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Abstract: Image novelty detection is a repeating task in computer vision and describes the detection of
anomalous images based on a training dataset consisting solely of normal reference data. It has been
found that, in particular, neural networks are well-suited for the task. Our approach first transforms
the training and test images into ensembles of patches, which enables the assessment of mean-shifts
between normal data and outliers. As mean-shifts are only detectable when the outlier ensemble and
inlier distribution are spatially separate from each other, a rich feature space, such as a pre-trained
neural network, needs to be chosen to represent the extracted patches. For mean-shift estimation, the
Hotelling T2 test is used. The size of the patches turned out to be a crucial hyperparameter that needs
additional domain knowledge about the spatial size of the expected anomalies (local vs. global). This
also affects model selection and the chosen feature space, as commonly used Convolutional Neural
Networks or Vision Image Transformers have very different receptive field sizes. To showcase the
state-of-the-art capabilities of our approach, we compare results with classical and deep learning
methods on the popular dataset CIFAR-10, and demonstrate its real-world applicability in a large-
scale industrial inspection scenario using the MVTec dataset. Because of the inexpensive design, our
method can be implemented by a single additional 2D-convolution and pooling layer and allows
particularly fast prediction times while being very data-efficient.

Keywords: image novelty detection; defect detection; mean-shift; deep learning

1. Introduction

The ability to detect unusual patterns in images is an important capability of the
human vision system. Humans can differentiate between expected variance in the data
and outliers after having only seen examples of normal instances. In this work, we address
the computer vision approach to this problem, usually known as image novelty detection.
Novelty detection is related to outlier detection in the sense that both methods try to detect
anomalies. However, while the latter is totally unsupervised, novelty detection has access
to a training dataset consisting of clean normal reference data, and, hence, is an instance
of weakly-supervised learning. The output of such an algorithm is a scoring function
(anomaly score) that can be used to grade test data from inlier (normal) to outlier (novel)
(e.g., [1]). Since the anomaly score is computed for a single input example, it can also be
used for binary classification tasks. The major difficulty of such a model is that the decision
boundary is not robust against overlapping between inlier and outlier distributions. This
motivates the main idea of the ensemble approach to novelty detection: representing both
training and test images as ensembles of image patches [2]. Instead of scoring a single test
example with respect to the normal distribution, the ensemble approach first transforms the
test example into a ensemble of patches and checks the test and training ensemble against
each other, which improves the robustness of the decision process. There is a wide range of
methods for testing if two samples originate from the same distribution. Here, we follow
our previous work [2] and use the the Hotelling T2 test [3] for assessing the mean-shift
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between two populations. As these statistics are simple to compute, fast, and effective,
they are particularly suitable for large datasets. In contrast to our prior work, instead of
computing a low-rank approximation to the required empirical covariance matrix, we use
the shrinkage regularization [4], which improved performance significantly.

Novelty detection by means of mean-shifts is only possible when the inlier and outlier
distributions are sufficiently spatially separate from each other. We found in our experi-
ments that the degree of separation strongly depends on the computational details how the
image patches are extracted from the input images. Hereby, the critical hyperparameters
are the size and the number of extracted patches, and the selected feature map that is used
for transforming the patches. We also found that these parameters depend on the specific
problem at hand and, thus, have to be set based on available domain knowledge. There are
two cases to consider (cf. Figure 1):

• Global novelty is spread across the entire image, e.g., when separating dog images
from cat images.

• Local novelty appears only in some parts of the image whereas the other parts of
the image are totally normal, e.g., detecting tiny manufacturing defects in industrial
visual inspection systems.

(a)
Figure 1. Cont.
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(b)
Figure 1. Detection of (a) locally concentrated novelty and localization on the MVTec dataset and
(b) global anomalies on the CIFAR-10 dataset. All shown examples are from the outlier test set
and the red color highlights the location of the novelty in the images. The overlayed red score
map is computed using the µshift anomaly score (cf. Equation (11)) without applying the spatial
max-operator, such that the model output is a 2D grid of anomaly scores. These scores are mapped to
a red heat map and resized to match the input resolution using bilinear interpolation. Hence, red
areas correspond to potentially anomalous regions.

We identified the following practical principles for successful image novelty detection
using mean-shifts: (1) First, as anomalies mostly consist of patterns not available in the
normal class, a rich feature space, such as a pre-trained neural network, needs to be used.
(2) No dimension reduction based on the inlier data should be applied, as the inlier data
occupies only a small portion of the feature space, and projecting onto its subspaces causes
the anomalies to overlap with the normal data. Additionally, (3), the spatial size of the
expected anomalies needs to be correctly expressed in terms of the hyperparameters,
i.e., patch size and local mean-shift region, as a small local novelty cannot influence the
mean shift sufficiently in too large averaging areas, mainly, because the distributions
overlap only in insufficiently small regions.

Contributions

In this work, we propose a non-expensive algorithm (https://github.com/matherm/
deep-mean-shift, 4 September 2022) based on the Hotelling T2 test for image novelty detec-
tion that is stacked on top of a standard pre-trained neural network, such as EfficientNet [5]
or Vision Image Transformer (ViT) [6]. Using an upstream pre-trained neural network
induces a rich feature space with a diverse set of pre-learnt patterns and accommodates the
previously mentioned principle (1). In contrast to our previous work [2], we follow princi-
ple (2) and use a full-rank covariance matrix for modelling the neural network features,
instead of relying on a compressed low-rank approximation which improves performance

https://github.com/matherm/deep-mean-shift
https://github.com/matherm/deep-mean-shift
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significantly. Further, to fulfil principle (3), we generalize the existing ensemble approach
to novelty localization and add a hyperparameter that controls the expected spatial size of
the anomalies which has a strong impact on overall performance in practical applications.
We show in extensive experiments that our approach not only achieves comparable results
to existing state-of-the-art approaches, but is also applicable to a large-scale industrial
inspection scenario. Further, due to its simple architecture, the model has faster prediction
times compared to existing approaches. Lastly, because we only need to estimate the mean
of the training dataset, our method is very data-efficient and reaches 90% AUC with only
10 non-defective examples of the MVTec dataset [7]. Figure 1 shows examples from the
evaluated datasets.

