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Abstract: Deep summarization models have succeeded in the video summarization field based on
the development of gated recursive unit (GRU) and long and short-term memory (LSTM) technology.
However, for some long videos, GRU and LSTM cannot effectively capture long-term dependencies.
This paper proposes a deep summarization network with auxiliary summarization losses to address
this problem. We introduce an unsupervised auxiliary summarization loss module with LSTM
and a swish activation function to capture the long-term dependencies for video summarization,
which can be easily integrated with various networks. The proposed model is an unsupervised
framework for deep reinforcement learning that does not depend on any labels or user interactions.
Additionally, we implement a reward function (R(S)) that jointly considers the consistency, diversity,
and representativeness of generated summaries. Furthermore, the proposed model is lightweight
and can be successfully deployed on mobile devices and enhance the experience of mobile users and
reduce pressure on server operations. We conducted experiments on two benchmark datasets and
the results demonstrate that our proposed unsupervised approach can obtain better summaries than
existing video summarization methods. Furthermore, the proposed algorithm can generate higher F
scores with a nearly 6.3% increase on the SumMe dataset and a 2.2% increase on the TVSum dataset
compared to the DR-DSN model.

Keywords: video summarization; reinforcement learning; unsupervised learning; long-term depen-
dency; auxiliary summarization loss

1. Introduction

According to YouTube, there were approximately 5.5 billion daily video views in the
first quarter of 2022. The massive amount of video information available causes people
to spend significant time browsing and understanding redundant videos. Therefore, it is
important to determine how to find relevant videos quickly among the endless video supply.
Video retrieval techniques can help people find videos related to keywords, whereas video
summarization techniques can extract representative information directly from a video.
Video summarization techniques can generate concise summaries for videos that convey
the important components of a complete video. Generating video summaries typically
involves using a limited number of images or video clips to represent the main content of
an original video sequence, which preserves the authenticity of the video information and
saves a significant amount of space.

Research on video summarization techniques has been conducted for decades and
good results have been achieved by traditional methods based on sparse modeling repre-
sentative selection (SMRS) [1], DC programming [2], etc. With the development of deep
learning, many researchers have used deep learning methods to extract features from
videos and have achieved good results. M. Fei et al. [3] further introduced image entropy
in deep learning to maintain the diversity of summaries. T. Hussain et al. [4] introduced
aesthetic and entropic features to keep the summaries interesting and diverse. T. Hus-
sain et al. [5] applied deep video summarization technology to real life. They proposed a
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video summarization method using depth features of the lens segmentation method and
applied it to resource-constrained devices. In addition, T. Hussain et al. [6] proposed a deep
learning-based video summarization strategy for industrial surveillance scenes to achieve
coarse and refined video data, which provides a great contribution to the application of
video summarization technology. Additional layers are meaningful in these methods [4–6],
but they will consume more computation time and increase the complexity of the system.
Therefore, an efficient learning mechanism to train DL models remains a challenge. Fur-
thermore, it is difficult to handle the long-term dependency relationship due to the long
timeline when processing the long-term monitoring data in the existing methods.

However, deep-learning-based methods rely on labels, whereas reinforcement learning
does not rely on labels and allows models to explore and select features in an unsupervised
manner. Reinforcement learning updates model parameters using reward functions and
gradient descent techniques. In recent years, various researchers have combined deep
learning with reinforcement learning to apply deep reinforcement learning (DRL) methods
to the task of video summarization. Zhou et al. [7] proposed a deep learning framework
that combines a bidirectional long short-term memory (LSTM) network (BiLSTM) with
DRL and called their framework the diversity-representativeness deep summarization
network (DR-DSN). The deep summarization network (DSN) predicts a probability for
each video frame that indicates the likelihood of selecting that video frame and then takes
action to select frames based on the predicted probability distribution to perform video
summarization. DSN achieves good results and is competitive in the field of unsupervised
video summarization. In addition, most deep-learning-based methods generate video
summaries based on supervised learning, where they learn the importance of frames
by modeling the temporal dependency between frames or the spatiotemporal structure
of the video. The cost of producing video summarization datasets with labels is very
expensive, so we focus on an unsupervised video summarization model based on deep
reinforcement learning.

However, the performance of a deep reinforcement learning model degrades as video
length increases because of the long-term dependency problem. In video summarization
tasks, connections between adjacent frames are often established using recursive neural
networks, but for tens of thousands of frames of video information, it is difficult to retain
information from distant frames, which may lead to the degradation of model perfor-
mance. This problem is called the long-term dependency problem. This problem limits
the performance of existing approaches that focus on semantic objects, actions, emotions,
and diversity. Even BiLSTM-based methods are not immune to the problems caused by
long-term dependency. Large kernel sizes and deep networks give convolutional neural
networks (CNNs) the ability to alleviate the long-term dependency problem. However,
RNNs have a completely different structure compared to CNNs and we cannot directly
employ the CNN structure in an RNN. To solve this problem, Trinh et al. [8] introduced
auxiliary loss into the main supervised loss function to reconstruct or predict sequence
information, which allows RNNs to capture long-term dependencies.

In this paper, to address the long-term dependency problem in the video summa-
rization task, we equate video summarization to a sequential decision process based on
inspiration from Trinh et al. [8]. We propose a summarization selection network with
unsupervised summarization loss based on an infinite norm. Similar to existing DSNs [7],
this network also utilizes an encoder–decoder architecture, where the encoder is a CNN
that extracts high-dimensional features from videos and the decoder is a one-way LSTM
network utilizing unsupervised summary loss to capture the long-term dependencies be-
tween video frames. The value of video frames can be calculated from video frame features.
The higher the value, the greater the probability of being selected as a key frame. We
trained the proposed network using an end-to-end reinforcement learning framework to
solve the video summarization problem by updating the model parameters using a reward
function that does not rely on any labels or user interactions. Finally, we propose a discrete
degree reward function R(S) and compare it to other reward functions to demonstrate its
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practical value. An overview of the proposed model is presented in Figure 1. Compared to
a traditional RNN, the proposed network is much better at maintaining long-term memory.

