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Abstract: Because the dielectric constant of water is greater than that of oil and gas, dielectric logging
sensors can effectively distinguish oil and gas reservoirs from water layers by measuring the dielectric
parameters of formations. Under the special working conditions during the logging of boreholes
drilled for oil and gas exploration, such as high temperature and pressure and a narrow working
space, the endurance and effectiveness of the antenna in the dielectric logging sensor are crucial. This
paper presents a design method for a dual-polarization slot antenna for such working conditions.
We theoretically analyzed the working principle of this antenna, established the antenna model, and
evaluated its radiation characteristics through simulation. Subsequently, we developed and tested
the proposed antenna. The antenna could withstand a high temperature and pressure of 175 ◦C
and 140 MPa, respectively. A dielectric logging sensor using the proposed antenna was successfully
applied in oilfield logging.
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1. Introduction

The oil, gas, and water layers of a formation can be distinguished based on their
conductivity and dielectric constant. The conductivity can be measured using a low-
frequency electromagnetic wave logging sensor with a multi-turn coil antenna. Based
on the variation in the conductivity inside the formation, the oil, gas, and water layers
can be differentiated [1–3]. However, in the later stages of oilfield development, the fluid
distribution inside the formation becomes complex because of freshwater injection for oil
displacement, and the oil, gas, and water layers cannot be easily distinguished based solely
on conductivity. In recent years, the increased exploration and development of complex
formations with shale oil and gas, residual oil and gas, and water-flooded layers have
encouraged the development and application of dielectric logging sensors [4–7].

A dielectric logging sensor uses a small antenna to transmit microwaves to the forma-
tion in wells. In Figure 1, the red arrow represents the broadside antenna, and the green
arrow represents the end-fire antenna. When the microwaves interact with the formation
minerals and stored oil, gas, water, and other fluids, their amplitude undergoes attenuation,
and phase offset occurs. For example, the permittivity of water is considerably higher than
that of oil and gas, allowing us to distinguish oil and gas from water layers [8–12]. Recently,
Baker Hughes launched a commercial multi-frequency dielectric logging sensor [13]. In
addition, Schlumberger introduced a multi-frequency dielectric scanner [14], and Hallibur-
ton launched an advanced 1 GHz high-frequency dielectric logging sensor [15]. These new
commercial dielectric logging sensors operate at a working temperature of 150 ◦C and high
pressure of 100 MPa. However, these companies neither specify the size of antennas nor
explain their processing in high-pressure environments. In 2015, Wang Bin and other re-
searchers proposed a V-type broadband antenna for the dielectric logging sensor. However,
because of its complex structure and difficulty in realizing high-pressure endurance, the
antenna does not meet the actual dielectric logging application requirements [16].
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pressure endurance, the antenna does not meet the actual dielectric logging application 
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Figure 1. Schematic diagram of dielectric logging sensor. 

The size of an oil borehole is generally 8~12″ , and the depth is generally 
3000~5000 m. The maximum working temperature and pressure of the above-mentioned 
antennas are 150 °C and 100 MPa, respectively, which only meet the basic logging require-
ments of oilfields. However, with the increasing exploration of unconventional and com-
plex oil and gas reservoirs, the development of small-size dielectric logging sensors with 
endurance to withstand a temperature and pressure higher than 150 °C and 100 MPa, 
respectively, is important for the effective evaluation of the characteristics of fluids.   

In this study, we propose a design method and processing technology for a slot an-
tenna. The antenna was theoretically modeled, its working principle was analyzed, and 
its radiation performance was simulated. Subsequently, a small-size, dual-polarization 
slot antenna (as shown in Figure 2), which can withstand a maximum temperature of 175 
°C and pressure of 140 MPa, was developed. The performance of the antenna was exper-
imentally verified, and the application of the dielectric logging sensor using the proposed 
antenna was carried out in an actual oilfield. 
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Figure 1. Schematic diagram of dielectric logging sensor.

The size of an oil borehole is generally 8∼12′′, and the depth is generally
3000∼5000′′. The maximum working temperature and pressure of the above-mentioned
antennas are 150 ◦C and 100 MPa, respectively, which only meet the basic logging re-
quirements of oilfields. However, with the increasing exploration of unconventional and
complex oil and gas reservoirs, the development of small-size dielectric logging sensors
with endurance to withstand a temperature and pressure higher than 150 ◦C and 100 MPa,
respectively, is important for the effective evaluation of the characteristics of fluids.