2. Related Work

The use of limited supervision for image classification has been studied extensively [8,9].
Some approaches (e.g., [10]) consider the unbalanced setting where a small number of
anomalous examples is given, but many examples are given from the normal class. However,
these approaches use additional supervision that is not used in our method. Our work relates
more closely to anomaly detection approaches that use limited to weak supervision [1].
During training, we only use examples from the normal class and, therefore, consider our
method an instance of novelty detection, a semi-supervised version of anomaly detection,
sometimes also referred to as one-class classification [11]. There are different approaches
to the problem in general and we, therefore, group the related methods into the categories
reconstruction-, classification-, distribution-based, and self-supervised methods.

Reconstruction-based methods. These methods derive a data-driven encoder and decoder
from the reference data and expect the anomalous data to have a higher reconstruction
error compared to normal data. However, such models are mostly based on unconstrained
compression and, therefore, often oversee novel patterns, resulting in poor performance in
practice [12].

Classification-based methods. These methods attempt to model a discriminating hyper-
plane between data regions of normal data and those of anomalous data [13], without nec-
essarily using compression. Such methods often perform well in practice. However, their
main limitation arises from the fact that the hyperplane can only be estimated accurately
in regions occupied by the training examples [14]. The recently proposed Mahalanobis
method [12] tries to heal the problem by negating the estimation process by using the null
space of a pre-trained neural network feature space instead.

Distribution-based methods. These methods are another branch of novelty detection
that model the distribution of the normal data. Such methods are often built around
autoencoders [15] or normalizing flows [16]. However, it has been argued and empirically
found that distribution-based methods that fit a flexible parametric distribution with the
maximum likelihood objective may not be well-suited for detecting out-of-distribution
data [17].

Self-supervised methods. These methods try to improve distribution-based methods by
replacing the data likelihood with a proxy classification objective, such that classifying
normal data based on that objective allows for a good separation of normal and anomalous
data. These techniques are related to non-linear Independent Component Analysis (ICA)
using an auxiliary variable, such as a time segment, a generalized non-stationary variable, or
synthetic labels [18,19]. A successful application of this theory to images is to predict image
rotations [20,21]. The proxy objective is given by first rotating the image by an arbitrary
angle and then trying to predict that angle using a deep convolutional neural network.
However, this strategy only works well for aligned objects with a natural orientation, where
the rotation dependence is strong enough to learn a good rotation predictor.

In the literature, there are mostly specialized algorithms for either global or local
novelty detection, and, hence, there are different methods superior within each scenario.
For global novelty, particular rotation prediction [20], Deep SVD [13], and Deep Robust One
Class Classifier (DROCC [14]) excel. The rotation prediction method is a self-supervised
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schemes that solve a proxy classification problem for feature learning and uses a softmax-
based anomaly score. Although the Deep SVD is a deep learning based version of the
singular value decomposition (SVD), the DROCC method uses a nearest neighbor approach
on pre-trained neural network features. For local defect detection, a recent method named
PatchCore [22] achieves almost total recall on the MVTec challenge [7] using a greedy algo-
rithm for dataset reduction based on coreset theory [23]. It is also based on an underlying
nearest neighbor search in the feature space of a pre-trained EfficientNet-B4, but uses a
modified distance as anomaly score. CutPaste [24] is a self-supervised method specially
designed for local novelties. It is similar to rotation prediction [20] as it also solves a self-
supervised surrogate classification problem. However, instead of predicting the rotation
of the input example it cuts out small patches and pastes them to another image location
to create the contrastive dataset. The anomaly score is the class probability of being an
altered image.

Our work is most related to recent works that model the internal distribution of
images [16]. However, unlike these approaches, our model benefits from the estimation
of only low order cumulants of image patches, i.e., mean and covariance, instead of a
parametric model of the full density, which is a simpler task in general. By choosing
non-linear basis functions for representing the patches, here a pre-trained deep neural
network, our method adds a relatively small computational overhead compared to the
method based on raw pixel mean-shifts [2], but improves the detection and localization
performance effectively.

There are two similar approaches named PatchSVDD [25] and PaDiM [26] that we want
to relate shortly. PatchSVDD optimizes a deep spherical embedding for extracted image
patches. As this is based solely on the reference data, it implicitly reduces dimensionality,
and novelties with orthogonal patterns are projected onto the null space of the normal
distribution. This decreases the performance of the method compared to our approach that
does not involve any dimension reduction. PaDiM is similar to ours and also computes full-
rank Mahalanobis distances. However, it does not benefit from extracted patch ensembles
that turned out to be performance critical in our tests. Therefore, it is a special case to ours
where the size of the extracted patch ensemble is one and the covariance matrix is not
shared across locations.

3. Method

The central part of our algorithm is the µshift(x) anomaly score [2] that is based on the
Hotelling T2 test [3]. This test is formulated on the basis of two samples of two distributions
and measures the mean-shift between them. Therefore, it is a multivariate extension to
the well-known Student’s t-test. Here, we use ensembles of image patches as samples and
measure their mean-shift in some specified feature space Φ. In this section, we first describe
the data representation and the mean-shift detection in its classical form.