Auxiliary Losses 
Decoder

Reward FunctionVideos

RNN

Videos

Gradually losing long-term memory Barely losing long-term memory

Ordinary Recurrent Neural Network Deep summarization Network with auxiliary summarization losses

Figure 1. Overview of networks with long-term dependency capture capability (the proposed model)
and recurrent neural networks.

An unsupervised auxiliary summarization loss module is proposed to reconstruct
random segments of a video by connecting to the LSTM network in parallel at randomly
determined anchor points during model training. This loss is used to adjust the parameters
of the model by calculating the degree of video feature loss during training. Experimental
results demonstrate that the proposed unsupervised auxiliary summary loss can accurately
capture the long-term dependencies in videos, significantly improving the performance
and generalization ability of the LSTM network.

Furthermore, we explored several reward functions in reinforcement learning for the
video summary model. The diversity-representation reward was proposed by Zhou et al. [7].
The diversity reward evaluates the degree of diversity of generated summaries by comput-
ing the differences between selected frames. The representation reward is used to measure
the degree to which generated summaries can represent an original video. Although this
reward can identify diversity-representative video frames, the cluttered distribution of
excessive non-key frames disrupts summarized videos. To address this issue, we propose
dispersion rewards, which allow the proposed method to cluster key frames together
and reduce the probability of selecting non-key frames. As a result, our model preserves
segment integrity and generates high-quality summaries. Additionally, our proposed
method is generic and can be easily integrated into existing unsupervised video summa-
rization models.

In summary, the main contributions of this paper are threefold.

1. We propose a DRL framework with an unsupervised summary loss for video summa-
rization called AuDSN, which solves the long-term dependency problem of
reinforcement-learning-based key frame extraction algorithms. Compared to RNN/
LSTM-based video summarization methods, our proposed video summarization
framework can capture the long-term dependencies between video frames more
effectively;

2. We employ an unsupervised auxiliary summarization loss for video summarization,
which assists in tuning network parameters by calculating the percentage differences
between original and selected features. Additionally, the unsupervised auxiliary
summarization loss does not increase the parameters of the model and can be easily
integrated into other video summarization models;

3. We propose a novel reward function called dispersion reward (Rdis) and employ it
as a final reward function. Experimental results demonstrate the effectiveness of this
reward function for video summarization.
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The remainder of this paper is organized as follows. The related work is discussed
in detail in Section 2. Section 3 describes the proposed pipeline-based AuDSN model.
We present the experimental results in Section 4. Finally, Section 5 summarizes the key
contributions of our work and concludes this paper.

2. Related Work
2.1. Video Summarization

Traditional video summarization methods [9–11] are shot- or segment-based methods,
meaning an input video is divided into short shots or segments using various detection or
segmentation algorithms. However, with the development of deep learning, the research
on video summarization has made significant progress. Deep-learning-based video sum-
marization utilizes neural networks to extract video information and select key segments
and key frames in an end-to-end manner. Deep learning research on video summarization
can be divided into three main categories: supervised video summarization [12–16], un-
supervised video summarization [7,17–20], and weakly supervised video summarization.
Our approach focuses on unsupervised video summarization.

Early supervised-learning-based approaches treated the selection of key frames as
a prediction problem by modeling the temporal dependencies of each frame to estimate
the importance of each frame and generate video summaries based on importance val-
ues. Zhang et al. [12] used LSTM to model the dependencies between video frames and
derive representative and compact video summaries. One year later, Zhao et al. [13] pro-
posed a hierarchical RNN based on LSTM that is more suitable for video summarization.
Li et al. [15] proposed an efficient CNN based on global diverse attention by improving the
self-attention mechanism of the transformer network, which adapts an attention mecha-
nism from a global perspective to consider the pairwise temporal relationships between
video frames.

In the context of unsupervised video summarization, because there is no universally
accepted definition of video key frames, the goal of most existing unsupervised approaches
is to maximize a viewer’s ability to grasp the original content of a video based on selected
representative key frames. Mahasseni et al. [21] first applied a generative adversarial
network (GAN) to the task of video summarization and their key concept was to train a
deep summarization network that uses an unsupervised approach to minimize the distance
between an input video and summarization distribution.

He et al. [17] proposed a conditional GAN based on self-attentiveness. The generator
generates weighted frame features and predicts the importance of each frame, while the
discriminator is used to distinguish between weighted frame features and original frame
features. Rochan et al. [18] proposed a video summarization model based on a GAN and
fully convolutional sequence network to perform video summarization utilizing unpaired
data. However, due to the instability of the training stage and the limitations of the
evaluation metrics of GAN methods, the GAN-based methods do not achieve good results.

Zhou et al. [7] used a combination of reinforcement learning and reward functions
for video summarization. Video summarization was formulated as a sequential decision
process, and a diversity-representativeness reward was used to train the summarizer to
produce diverse and representative video summaries. In this model, BiLSTM is used
as a decoder to estimate the importance of frames, but the LSTM forgetting mechanism
leads to the exponential decay of information, limiting the model’s ability to capture long-
term scale information. To address these issues, we introduce an unsupervised auxiliary
summarization loss module to help train the LSTM network to capture the long-term
dependencies between video frames. We also propose a novel reward with a dispersion
reward. The dispersion reward function uses more intuitive criteria to help models improve
performance.
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2.2. DRL

It is common knowledge that deep learning has strong perceptual ability but lacks
decision-making ability, whereas reinforcement learning has decision-making ability but
lacks perceptual capabilities. Combining these two approaches can provide a solution to
the perceptual decision problem in complex systems [22]. Therefore, DRL was devised
to combine the perceptual ability of deep learning with the decision-making ability of
reinforcement learning to achieve control directly based on input signals, which is an
artificial intelligence method similar to the human thinking process [23]. In March of 2016,
AlphaGo [24] defeated top professional player Lee Sedol with a score of 4:1 in a historic
Go match after practicing and reinforcing itself over tens of thousands of games. This
achievement was a testament to the potential of DRL development. Over the past few years,
DRL has solved many real-world challenging decision problems with spectacular success.
DRL has been successfully applied in the fields of computer vision, natural language
processing, gaming, and robotics [25].

