow could
even be used by farm managers or agronomists for archiving their thematic maps, enabling
their use in future yield predictions.

Thanks to the enhanced photogrammetric workflow combing commercial and open-
source solutions, the authors saved an incredible amount of time postprocessing. The
authors will continue their work on evaluating sensors in real agricultural cases and focus
on improving the calibration procedure.
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