On a high level, the first step is the extraction of patches {I0(s), . . . , IN(s)} from the
normal training images {I0, . . . , IN}. These patches are transformed by a feature map Φ,
typically parametrized by a pre-trained neural network. For indexing the ensemble where
necessary, we introduce the indexing variable s. Using this notation, a single extracted patch
of the i-th example in feature space is denoted by xi and the corresponding patch ensemble
by xi(s). Based on all available transformed training patches X, the required statistics,
i.e., mean vector and covariance matrix, are computed. For a given test image I∗, the same
preparatory steps are applied and we extract a ensemble of patches I∗(s) and compute the
features x∗(s). We then evaluate the mean-shift of the test example by comparing the test
ensemble mean µ(x∗(s)) with the mean of the entire training dataset µ(X).

3.1. Data Representation

The input examples Ii ∈ [0, 1]3×H×W , with i = 1, ..., N, are square-sized RGB images,
i.e., H = W. The distinctive property of our algorithm is to generate patch ensembles,
instead of processing the full image. For patch extraction, we tested several sampling
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strategies without noticing performance-critical differences. Therefore, we extract all valid
patches of size R inside the image. The term valid is used in accordance with the neural
network literature and means that all extracted patches must be entirely contained within
the image borders. This is equivalent to cropping patches by a sliding window without
applying image padding or crossing the border. As the input images are potentially large,
the horizontal and vertical stride τ of the sliding window allows limiting the total number
of cropped image patches S. We fix this parameter to τ = 2 for small images and τ = 16
for larger ones. Hence, the maximum number S of distinct image patches per input image
depends only on the size of the image and the patch size R, i.e., the larger the image relative
to the patch size, the more patches can be extracted. We do not apply any pre-processing
and compute a feature representation Φ for the extracted patches Ii(s) using a pre-trained
neural network, given by

xi(s) = Φ(Ii(s)) ∈ RD, (1)

where D is the number of features after flattening the computed feature map. Flattening is
needed since some feature maps Φ, e.g., Convolutional Neural Networks (CNN), retain
the spatial dimensions of the input patches. We organize the flattened feature vectors
of all available extracted normal training patches in a long concatenated design matrix
X ∈ RNS×D.

3.2. Mean-Shift Detection

We follow [2] and also perform mean-shift detection with the Hotelling T2 test [3].
Since this test is a generalization of Student’s t-test, it estimates the significance of mean-
shifts between two populations. In this section, we introduce the Hotelling T2 test with
its required statistics in the original form. In the second part of the paper, in Section 4, we
derive a generalized version that is able to smoothly transition between global and local
population mean-shifts. We discuss relevant hyperparameters that are needed for model
selection in Sections 3.4 and 4.1.

For detecting anomalies, we first compute the feature-wise mean

µ =
1

NS

N

∑
i

S

∑
s

xi(s) (2)

over all extracted and flattened feature maps of the training dataset X. Note that µ has the
same dimension as xi. We then compare this reference mean with the mean

µ∗ =
1
S

S

∑
s

x∗(s) (3)

of the transformed patches x∗(s) extracted from a single test example I∗. Given the two esti-
mated mean vectors µ∗ and µ, the unnormalized Hotelling T2 test statistic for a dependent
test sample is computed by

T̃2 = (µ∗ − µ)TΣ̂−1(µ∗ − µ), (4)

where
Σ̂ =

1
NS− 1

(X− µ)T(X− µ) (5)

is the empirical covariance matrix of the training dataset X. There is a intuitive geometric
interpretation of the T̃2 statistic available. That way, it can be interpreted as the squared
Mahalanobis distance [27] between the two estimated mean vectors. For completeness, we
want to highlight that we discarded the constant normalization factor NS2

NS+S that appears
in the original formula and, hence, denote our unnormalized version of the statistic by T̃2

instead.
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In principle, there are several options for defining the mean µ of the reference data,
e.g., by clustering or partitioning. Here, we choose the simplest option and compute the
feature-wise mean over all patches of the training examples. This gives a single µ-vector
for the entire dataset as denoted in Equation (2). A naive global anomaly score is simply
defined as the unnormalized T2 test statistics over the entire image, given by

s̃(x) = T̃2(µ∗(x); µ, Σ). (6)

The entire pipeline of this global method is illustrated at the top in Figure 2. For
illustration of the mean-shift, Figure 3 shows a scatter plot of test examples in feature space.

(a)

(b)
Figure 2. Schematic illustration of our mean-shift method. (a) First, the feature map Φ is computed
per extracted image patch, then the mean statistics is computed over all training patches. Together
with the empirical covariance matrix of the normal data, the Hotelling T2 test is used as anomaly
score. (b) The local mean-shift variant applies the global mean-shift method to a local region A of the
image, and, hence, yields a field of mean vectors µ(x, y). The final score is computed by taking the
maximum over the field of local scores. The covariance matrix is shared across all local regions.