In the field of computer vision, DRL has been successfully applied to tasks such
as landmark detection [26,27], object detection [28], object tracking [29], image registra-
tion [30], image segmentation [31], and video analysis [32]. Video summarization is a useful,
but difficult task in video analysis that involves the prediction of objects or tasks in a video.
The video summarization task can also be considered a decision-making task for each
frame in a video. This task has been continuously improved since an unsupervised video
summarization DRL method was first proposed by Zhou et al. [7]. Next, Zhou et al. [33]
implemented a summarization network using deep Q-learning (DQSN) and used a trained
classification network to provide rewards for training DQSN. This method is a weakly
supervised approach based on reinforcement learning that utilizes easily accessible video-
level category labels and encourages summaries to contain category-relevant information
and maintain category identifiability. Liu et al. [34] used a 3D spatiotemporal U-net to
encode the spatiotemporal information of input videos efficiently, allowing an RL again
to learn from spatiotemporal information and predict the acceptance or rejection of video
frames in a video summary. Unlike supervised learning methods, DRL learns information
from the environment and does not require a large number of labeled data, which enables
many machine learning applications for which no large labeled training data are available.

2.3. Long-Term Dependencies

In the field of artificial intelligence, many important applications require learning long-
term dependencies between sequences [35]. It is challenging to provide neural networks
with the ability to model the long-term dependencies in sequence data. In a video analysis,
a 2-hour movie typically contains approximately 170,000 images. If we use deep learning
to understand the content of a movie, long-term dependencies for 170,000 images must be
constructed to capture the features of the movie. Typically, this is achieved using gradient
descent and back-propagation through time (BPTT) in recursive networks. However,
learning long-term dependencies using gradient descent is difficult because the gradients
computed by BPTT tend to disappear or explode during training (Hochreiter et al. [36]).
The solution to this problem is to mitigate vanishing gradients by allowing information to
be stored in memory (LSTM [37]) or by using a short-circuiting mechanism in a residual
structure (ResNet [38]). Additionally, for BPTT to work properly, intermediate hidden
states in a sequence must be stored. However, the memory requirement is proportional to
the sequence length, making it difficult to apply BPTT to long video sequences.

Vorontsov et al. [39] investigated the effects of the widening of the spectral boundary
on convergence and performance by controlling the orthogonality constraint and regular-
ization of the power matrix to solve the gradient disappearance and explosion problem
associated with BPTT during the training process. This approach can capture long-term
dependencies to some extent and improve the convergence speed of gradient descent.
Trinh et al. [8] proposed an auxiliary loss for capturing long-term dependencies, which
can help RNNs reconstruct the previous event in a sequence or predict the next event
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in a sequence. Based on the development of transformers, Dai et al. [40] introduced the
concept of recursion in a transformer by reusing historical representations to propose the
transformer-xl model. This model does not compute hidden states for each new segment
but reuses hidden states obtained from previous segments. Reused hidden states serve as
memory for the current segment and circular connections are established between segments.
However, the transformer models have a large number of parameters and consume a large
amount of computational power for training. In contrast to these existing approaches,
our proposed video summarization method reconstructs the current video information
between segments by incorporating unsupervised auxiliary summarization loss functions,
which helps the sequence model capture long-term dependencies. It is noteworthy that
the unsupervised auxiliary summarization loss function does not require the use of any
labeling information and the auxiliary module only works in the training model and does
not increase the overall parameters and complexity of the model.

3. Methodology

This paper proposes a deep summarization network with auxiliary summarization
losses to improve the performance of video summarization. Specifically, the auxiliary
summarization losses are used as auxiliary training in the proposed AuDSN model. A brief
overview of the AuDSN model is detailed as follows.

We consider video summarization as the task of making decisions for each frame in
a video. We implement DRL models to predict the value of the information contained in
each frame and determine the probability of each frame being a key frame based on these
values. We then select the final key frames based on a probability distribution. Inspired by
Zhou et al. [7], we developed an end-to-end reinforcement-learning-based summarization
network. The pipeline of this network is presented in Figure 2. We train AuDSN using
reinforcement learning. AuDSN receives observations (video frames) at each time step and
performs various actions on the observations. Additionally, AuDSN generates auxiliary
summary loss values. The environment receives the actions and auxiliary summary loss val-
ues and generates a reward and observation for the next time step. The data (Oi, Ai, Oi_, Ri)
generated during this process are recorded in a sample database and when the sample data
are sufficient, loss values are calculated and the model parameters are updated.
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Figure 2. Pipeline of the proposed AuDSN. The blue arrow represents the process of generating a
summary and the green arrow represents the process of model training.

The proposed AuDSN is an encoder–decoder architecture, where the encoder uses
a CNN (typically GoogLeNet [41]) to extract visual features {xt}T

t=1 from an input video
frame sequence of length t {vt}T

t=1. The decoder uses an LSTM network that can capture
temporal features. It randomly inserts anchor points in the LSTM network and introduces
unsupervised auxiliary summarization loss. A fully connected layer serves as the final layer
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of the network. The LSTM network takes the high-dimensional features {xt}T
t=1 generated

by the encoder as inputs and generates the corresponding hidden states {ht}T
t=1, some of

which will be passed to the unsupervised auxiliary summarization loss function to help the
summary network reconstruct historical information as a method of establishing long-term
dependencies. The hidden state {ht}T

t=1 is loaded with past information. The value of each
frame is obtained through a fully connected layer using the swish activation function [42]
and the fully connected layer using the sigmoid activation function. The value of each
frame is used to determine the action a as follows:

value t = R(wr × σ(wσ × ht + bσ) + br), (1)

pt =
value t

∑T
t=1 value t

, (2)

at = Bernoulli (pt), (3)

where R(·) is the rectified linear unit (ReLU) activation function, σ is the sigmoid activation
function, wr, wx are the weights of the fully connected layer, and br, bx are the biases of
the fully connected layer. pt denotes the probability distributions over all possible action
sequences. at are binary samples drawn from the Bernoulli distribution indicating whether
the i− th frame is selected. The Bernoulli distribution is parameterized by pt. We obtain
a video summary composed of the selected key frames S = {· · · yat · · · }, where yat is the
selected key frame with at = 1. We only update the decoder during the training process.