3.3. Covariance Shrinkage

The empirical covariance matrix in Equation (5) cannot be robustly estimated for high
dimensional data as most of the eigenvalues are close to zero and, hence, the estimates
are very unstable. This is especially an issue for small datasets, where the number of
patches is equal or smaller than the covariance matrix dimension D, but is potentially also
a problem for highly redundant datasets that occupy only a small subspace. In order to
mitigate, we use the Ledoit–Wolf shrinkage estimator [4]. This estimator is given by a
convex combination between a scaled identity matrix and the empirical covariance matrix

Σ = (1− α)Σ̂ + α
trace(Σ̂)

D
Id, (7)

where the so-called shrinkage factor α ∈ [0, 1] is given analytically by minimizing the
quadratic loss between the true and estimated covariance matrix. The exact formula for α
is a bit cumbersome, we, therefore, refer the reader to Equation (5) in the original paper
for it [4]. Loosely speaking, the shrinkage factor α is an analytic function of the empirical
covariance matrix and the number of data points. A useful property of the estimator is, that
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the shrinkage factor is near to one for small numbers of data points and reduces to zero
with increasing dataset size. Therefore, in the limit of an infinite number of data points,
the shrunk covariance matrix converges to the true covariance matrix. Our experiments
show that the chosen estimator is crucial and responsible for almost 5% of the overall
performance. Figure 4 shows the impact of the shrinkage factor on novelty detection
performance for different values of α and different dataset sizes. For the experiment, we
used 64 × 64 patches and the EfficientNet-B4 feature space, which has dimensionality
D = 6800 after the flattening operation (cf. Equation (1)). Therefore, the estimation of a
covariance matrix with shape 6800× 6800 is required.

(a)

(b)
Figure 3. Visualizing the mean-shift between normal and defective examples of the MVTec dataset
for (a) the pill and (b) the bottle classes. For visualization, four random features of the EfficientNet-B4
features where chosen. As hyperparameters, we selected θ = {L = 5, R = 48, τ = 16, A = 96}.
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As already noted, outliers are projected onto the subspace spanned by the normal
data, which makes a robust estimation of the full covariance matrix necessary, without the
possibility of using low-rank approximations [12]. This is especially important when the
expected anomalies are small and characterized by patterns that are not present in the
training set.

0 50 100 150 200 250
0.4

0.6

0.8

1

Number of training examples

A
U

C
MVTec:Bottle

α = 0.0
α = 0.1
α = 0.25
α = 0.5
α = αLedoit/Wol f

0 50 100 150 200 250
0.4

0.6

0.8

1

Number of training examples

A
U

C

MVTec:Pill

α = 0.0
α = 0.1
α = 0.25
α = 0.5
α = αLedoit/Wol f

0 50 100 150 200 250
0.4

0.6

0.8

1

Number of training examples

A
U

C

MVTec:Capsule

α = 0.0
α = 0.1
α = 0.25
α = 0.5
α = αLedoit/Wol f

0 50 100 150 200 250
0.4

0.6

0.8

1

Number of training examples

A
U

C

MVTec:Screw

α = 0.0
α = 0.1
α = 0.25
α = 0.5
α = αLedoit/Wol f

Figure 4. Impact of the the covariance shrinkage factor α on novelty detection performance. We
selected four representative classes from the MVTec dataset [7] for evaluation. Due to the high
dimensionality of the covariance matrix (D = 6800), the effect of the shrinkage factor is largest
when the number of training examples is small. The Ledoit–Wolf shrinkage αLedoit/Wol f varies across
experiments between [0.01, 0.1] and clearly improves the average performance.

3.4. Hyperparameter Selection

There are two main hyperparameters that need to be set for the global method. First is
selecting the feature space Φ, and second is choosing the patch size R. In the following,
we first discuss the feature spaces, and how the chosen neural network architectures differ
impacts the model.

3.4.1. Feature Space Φ

Our model does not learn features and relies on a fixed rich feature representation.
To this end, we analyzed different deep convolutional neural networks (CNNs), namely
EfficientNet-B4 Φe f f

L [5], Wide-Resnet-50 Φres
L [28], and VGG-19 Φvgg

L [29]. L indicates the
feature block (layer) of the deep neural network. The commonly used Block convention
wraps several adjacent layers of a deep neural network into blocks, such that the architec-
tures become handier and easier to compare (e.g., [29]). We follow this convention and
the hyperparameter L indexes entire blocks of the architecture. The superscript indicates
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the used network architecture, e.g., Φvgg
3 for the third feature block of VGG-19. Addition-

ally, we analyzed the recently presented Vision Image Transformer Model (ViT) Φvit
L [6].

The required pre-training of the networks is always done by using the well-known Ima-
geNet dataset, where all architectures reach a test set accuracy of around 85%. Note, we
concatenated two adjacent layers [L, L + 1] of EfficientNet-B4 as the layers are relatively
low-dimensional, which improves the performance slightly (see, e.g., [22]). Due to the
pooling layers, the spatial resolution of the feature map decreases with the depth of the
network, i.e., deeper layers have lower spatial resolution. To enable channel-wise concate-
nation of different sized feature maps in the first place, we match the spatial resolution of
the feature maps by spatially resizing the smaller downstream feature map to the size of its
larger predecessor feature map using bilinear interpolation.

3.4.2. Patch Size R

The most crucial hyperparameter is the chosen image patch size R. Generally, the deeper
the convolutional neural network, the smaller the spatial resolution of the resulting feature
map, which is mainly caused by 2D-pooling operations [30]. While the receptive field
grows, more global information is carried by the pixels of the feature maps. Importantly,
for successful feature extraction, one needs to choose a layer that retains enough spatial
resolution for the problem at hand and an appropriate receptive field to capture the anoma-
lies. Hence, to gain sufficient separate inlier and outlier distributions, the layer selection
L and patch size R depends on the size of the input images and the expected size of the
anomalies. Note, that the Vision Image Transformer (ViT) is different as the receptive field
size is implicitly learnt by the model and in principle equal to the size of the entire input
and hence independent of the layer L. We did not notice a performance-critical impact of
the stride parameter and keep it fixed to τ = 2 for smaller inputs and τ = 16 for larger ones.