3.1. Auxiliary Summarization Loss

To enhance the ability of LSTM to capture long-term dependencies, we propose a form
of unsupervised auxiliary summarization loss that applies to video summarization. This
loss not only enhances the memory capabilities of LSTM but can also be easily migrated to
other models. It is experimentally demonstrated that this auxiliary summarization loss can
help the summarization network establish longer-lasting dependencies and improve the
performance of video summarization. During the training progress, we randomly sample
multiple anchor locations in the LSTM and insert an unsupervised auxiliary summarization
loss function at each location.

An unsupervised auxiliary summarization loss function first reconstructs memories
from the past by sampling the subsequence after its anchor point, copying the hidden
state of a subsequence of length n after its anchor point, and inserting the first input
of this subsequence into the decoder network. The rest of the subsequence features are
reconstructed using the decoder network, as shown in Figure 3. By using this training
method, anchor points can be used as temporary memory points for the decoder network to
store memories in a sequence. When we insert enough anchor points, the decoder network
remembers the entire sequence and reconstructs memories. Therefore, when we reach the
end of the sequence, the decoder network remembers a sufficient number of sequences and
can generate a high-quality video summary.

The introduction of unsupervised auxiliary summarization loss in the decoder network
results in the need for some additional hyperparameters, namely the sampling interval
T and subsequence length N . The sampling interval is defined as the samples per unit
length that are extracted from the decoder network and composed into subsequences.
The subsequence length represents the number of original features contained in each
subsequence. We define the auxiliary summarization loss as follows:

Lauxiliary =
∑Ti=1 Li

∑Ti=1 li
, (4)

where T denotes the sampling interval, Li denotes the loss evaluated on the i-th sampling
segment, and the overall auxiliary summarization loss is calculated by summing all subse-
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quence auxiliary summarization losses for a segment. We define the subsequence auxiliary
summarization loss as follows:

Li =
1
N × l

l

∑
j=1

N
∑
i=1
|Y− C|, (5)

where N denotes the subsequence length, l denotes the feature dimension (based on the
CNN encoder, the feature dimension we obtain is typically 1024), Y denotes the original
features of the subsequence, and C denotes the key summary features of the subsequence
after decoder selection. The auxiliary summarization loss of each subsequence is obtained
by computing the infinite norm error between the vectorized Y and C features. This
auxiliary summarization loss represents the percentage of the variance between the original
features Y and key summary features C of the subsequence selected by the decoder.
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Figure 3. The decoder module with unsupervised auxiliary summarization loss. Yellow RNN cells
represent decoder networks, blue RNN cells represent auxiliary loss modules. X represents the input
features. H represents the decision of RNN cells based on input.

Tuning hyperparameters is a very expensive process, so we set the lengths of all
selected subsequences N to be equal. Because the addition of unsupervised auxiliary
summarization loss does not change the structure of the decoder module, and high-quality
embeddings of input sequences can be learned based on the unsupervised auxiliary sum-
marization loss, the weights of the LSTM network can be fine-tuned using the back-
propagation step only.

3.2. Reward Function

In reinforcement learning, the goal of an agent is represented as a special signal called
a reward, which is transmitted to the agent through the environment. At each moment,
the reward is a single scalar value. Informally, the goal of an agent is to maximize the total
reward it receives. This means that what needs to be maximized is not the current reward,
but the long-term cumulative reward.

An agent always learns how to maximize its gain and the amount of gain is determined
by the reward function. If we want an agent to perform a particular task, then we must
provide rewards in such a manner that the agent maximizes its gain while completing
the task. Therefore, it is critical that we design the reward function in a way that truly
achieves our goal. In video summarization, the key frames are selected from the video,
and the selected frames should be diverse, representative, and uniform. Gygli et al. [10]



Sensors 2022, 22, 7689 9 of 21

mentioned that there is no standard answer for a correct summary, but we must guaran-
tee the generation of a high-quality summary. Figure 4 presents the results of the label
visualization of three sample videos (Cooking, Fire Domino, and Jumps) from the SumMe
dataset. Each video was labeled by 15 to 18 people and each line in the video visualization
represents one person’s selection result. As shown in Figure 4, we should select key frames
from labels such as those in Figure 4a,b for video summarization. In our proposed model,
we demonstrate that combining dispersion rewards with two rewards for diversity and
representativeness can produce enhanced summaries.

(a) (b) (c)

(a) (b)

(a) (b)

C
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k
in

g
F
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o

Ju
m
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Figure 4. Visual results of human-selected labels for three example videos (cooking, fire domino,
and jumps) from SumMe dataset. (a–c) are example labels which are selected by most people.

3.2.1. Diversity Reward

The diversity reward function calculates the degree of diversity of a video summary
by evaluating the dissimilarity between selected key frames. Specifically, it calculates the
variability between selected video frames in the computational feature space to evaluate
the diversity of a video summary quantitatively. The diversity reward function is defined
as follows:

Rdiv =
1

|y||y− 1| ∑t∈y
∑
t′∈y
t 6=t′

d(xt, xt′), (6)

where y = {yat |at = 1, t = 1 · · · T} is the set of selected video frames, xt is the feature
sequence corresponding to the video frames and d(·, ·) represents the dissimilarity function
to calculate the dissimilarity between two frames, which is defined as follows:

d(xt, xt′) = 1− xT
t xt′

‖xt‖2‖xt′‖2
. (7)

Therefore, the reward obtained by the agent is higher when the selected frames are
more diverse (i.e., larger differences between selected video frames are favored). To ignore
the similarity between two temporally distant frames, we set d(xt, xt) = 1 if |t - t’| > λ,
where λ controls the degree of temporal distance consideration [7].