3.5. Evaluating Global Novelty Detection

We compare our method with methods that particularly excel in global novelty detec-
tion. As a baseline we use the well-known OC-SVM [31] with an a RBF-kernel and flattened
CNN feature maps. We reproduced all experiments by either using implementations pro-
vided by the authors or re-implementing the models by using available information and
hyper-parameters. For testing global novelty detection we use the CIFAR-10 dataset [32],
which are 32× 32 RGB images, and test the methods in a one-vs-all procedure. This means
we use the 5000 available training examples of a single class as normal class, and classify
on the entire test dataset, consisting of 10 classes with 1000 examples each, afterwards.
We use area-under-the-ROC-curve (AUC) as performance measure (see, e.g., [12,20]). The
ROC curve plots the true positive rate (TPR) against the false positive rate (FPR) at various
thresholds and hence measures the overall discrimination performance of a binary classifier.
In terms of hyperparameters for µshift, we selected θ = {L = 5, R = 32, τ = 2}. This is the
maximum patch size possible and a special case of the method. However, it is also optimal
for the chosen scenario: Changing the parameter L, decreases the AUC significantly for
most of the network architectures (see Figure 5). The same applies to reducing the patch
size R, which we verified in Figure 6.
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Figure 5. Impact of the chosen feature block index L of neural network on the novelty detection
performance. We selected four sensitive classes from the MVTec dataset [7] and the CIFAR-10
dataset [32] for evaluation. On average, a deeper block improves detection performance. The best
results were obtained for L = 5.
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Figure 6. Varying the patch size R and the averaging region A impacts the detection rate significantly.
Tests were conducted using the critical classes pill, capsule and screw classes from the MVTec dataset,
and the entire CIFAR-10 dataset. The MVTec tests used the EfficientNet-B4 architecture. For CIFAR-10
we tested several popular architectures.

Table 1 shows the results averaged across five folds of cross-validation using varying
training and test splits. It is interesting to note how the different CNN architectures
have a strong influence on the performance and how the Vision Image Transformer (ViT),
with its large receptive field, is able to separate the inliers from the outliers almost entirely.
Particularly using EfficientNet-B4 is problematic in the special case of global novelties as
it possesses the smallest receptive field among the tested architectures and is not able to
capture the entire image context into a single feature variable.
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Table 1. Evaluating detection capabilities of globally distributed novelty on the CIFAR-10 dataset
using five-fold cross-validation. Changing the CNN feature space impact the detection performance
significantly. We argue that this indicates a strong correspondence between novelty size and the size
of the receptive field of the CNN architecture.

µshifteff µshiftvit µshiftvgg RotationNet [20] DROCC [14] Mah.Ad [12] OC-SVM [31] DSVD [13]

plane 0.776 ± 0.004 0.948 ± 0.005 0.853 ± 0.002 0.739 ± 0.006 0.817 ± 0.022 0.745 ± 0.006 0.718 ± 0.020 0.617 ± 0.410
car 0.858 ± 0.008 0.979 ± 0.003 0.896 ± 0.010 0.905 ± 0.013 0.767 ± 0.099 0.748 ± 0.008 0.712 ± 0.003 0.659 ± 0.210
bird 0.650 ± 0.002 0.942 ± 0.005 0.725 ± 0.005 0.773 ± 0.006 0.667 ± 0.096 0.630 ± 0.008 0.606 ± 0.008 0.508 ± 0.080
cat 0.613 ± 0.011 0.923 ± 0.008 0.673 ± 0.015 0.741 ± 0.013 0.671 ± 0.151 0.657 ± 0.008 0.643 ± 0.019 0.591 ± 0.140
deer 0.819 ± 0.009 0.955 ± 0.005 0.856 ± 0.002 0.792 ± 0.015 0.736 ± 0.200 0.737 ± 0.002 0.788 ± 0.008 0.609 ± 0.110
dog 0.706 ± 0.013 0.970 ± 0.006 0.758 ± 0.002 0.848 ± 0.013 0.744 ± 0.195 0.706 ± 0.004 0.661 ± 0.006 0.657 ± 0.250
frog 0.886 ± 0.006 0.970 ± 0.003 0.884 ± 0.001 0.793 ± 0.013 0.744 ± 0.092 0.766 ± 0.004 0.786 ± 0.014 0.677 ± 0.260
horse 0.843 ± 0.016 0.972 ± 0.002 0.858 ± 0.010 0.915 ± 0.006 0.714 ± 0.022 0.757 ± 0.012 0.704 ± 0.013 0.673 ± 0.090
ship 0.806 ± 0.012 0.976 ± 0.005 0.902 ± 0.010 0.906 ± 0.008 0.800 ± 0.169 0.744 ± 0.000 0.785 ± 0.003 0.759 ± 0.120
truck 0.855 ± 0.007 0.975 ± 0.004 0.923 ± 0.013 0.885 ± 0.010 0.762 ± 0.067 0.779 ± 0.006 0.796 ± 0.014 0.731 ± 0.120

Avg. 0.781 ± 0.002 0.961 ± 002 0.833 ± 0.000 0.830 ± 0.004 0.742 ± 0.011 0.727 ± 0.003 0.720 ± 0.009 0.648 ± 0.180

We presented the original mean-shift method [2] based on raw pixel values and eval-
uated the performance without using pre-trained features or transfer-learning. For com-
pleteness, we report the low average AUC of only 0.67 using raw pixel values in Figure 6.
This lack of performance emphasizes the requirement for a rich feature space, such that the
inlier distribution does not overlap with novelties through its null space causing a large blind
spot for novelty detection. Such an overlap happens naturally when the anomalous patterns
are projected onto the subspace of the normal data and the corresponding features are not
present in the given training data. Consequently, anomalous patterns cannot be detected as
they are mapped to null space. A rich feature space with a diverse set of pre-learnt patterns
mitigates that effect.