3.2.2. Representativeness Reward

The representativeness reward is used to measure how well selected key frames
represent an original video [7]. Evaluating the representativeness of a video summary
can be formulated as the k-medoids problem [43], where the representativeness reward is
defined as follows:

Rrep = exp

(
− 1

T

T

∑
t=1

min
t′∈y
‖xt − xt′‖2

)
, (8)
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where xt is the feature of the t − th frame and y is the set of selected frames, as de-
scribed above.

3.2.3. Dispersion Reward

When using representativeness rewards, the degree of representativeness is defined as
a k-medoids problem. To ensure that the selected video frames are uniform, we propose
a dispersion reward function to complement the representativeness reward function to
achieve better selection results. The dispersion reward function uses more intuitive criteria.
As shown in Figure 5, the distribution of (a), which has a higher dispersion reward, exhibits
significantly better clustering than that of (b), which has a lower dispersion reward. We
want clustering results to have small intra-class distances and large inter-class distances
(i.e., classification results should have high discrimination). To this end, a criteria function
reflecting both intra- and inter-class distances can be constructed.

(a) (b)228disR 75disR

Figure 5. The dispersion reward results for two different clustering cases; (a) 20 artificially generated
points; (b) 20 randomly generated points in a certain range. Different colors of points represent
different classes.

The intra-class departure matrix is generated by calculating the distance from each
sample point to the cluster center. The intra-class distance criteria function, which produces
an intra-class departure matrix SW , is defined as follows:

Sj
W =

1
nj

ns
j

∑
i=1

(
x̄(j)

i − m̄j

)(
x̄(j)

i − m̄j

)T
, j = 1, 2 . . . c, (9)

where m̄ is the sample mean vector of class w, sn denotes the number of samples in class w,
and c denotes the number of categories classified. x̄(j)

i denotes the ith data sample in the
jth class.

The inter-class distance criterion function, which produces an inter-class deviation
matrix sb, is defined as follows:

SB =
c

∑
j=1

ns
j

NS

(
m̄j − m̄

)(
m̄j − m̄

)T , (10)

where c denotes the number of classes to be classified, m is the mean vector of all samples
to be classified, ns denotes the number of samples in class w, NS denotes the total number
of samples, and mj denotes the class center of each class.

The dispersion reward based on the intra-class distance criteria function and inter-class
distance criteria function is defined as follows:

Rdis = Tr
[
S−1

w Sb

]
, (11)

where Tr[· · · ] is the matrix trace.
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Rdiv, Rrep, and Rdis complement each other and work jointly to guide the learning of
AuDSN. The determination of optimal weights for the different reward types is discussed
later in this paper. The basic reward function is expressed as follows:

R = Rdiv + Rrep + Rdis. (12)

3.3. Deep Summarization Network with Auxiliary–Summarization Loss-Based
Video Summarization

We train the summary network using a DRL framework. The goal of the proposed
summarization method [7] is to learn a policy function πθ with parameters θ by maximizing
the expected rewards

J(θ) = Epθ(a1:T)
[R], (13)

where pθ is computed using Equation (2) and R is computed using Equation (12). E
represents the expected value for calculating the reward. πθ is defined by our AuDSN.

The agent selects key frames based on the policy function πθ . This selection is defined
as an action at. The agent combines the current observation state ot and feature space of
the selected video frames to predict a new observation state oi_. The next action at+1 is
determined based on the n-th reward Rn. The derivative of J(θ) is computed using the
REINFORCE algorithm proposed by [44]. Only the encoder of the network is updated
during training.

To reduce the computational load, the final gradient is calculated as the average
gradient after executing N iterations on the same video. A constant baseline b is subtracted
from the nth reward Rn to avoid the type of high variance that leads to divergence. This
baseline b is calculated based on the moving average of the rewards from the previous time
steps. The gradient formula is defined as follows:

∇θ J(θ) ≈ 1
N

N

∑
n=1

T

∑
t=1

(Rn − b)∇θ log πθ(at | ht). (14)

Additionally, we introduce a regularization term into the probability distributions to
constrain the percentage of frames selected for the summary and add the L2 regularization
term to the weight parameters θ to avoid overfitting [7]. The parameters of the optimal
policy function are optimized using the stochastic gradient algorithm by combining all
conditions. We use Adam [45] as an optimization algorithm.

4. Experiments
4.1. Datasets

We primarily used the SumMe [10] and TVSum [46] datasets to evaluate our approach.
SumMe consists of 25 videos ranging from 1 to 6 min in length with a variety of video
content covering holidays, events, and sports captured from first- and third-person per-
spectives. Each video was annotated by 15 to 18 humans and the summary lengths range
from 5 to 15% of the initial video durations. TVSum consists of 50 videos ranging from 1
to 11 min in length and contains video contents from 10 categories of the TRECVid Med
dataset [47]. The TVSum videos were annotated by 20 users in the form of shot- and
frame-level importance scores (from 1 to 5).

4.2. Evaluation Settings and Metrics

For fair comparison to other methods, we used the common F-score measure to assess
the similarity between the selected key frames and ground-truth labels [10]. The F score is
defined as follows:

Fi =
1
Ni

Ni

∑
j=1

2
Pi,jRi,j

Pi,j + Ri,j
, (15)
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where Ni is the number of available user-generated summaries for the i-th test video Pi,j and
Ri,j is the accuracy and recall ratio for the j-th user summary. These values are calculated
on a per-frame basis. Accuracy refers to the degree of agreement between measured values
and the corresponding “true” values. The recall ratio represents the total number of positive
queries among the query sample, which can also be interpreted as the number of correct
predictions among the true positive samples.

For a test video, we used a trained AuDSN to predict the value of each frame as
importance scores. We computed shot-level scores by averaging frame-level scores within
the same shot. For video shots, the kernel temporal segmentation (KTS) [48] method split
the video into a set of non-intersecting temporal segments. The algorithm input the matrix
of frame-to-frame similarities and output a set of optimal “change points” that correspond
to the boundaries of temporal segments. A summary was generated by selecting the video
shots with the highest total scores, which were calculated from the frame-level scores of
the shots. The maximized total score problem is essentially the 0/1 knapsack problem,
for which a near-optimal solution can be obtained using dynamic programming [7].