With RotationNet, we could achieve the reported AUC of 0.86 only when the internal
network were pre-trained on ImageNet [20], but not when initialized randomly. However,
despite of that, for general unsupervised feature learning, the method remains extremely
powerful on CIFAR-10.

4. Local Anomaly Score

Due to global averaging, the naive global mean-shift anomaly score [2] is not flexible
enough to localize anomalies properly. To improve, a generalization of the mean-shift
detection capabilities to local mean-shifts is required, and, hence, a modified test statistic.
To this end, we define a local version by computing an entire field of µ-vectors uniformly
distributed across the image instead of a single vector.

As shown on the right-hand side in Figure 2, this is equivalent to computing the
global anomaly score only for local parts of the image with shared covariance matrix across
all locations. To leverage the spatial structure, we organize the S extracted patches x(s)
as a
√

S×
√

S feature map x̃(x, y), where the positions (x, y) correspond to their relative
locations in the input image, i.e., the order of the patches and their relative spatial position
is unchanged. Note, that S is a square number, because we assume that the input images are
square-sized RGB images, i.e., H = W. Next, we compute the µ-vectors by averaging across
a local neighborhood whose size is given by A. The resulting

√
S

ρ ×
√

S
ρ field S consists of

the µ(x, y)-vectors, with

ρ =
A− R

τ
+ 1. (8)

As in the global case, the µ(x, y) of the training data is computed by averaging over
all available training examples

µ(x, y) =
1
N

N

∑
i

Sx̃i(x, y), (9)
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where Sx̃ is the pooled feature map

Sx̃(x, y) =
1
ρ2

ρ

∑
m=1

ρ

∑
n=1

x̃(x + m, y + n), (10)

and x̃(x, y) ∈ RD×
√

S×
√

S is the reshaped version of x(s) ∈ RS×D.
The generalized anomaly score is then computed by taking the maximum over the

field of local mean-shifts, given by

µshift(x) = max
x,y

T̃2(Sx̃(x, y)− µ(x, y); 0, Σ). (11)

Note that the covariance matrix Σ is exactly the same as in the global case and just
the mean estimates are computed differently. In fact, for ρ =

√
S the global case appears

as a special case. A second special case appears when R = H and, hence, ρ = 1. Here,
the extracted patches represent entire images.

4.1. Local Mean-Shift Region A

Generally, we differentiate between two extreme cases for novelty detection in this
work: (1) global novelty and (2) local novelty. To cover both cases, we found that it is
important to first adjust the patch size R to match the desired anomaly fraction of the
given input resolution, such that the anomaly falls into the receptive field of the computed
feature map. In simple terms, for globally distributed novelties, select a large patch size,
for local anomalies a small one. As already noticed by others, the EfficientNet-B4 works
very well for local novelty detection [12], whereas the VGG-19 is better suited for global
case [20]. We argue that the main reason for this is that the EfficientNet-B4 uses almost solely
1× 1 convolutions, which retains less blurry local features. To validate this assumption, we
computed the receptive fields sizes for different selected CNN-architectures. Table 2 shows
the results. Note that the receptive field can be computed by varying the input size R until
the feature map ΦL of the desired block L has size 1× 1. (Note that for some architectures,
there are analytical formulas available, e.g., [33].) The stride of the receptive field τ is then
the remaining input size H divided by the remaining feature map size H̃L, given by

τ =
H − R
H̃L − 1

. (12)

It can be seen, that the EfficientNet-B4 has a significantly smaller and a non-overlapping
receptive field compared to, e.g., the VGG-19.

Finally, the last remaining hyperparameter is the local averaging region A for comput-
ing the local mean-shift statistics. Note, the parameter A is similar to the patch size R as it
also impacts the effective receptive field of the entire model and hence the sensitivity for
globally distributed and local concentrated novelty. Our final architecture-independent
parameter vector is denoted by

θ = {ΦL, R, τ, A}. (13)

We visualized the local mean-shift for the bottle class in Figure 3 as an example.
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Table 2. The minimal patch size R, the internal stride and number of features for different feature
blocks of the analyzed convolutional neural networks (CNNs). Note the significantly larger re-
ceptive field of the VGG-19 for deeper blocks that simplifies detecting global novelties while the
EfficientNet-B4 with its smaller receptive field and larger non-overlapping strides can focus on locally
concentrated novelty.

EfficientNet-B4 VGG-19 Wide-Resnet-50

Block Field Stride Features Field Stride Features Field Stride Features

1 2 2 48 2 2 64 2 2 64
2 2 2 24 6 2 128 4 4 64
3 4 4 32 14 6 256 4 4 256
4 8 8 56 14 6 512 8 8 512
5 16 16 112 30 14 512 16 16 1024
6 16 16 116 30 14 512 32 32 2048

4.2. Efficient Feature Computation

The computation of the feature map per extracted image patch is quite expensive in
practice. For mitigation, we propose computing the features of all patches simultaneously
by computing the feature map of the entire image in a single forward pass through the
neural network. However, one needs to be careful, as the patch size R and stride τ is
now restricted by the internal details of the selected architecture and their corresponding
receptive fields, as shown in Table 2. For example, for block 5 of EfficientNet-B4, a single
pixel in the feature map corresponds to 16 pixels in the input space and the stride is fixed
to τ = 16. This also limits the freedom of the local averaging region A to a multiple of 16.