4.3. Implementation Details

To compare AuDSN to existing methods, we used a GoogleNet [41] model pre-trained
on ImageNet to extract features and a 1024-dimensional feature vector from the penultimate
layer of GoogleNet (pool 5) as the features for each video frame. We used the standard
five-fold cross-validation in the training stage, meaning 80% of the videos were used for
training and 20% were used for testing. We utilized the auxiliary summarization loss
in our decoder module. The auxiliary summarization loss and reward mechanism were
used to tune the parameters of the model and the KTS implementation [48] was used for
temporal segmentation. During our experiments, we tested different activation functions
to compare their effects on the model and kept adjusting the hyperparameters to achieve
optimal performance.

4.4. Quantitative Results

In Table 1, we present the definitions of various models with different active functions
and rewards. AuDSN corresponds to a deep summary network using unsupervised
auxiliary summarization loss with a reward function using a diversity reward (Rdiv) and
representativeness reward (Rrep). In practice, the swish activation function outperforms
the ReLU activation function on some CNN-based tasks, such as image classification and
machine translation. Therefore, we adopted swish as an activation function in AuDSN-
S. AuDSN-D corresponds to deep summary networks using a diversity reward (Rdiv),
representativeness reward (Rrep), and dispersion reward (Rdis). AuDSN-SD corresponds to
a combination of swish as an activation function and all three reward functions.

Table 1. Definitions of different models.

Model Name Activation Function Reward

AuDSN ReLU Rdiv + Rrep
AuDSN-S swish Rdiv + Rrep
AuDSN-D ReLU Rdiv + Rrep + Rdis

AuDSN-SD swish Rdiv + Rrep + Rdis

Table 2 reports the performances of different models on the SumMe and TVSum
datasets. One can see that AuDSN-SD performs significantly better than AuDSN-S and
AuDSN-D on both datasets, indicating that using swish as an activation function and using
Rdiv + Rrep + Rdis summation as a reward function can better teach the summary network
to generate high-quality video summaries. The performance of AuDSN-S indicates that
using swish as an activation function improves performance by 0.4% (46.8% − 46.4%)
and 0.5% (59.3%− 58.8%) on the two datasets, respectively, demonstrating that the swish
activation function can provide the neural network layers with better performance for video
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summarization. The performance of AuDSN-D indicates that using Rdis in combination
with Rdiv and Rrep can improve performance on the SumMe and TVSum datasets by 0.2%
(46.6%− 46.4%) and 0.7% (59.5%− 58.8%), respectively. These results demonstrate that
adding the dispersion reward Rdis to the reward function can improve model performance.
The proposed method performs slightly better on the TVSum dataset than on the SumMe
dataset. This may indicate that the dispersion reward function has a greater impact on
longer videos.

Table 2. Performance (F-scores (%)) of different variants of the proposed method.

Method SumMe TVSum

AuDSN 46.4 58.8
AuDSN-S 46.8 59.3
AuDSN-D 46.6 59.5
AuDSN-SD 47.7 59.8

In Table 3, we compare the proposed method to existing GRU- and LSTM-based
methods using DRL. DR-DSN [7] is an unsupervised deep summarization method that
uses BiLSTM as the decoder in its summarization network. DR-DSNSUP [7] is a supervised
version of DR-DSN. DR1-DSN [49] uses Chebyshev distance instead of Euclidean distance
in its diversity reward. DR2-DSN [49] is a version of DR1-DSN that uses a double hidden
layer in its GRU. The results demonstrate that our proposed methods obtain higher scores
than the previous methods on both datasets. These results indicate that our proposed
unsupervised auxiliary summarization loss has stronger long-term dependency-capturing
ability. The proposed AuDSN-SD yields higher F scores with a nearly 4.3% (47.7%− 43.4%)
increase on the SumMe dataset and 1.3% (59.8%− 58.5%) increase on the TVSum dataset
compared to the state-of-the-art DR2-DSN model [49]. Compared to DR-DSN [7], the pro-
posed AuDSN-SD improves performance on the SumMe and TVSum datasets by 6.3%
(47.7%− 41.4%) and 2.2% (59.8%− 57.6%), respectively. Additionally, we can see that our
proposed method also outperforms the supervised model DR-DSNsup (5.6% (47.7%− 42.1%)
improvement on SumMe and 1.7% (59.8%− 58.1%) improvement on TVSum).

Table 3. Performance (F-scores (%)) of the proposed methods compared to other DRL-based methods.

Method Network SumMe TVSum

DR-DSN [7] LSTM 41.4 57.6
DR-DSNsup [7] LSTM 42.1 58.1
DR1-DSN [49] GRU 42.9 58.3
DR2-DSN [49] GRU 43.4 58.5
AuDSN [OURS] LSTM 46.4 58.8
AuDSN-S [OURS] LSTM 46.8 59.3
AuDSN-D [OURS] LSTM 46.6 59.5
AuDSN-SD [OURS] LSTM 47.7 59.8

Table 4 reports the F-score results of the proposed method and state-of-the-art methods
on both datasets. In this table, the performance of both supervised and unsupervised
methods is reported. We can see that our proposed framework outperforms most of the
other methods. The use of auxiliary summarization loss instead of bidirectional LSTM to
capture long-term dependencies [7] yields a significant improvement in performance on
both datasets. The results show that our proposed method can achieve competitive results
compared to the state-of-the-art methods. It is worth noting that our proposed method is
based on unsupervised learning, and the structure is simpler and lighter.

It is noteworthy that most of the previous classical baseline models are tens or even
hundreds of megabytes in size. These models require a large number of parameters, large
memory, high computing power, and a long time for training. The size of our proposed
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model is only 2.7 MB, which is much smaller than most previous models. In Table 5, we list
the model sizes of some open-source models. The addition of auxiliary summarization loss
allows our model to capture the dependencies between video frames accurately without
using a complex network structure. Furthermore, the addition of auxiliary summarization
loss does not increase the size of our model because auxiliary summarization loss is only
applied in the training stage and automatically discarded at the end of training.