4.3. Evaluating Local Novelty Detection

For evaluating the local novelty detection capabilities, we use the MVTec [7] dataset
which comprises 15 different defect detection scenarios. All examples are RGB images with
size 224× 224. The defects are locally concentrated and consist of scratches, scars, small
holes, and other industrial defects. Figure 1 shows representative examples of the dataset.
Per class, respectively, scenario, the MVTec dataset provides a training dataset consisting
solely of non-defective examples and a test dataset that includes both non-defective and
defective examples. For training we use all available non-defective examples from the
training dataset. Depending on the scenarios, there are between 50 and 500 examples
available. Table 3 shows the results of the experiment averaged across five folds of cross-
validation using again varying training and test splits. Because there are no defective images
in the training set of MVTec, we only swapped the non-defective training and test data
during cross-validation. In other words, the defective examples of the test dataset were kept
constant and only the non-defective examples of the test and training datasets were varied.
In terms of hyperparameters for µshift, we selected θ = {L = 5, R = 64, τ = 16, A = 80}.
In order to find the best hyperparameters, we performed a grid-search L ∈ [2, 6], R ∈
[48, 144], A ∈ [64, 164] evaluating the average performance across all classes (cf. Figures 5
and 6). The sensitivity of the effective mean-shift region A on the detection performance
can be seen in Figure 6. For the EfficientNet-B4 for instance, A = 96 gives an AUC of 98.5,
A = 64 an AUC of 98.3. We also tested the method with the commonly used WideResnet-50
features and achieved 98.1 AUC on average for the same set of hyperparameters.
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Table 3. Evaluating the detection of locally concentrated novelty on the MVTec dataset using five-
fold cross-validation.

µshifteff µshiftvit µshiftvgg PatchCore [22] Mah.Ad [12] CutPaste [24] RotationNet [20] OC-SVM [31]

bottle 0.999 ± 0.001 0.998 ± 0.002 1.000 ± 0.000 1.000 ± 0.000 0.998 ± 0.001 0.985 ± 0.000 0.790 ± 0.037 0.992 ± 0.004
carpet 1.000 ± 0.000 0.999 ± 0.005 0.966 ± 0.008 0.998 ± 0.004 0.933 ± 0.000 0.579 ± 0.000 0.457 ± 0.084 0.973 ± 0.025
leather 1.000 ± 0.000 1.000 ± 0.000 0.932 ± 0.016 1.000 ± 0.000 1.000 ± 0.000 0.987 ± 0.000 0.396 ± 0.105 0.961 ± 0.011
pill 0.939 ± 0.017 0.960 ± 0.025 0.822 ± 0.020 0.983 ± 0.010 0.902 ± 0.012 0.887 ± 0.020 0.776 ± 0.078 0.500 ± 0.000
tile 0.991 ± 0.000 0.986 ± 0.005 0.961 ± 0.006 0.998 ± 0.001 0.987 ± 0.000 0.841 ± 0.020 0.473 ± 0.028 0.495 ± 0.004
wood 0.994 ± 0.004 0.992 ± 0.002 0.982 ± 0.008 0.982 ± 0.006 0.996 ± 0.003 0.895 ± 0.000 0.675 ± 0.073 0.500 ± 0.000
cable 0.993 ± 0.000 0.958 ± 0.005 0.951 ± 0.002 0.961 ± 0.008 0.944 ± 0.000 0.833 ± 0.030 0.669 ± 0.037 0.500 ± 0.000
grid 0.994 ± 0.004 0.938 ± 0.002 0.859 ± 0.053 0.909 ± 0.013 0.904 ± 0.002 0.999 ± 0.000 0.627 ± 0.107 0.596 ± 0.022
toothbr. 0.999 ± 0.002 0.995 ± 0.004 0.926 ± 0.033 0.997 ± 0.002 0.981 ± 0.000 0.947 ± 0.001 0.702 ± 0.107 0.999 ± 0.002
zipper 0.996 ± 0.004 0.946 ± 0.003 0.969 ± 0.007 0.995 ± 0.003 0.984 ± 0.007 0.995 ± 0.001 0.689 ± 0.105 0.959 ± 0.013
capsule 0.965 ± 0.023 0.950 ± 0.004 0.948 ± 0.025 0.980 ± 0.009 0.923 ± 0.018 0.802 ± 0.001 0.487 ± 0.091 0.842 ± 0.037
hazeln. 1.000 ± 0.000 0.986 ± 0.003 0.982 ± 0.008 1.000 ± 0.000 0.992 ± 0.000 0.988 ± 0.000 0.684 ± 0.058 0.512 ± 0.000
metaln. 0.998 ± 0.003 0.977 ± 0.000 0.943 ± 0.017 0.990 ± 0.006 0.928 ± 0.005 0.915 ± 0.000 0.712 ± 0.058 0.615 ± 0.015
screw 0.963 ± 0.010 0.839 ± 0.005 0.877 ± 0.032 0.987 ± 0.003 0.720 ± 0.001 0.892 ± 0.020 0.472 ± 0.062 0.758 ± 0.090
transist. 0.984 ± 0.005 0.928 ± 0.008 0.951 ± 0.015 0.997 ± 0.003 0.962 ± 0.002 0.844 ± 0.020 0.824 ± 0.022 0.610 ± 0.022

Avg. 0.987 ± 0.002 0.964 ± 0.003 0.938 ± 0.004 0.985 ± 0.002 0.961 ± 0.001 0.893 ± 0.01 0.824 ± 0.16 0.721 ± 0.005

Generally, the average AUC depends strongly on the average anomaly sizes: for
instance, while the pill class benefits from a small averaging region, the screw class performs
significantly better with a larger one.