Table 4. Performance (F-scores (%)) of the proposed method compared to existing methods.

Method SumMe TVSum
F1 Rank F1 Rank

Random summary [50] 40.2 14 54.4 14
Online Motion-AE [51] 37.7 15 51.5 15
DR-DSN [7] 41.4 13 57.6 10
CSNet [52] 51.3 1 58.8 4
Cycle-SUM [53] 41.9 12 57.6 10
DR1-DSN [49] 42.9 9 58.3 8
DR2-DSN [49] 43.4 8 58.5 5
UnpairedVSN [18] 47.5 3 55.6 13
EDSN [54] 42.6 11 57.3 12
PCDL [55] 42.7 10 58.4 7
ACGAN [17] 46.0 5 58.5 5
DHAVSsup [56] 45.6 6 60.8 2
3DST-Unetsup [34] 47.4 4 58.3 8
M-AVSsup [57] 44.4 7 61.0 1
AuDSN-SD [OURS] 47.7 2 59.8 3

An extremely small number of parameters allows AuDSN to save significant training
time and computational cost, which is important given the exponential growth in the
number of online videos in recent years. AuDSN can significantly reduce the computational
pressure on video websites so that they can handle larger batches of videos simultaneously.
It is worth noting that our lightweight model also makes it possible to deploy video
summarization on edge devices and mobile devices. When AuDSN is successfully deployed
on mobile devices, it can improve the experience of mobile users and reduce the pressure
on servers. Deploying AuDSN to edge devices can enrich the information processing
capabilities of such devices and may give rise to novel application scenarios.

Table 5. Sizes of the parameters generated by different methods.

Method Model Size (MB)

DR-DSN [7] 10.0
CSNet [52] 28.0
UnpairedVSN [18] 95.4
AuDSN [OURS] 2.7

4.5. Comparison of the Augmented (A) and Transfer (T) Settings

Table 6 reports the F-score results of the proposed method in the canonical (C) aug-
mented (A), and transfer (T) settings. C setting means that the training and testing sets are
from the same dataset. A setting means that OVP, YouTube, TVSum, and 80% of SumMe
are used as the training sets and the remaining 20% of SumMe is used as the testing set. T
setting means that OVP, YouTube, and TVSum are used as the training sets and SumMe is
used as the testing set. Experimental results show that using the A setting can improve the
performance of our proposed model by 0.2%.



Sensors 2022, 22, 7689 15 of 21

Table 6. F-score (%) of the LSTM-based approaches on SumMe and TVSum in the canonical (C),
augmented (A), and transfer (T) settings.

Method SumMe TVSum
C A T C A T

SUM-GANrep [21] 38.5 42.5 - 51.9 59.3 -
SUM-GANdpp [21] 39.1 43.4 - 51.7 59.5 -
DR-DSN [7] 41.4 42.8 42.4 57.6 58.4 57.8
CSNet [52] 51.3 52.1 45.1 58.8 59 59.2
Cycle-SUM [53] 41.9 - - 57.6 - -
AuDSN-SD [OURS] 47.7 47.9 45.1 59.8 59.7 57.8

4.6. Qualitative Comparisons

In this section, we present qualitative comparison results for an example video called
“playing ball” from the SumMe dataset. The frame labels of the video are presented in
Figure 6. Figure 7 presents the qualitative results of our proposed models for the video.
The gray bars in Figure 7 represent the results of user selection, the height of the bars
represents the number of people who selected each frame as a key frame, and the colored
bars represent the frame segments selected by the proposed methods. Some selected frames
are presented at the bottom of each bar.

Some frames from ‘playing ball’ in SumMe

Figure 6. Examples of frame labels from the “playing ball” video.

  (d) A generated sumary by AuDSN-SD  (d) A generated sumary by AuDSN-SD

 (c) A generated sumary by AuDSN-D (c) A generated sumary by AuDSN-D

(b) A generated sumary by AuDSN-S(b) A generated sumary by AuDSN-S

(a) A generated sumary by AuDSN(a) A generated sumary by AuDSN

Figure 7. Cont.
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  (d) A generated sumary by AuDSN-SD  (d) A generated sumary by AuDSN-SD

 (c) A generated sumary by AuDSN-D (c) A generated sumary by AuDSN-D

(b) A generated sumary by AuDSN-S(b) A generated sumary by AuDSN-S

(a) A generated sumary by AuDSN(a) A generated sumary by AuDSN

Figure 7. Video summaries generated by all variants of the proposed method.

In general, our proposed models produce high-quality video summaries. The basic
AuDSN model typically selects the high-quality parts of the summaries. AuDSN-SD
using swish as an activation function with the combination of Rdiv + Rrep + Rdis as reward
functions can select frames with even higher values. Furthermore, our proposed AuDSN-
SD does not produce jumps between frames, so the selected video summary is more
coherent, making it easier for viewers to understand the video content without making
them feel uncomfortable based on larges jumps between frames.

4.7. Ablation Experiments on the Effects of Hyperparameters

Table 7 presents the performance of AuDSN-SD when using different values for the
hyperparameter T . The optimal hyperparameters were determined experimentally. One
can see that the performance is optimal for the SumMe dataset when the sampling interval
is 40 and for the TVSum dataset when the sampling interval is 30. The greater the video
length, the better long-term dependencies can be captured by appropriately reducing the
sampling interval.

Table 7. Performance with different sampling intervals T on two datasets.

T 10 20 30 40 50

SumMe 46.7 46.9 47.1 47.7 46.8
TVSum 59.3 59.3 59.8 59.3 58.7

Figure 8 presents the performance of AuDSN-SD when using different values for the
hyperparameterN . We considered 10 to 90% of the video length as the subsequence length
N to determine the optimal N . On the TVSum dataset, the model achieves the optimal
performance when the subsequence length is 70% of the video length. On the SumMe
dataset, the model achieves the optimal performance when the subsequence length is 50%
of the video length. Model performance decreases when the subsequence length continues
to increase. Therefore, as the video length increases, the selected subsequence length should
also be increased appropriately to ensure optimal model performance.

4.8. Effects of different CNN Encoders

Table 8 presents the performance of AuDSN-SD using different encoders. We have
attempted the most advanced feature extractor proposed in recent years to compare with
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our CNN encoder. From Table 6, we can see that using GoogleNet as the CNN encoder
achieves the best performance. Furthermore, MobileNet, which can obtain lightweight
features, is also a competitive encoder. We can give priority to using MobileNet as the CNN
encoder of the model in the case of insufficient computational power.

4.9. Effects of Reward Weights

As shown in Table 3, the performance of AuDSN is improved by 0.2% (46.6%− 46.4%)
and 0.7% (59.5%− 58.8%) when using discrete rewards on the SumMe and TVSum datasets,
respectively. The main contribution of the discrete reward is improved video summary
quality. The discrete reward attempts to group interrelated segments together. Therefore,
the model with the discrete reward preserves the story line of the video by eliminating
redundant jumps between adjacent clips. The comparison in Figure 7 reveals that the model
with the dispersion reward outputs more continuous clips and fewer single video frames.

To allow our model to achieve better results, we evaluated the proposed AuDSN
model by assigning different weights to the three reward functions. For the TVSum and
SumMe datasets, we present several results based on different weights in Table 9 and
visualize these results in Figure 9. One can see that representativeness rewards have a
greater impact on the overall reward function than diversity rewards. In Figure 9, we
present the results of the optimal Rdiv = 0.2, Rrep = 0.2, and Rrep = 0.6 weights for the
SumMe dataset, and Rdiv = 0.4, Rrep = 0.2, and Rrep = 0.6 weights for the TVSum dataset.
The three weights should satisfy: Rdiv + Rrep + Rdis = 1. Therefore, the edges of the figure
are triangular.

In Table 10, one can see that the best results are obtained when the dispersion reward
weight is 0.2 for the TVSum Dataset. For long videos, the representativeness and diversity
rewards play a greater role in the selection of summary segments/frames. The dispersion
reward plays an auxiliary role and its purpose is to make video summaries more uniform
and continuous while avoiding jumps between video frames and maintaining the continuity
and integrity of the story line of a summary. The dispersion reward function does not
improve model performance significantly, but it has a noticeable impact on the quality of
video summaries.
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Figure 8. Performance with different subsequence lengthsN on two datasets: (a) SumMe dataset and
(b) TVSum dataset. The x-axis represents the percentage of video length and the y-axis represents the
F score.

Table 8. Performances with different CNN encoders on two datasets.

GoogleNet EfficientNet MobileNet ResNet VGG VIT
[41] [58] [59] [38] [60] [61]

SumMe 47.7 46.8 47.3 47.2 46.9 46.8
TVSum 59.8 59.3 59.5 59.4 59.4 59.2
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Table 9. Effects of different reward weights on SumMe and TVSum performance (F-scores).

Rdiv Rrep Rdis SumMe TVSum

0.1 0.1 0.8 46.7 59.1
0.1 0.2 0.7 46.4 59.4
0.1 0.3 0.6 46.4 59.4
0.1 0.4 0.5 46.7 59.3
0.1 0.5 0.4 46.5 59.1
0.1 0.6 0.3 46.9 59.2
0.1 0.7 0.2 46.4 59.1
0.1 0.8 0.1 46.8 59.3
0.2 0.1 0.7 47.0 59.3
0.2 0.2 0.6 47.7 59.5
0.2 0.3 0.5 46.6 59.0
0.2 0.4 0.4 46.8 59.2
0.2 0.5 0.3 46.5 59.3
0.2 0.6 0.2 47.0 59.2
0.3 0.1 0.6 46.6 59.2
0.3 0.2 0.5 46.6 59.5
0.3 0.3 0.4 47.2 59.2
0.3 0.4 0.3 46.9 59.0
0.3 0.5 0.2 46.2 59.3
0.4 0.1 0.5 45.6 58.8
0.4 0.2 0.4 46.5 59.6
0.4 0.3 0.3 46.9 59.2
0.4 0.4 0.2 46.4 59.8
0.4 0.5 0.1 47.1 59.1
0.5 0.1 0.4 47.0 59.4
0.5 0.2 0.3 46.6 59.2
0.5 0.3 0.2 46.1 59.0
0.5 0.4 0.1 47.2 59.0
0.6 0.1 0.3 47.1 59.0
0.6 0.2 0.2 46.8 59.1
0.7 0.1 0.2 46.1 59.4
0.8 0.1 0.1 46.5 59.0

(a) (b)

Figure 9. Effects of different reward weights on SumMe and TVSum performances (F score):
(a) SumMe dataset and (b) TVSum dataset. The three axes correspond to the weights of the three
reward functions and the depth of the colors represents the F scores.

Table 10. Weights that yield the best performances for the reward functions on both datasets.

DataSet Rdiv Rrep Rdis F1

SumMe 0.20 0.20 0.60 47.7
TVSum 0.40 0.40 0.20 59.8
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5. Conclusions

In this paper, we proposed AuDSN, which is a deep reinforcement network model
with unsupervised auxiliary summarization loss. We introduced unsupervised auxiliary
summarization loss in the decoder and explored a novel reward function with a disper-
sion reward. Experimental results on two datasets (SumMe and TVSum) demonstrated
that introducing unsupervised auxiliary summarization loss can improve the long-term
dependency-capturing ability for a deep summarization network. Additionally, the swish
activation function and dispersion reward function can help a deep summarization net-
work construct more coherent, diverse, and representative video summaries. Furthermore,
AuDSN is a very lightweight model with a size of only 2.7 MB, presenting the opportunity
of deploying it on low-computing-power edge devices. In future work, we will also try to
incorporate multi-information, such as sound features, into the model and explore multi-
information versions of the deep summarization network framework. Furthermore, we
will try to incorporate the proposed video summarization approach into modern media
tools to make practical use of the proposed summarization algorithms.
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