Note that we could reach the reported 99.0 AUC of PatchCore only in a single fold of
cross-validation, but not on average over different folds of cross-validation and, therefore,
report slightly lower average scores than in [22]. The same appears to be the case for
CutPaste and we could only touch the reported 90.9 AUC. However, this is still impressive
for a self-supervised scheme that does not rely on pre-training or transfer-learning. We
also tested the related methods PatchSVDD [25] and PaDiM [26]. PatchSVDD reached on
average 92.1 AUC, PaDiM scored 97.9 AUC using the EfficientNet-B5 feature space.

5. Complexity, Runtime, and Data Efficiency

The complexity and runtime differs heavily between training and test time. For
training, the most expensive part is computing the D×D covariance matrix in Equation (5).
With an efficient estimation algorithm, this can be achieved in O(min{(NS)2D, (NS)D2}).
The mean estimation itself is linear O(NSD). At test time, the most expensive computation
is computing the T2 statistics in Equation (4) that needs a S× D-dimensional matrix-vector
multiplications O(SD2).

We noticed that depending on the dimensionality D and the chosen feature space,
the computational costs of computing the feature maps quickly exceeds the cost of our
algorithm. There is a fixed overhead that depends on the size of the input O(HW). For
example, for EfficientNet-B4, in our experiments the computation of a single MVTec
example took 36 ms for the feature map, and 30 ms for the anomaly score. The estimation
of the covariance matrix took 20 s for a single class. The runtime was measured on standard
CPU hardware (Intel i7-6700) without using GPU acceleration. By using a single GPU (GTX
3080Ti) the runtime could be reduced to 1 ms for the feature map, 1 ms for the anomaly
score. Computing the covariance matrix took 3 s.

Therefore, implementing the mean-shift detection by an additional CNN block con-
sisting of a 2D-convolution for the Mahalanobis-distance and using 2D-pooling for the
averaging-region, the model reached about 500 FPS for the entire pipeline on our hardware.
Note that this is much faster than, e.g., the 7 FPS of the PatchCore GPU-model (using
default 0.1 sampling ratio) [22]. The increased frame rate is mainly caused by avoiding the
k-nearest neighbor search across the entire patch database for every prediction.
As already mentioned, we also evaluated the data efficiency of the models with respect to
performance in Figure 7. Again, PatchCore and µshift perform similar with respect to the
number of needed training examples to reach a particular performance level. For example,
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90% AUC could be achieved with only 10 non-defective examples of the MVTec dataset [7].
In this scenario, we also tested the recently proposed hierarchical method for few-shot
anomaly detection (HTDGM) [34], but could not surpass the industrial critical AUC of
90%. Second, we noticed that the method does not scale well with increasing number of
training examples.
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Figure 7. Data efficiency on the MVTec dataset across several analyzed architectures. With more
than 10 non-defective training examples, an average AUC above 90% could be achieved using the
EfficientNet-B4 or the Vision Transformer Network (ViT) as feature space.

6. Discussion

We found that the success of our approach critically depends on the details of how the
patch ensemble is extracted from the input images. The most important parameters are
the number and the size of the patches and by which features the patches are represented.
Since mean-shift can only be detected when the outlier ensemble is sufficiently separate
from the inlier distribution, the overlap acts as a blind spot for novelty detection. In the
earlier version of the algorithm [2], we proposed using a hyperparameter selection rule
based on a negentropy approximation [35] to minimize overlapping of the distributions.
However, further experiments showed, that such an approach does not generalize well
towards arbitrary datasets and deep features. One reason is that the method prefers
larger patch sizes, which is beneficial for global novelty, but not for industry-relevant local
novelty detection.

Another interesting point appears when comparing our method to PaDiM [26]. As
already mentioned, this method is similar to ours, when the mean-shift region is equals
to the patch size, i.e., A = R, and hence the ensemble size S is one. The advantage of our
ensemble approach is manifested by the zigzag pattern in Figure 6. Here, increasing the local
mean-shift area A just slightly over the patch size R increases the detection performance
significantly, regardless of the actual chosen patch size.

7. Conclusions

For the task of novelty detection, we proposed a method that is capable of detecting
novelties effectively using deep mean-shifts. By attaching our method on-top of a pre-
trained neural network, we were able to achieve state-of-the-art performance in standard
benchmarks, such as the MVTec defect detection and CIFAR-10 one-class classification
challenge. Because of the simple design, the method is easy to implement and provides
a fast execution time. By using a GPU we could reach 500 FPS in our tests. Additionally,
because the model only relies on low order statistics, it is very data efficient and achieves
90% AUC on the MVTec challenge with only 10 non-defective examples.

The main drawback of the method is that the model accuracy heavily depends on
the specific problem at hand and the available knowledge about expected anomalies and
their sizes. As shown in Table 1, swapping the feature space can cause a significant
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change in performance. Second, not setting the correct patch size reduces the performance
quickly. However, the same limitations also appear in other methods, such as RotationNet
or PatchCore. For practitioners it is of great importance to use domain knowledge and
setting hyperparameters accordingly. A central open question is how to derive those
hyperparameters directly from data, which we leave for future work.
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