In this study, we propose a design method and processing technology for a slot
antenna. The antenna was theoretically modeled, its working principle was analyzed, and
its radiation performance was simulated. Subsequently, a small-size, dual-polarization slot
antenna (as shown in Figure 2), which can withstand a maximum temperature of 175 ◦C and
pressure of 140 MPa, was developed. The performance of the antenna was experimentally
verified, and the application of the dielectric logging sensor using the proposed antenna
was carried out in an actual oilfield.
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Figure 2. Three-dimensional model and physical dual-polarization slot antenna (mm): (a) three-di-
mensional model; (b) frontal anatomical view; (c) lateral anatomical view; (d) top view; (e) physical 
top view; and (f) physical side view of the antenna. 

2. Theoretical Analysis 
A slot antenna is a slot cut in the wall of an enclosure in the form of a cavity resonator, 

from which electromagnetic energy is radiated. These types of antennas have a small-
sized, light-weight, easy-to-seal, and high-pressure endurance design at a high working 
frequency (through dielectric loading in the cavity), so they are suitable for the logging of 
oilfields. The proposed slot antenna (Figure 2) is installed on the metal plate of the dielec-
tric logging sensor. The antenna has a size of 𝐷𝐷0 × ℎ0 = ∅24 × 30 mm. In Figure 2, the 
green part is the antenna housing (material 4J29), which ensures the endurance of the di-
electric sensor antenna to withstand high voltage and corrosion. The pink cylinder repre-
sents two antenna elements (material GH145), perpendicular to each other but not in con-
tact. These elements feed the high-frequency current to the antenna, induce a dual polar-
ization in horizontal and vertical directions, and radiate effective electromagnetic energy 
to the formation. The yellow part represents the glass (material DM305) with a dielectric 
constant of approximately 4 filled in the antenna slot [17]. Its function is to ensure the 
electrical insulation and high-temperature and pressure endurance of the antenna to real-
ize its normal operation under the special working environment of the logging sensor, 
such as a high voltage of 140 MPa and 175 °C.  

The working wavelength of the antenna in the cavity loaded with dielectric is shown 
in Equation (1). 
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small size of the antenna, it operated in a non-resonant state; therefore, the input imped-
ance resistance of the antenna was small. In order to achieve excellent electrical contact 
between the antenna and the feed coaxial line and to improve the resistance of its imped-
ance, three measures were taken. (1) The probe length was increased and designed using 
coaxial line theory. The impedance calculation formula of the coaxial cable is shown in 
Equation (2).  

Figure 2. Three-dimensional model and physical dual-polarization slot antenna (mm): (a) three-
dimensional model; (b) frontal anatomical view; (c) lateral anatomical view; (d) top view; (e) physical
top view; and (f) physical side view of the antenna.

2. Theoretical Analysis

A slot antenna is a slot cut in the wall of an enclosure in the form of a cavity resonator,
from which electromagnetic energy is radiated. These types of antennas have a small-
sized, light-weight, easy-to-seal, and high-pressure endurance design at a high working
frequency (through dielectric loading in the cavity), so they are suitable for the logging
of oilfields. The proposed slot antenna (Figure 2) is installed on the metal plate of the
dielectric logging sensor. The antenna has a size of D0 × h0 = ∅24× 30 mm. In Figure 2,
the green part is the antenna housing (material 4J29), which ensures the endurance of
the dielectric sensor antenna to withstand high voltage and corrosion. The pink cylinder
represents two antenna elements (material GH145), perpendicular to each other but not
in contact. These elements feed the high-frequency current to the antenna, induce a dual
polarization in horizontal and vertical directions, and radiate effective electromagnetic
energy to the formation. The yellow part represents the glass (material DM305) with a
dielectric constant of approximately 4 filled in the antenna slot [17]. Its function is to ensure
the electrical insulation and high-temperature and pressure endurance of the antenna to
realize its normal operation under the special working environment of the logging sensor,
such as a high voltage of 140 MPa and 175 ◦C.

The working wavelength of the antenna in the cavity loaded with dielectric is shown
in Equation (1).

λ =
c

f
√

εr
= 7.4 cm (1)

where εr denotes the dielectric constant of the loaded dielectric in the cavity; λ represents
the working wavelength of the antenna in the cavity loaded with dielectric; f is the working
frequency value of the antenna 1e9 Hz; c is the velocity value of electromagnetic wave
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propagation in vacuum 3× 10e8 m/s. In order to establish a more accurate model in the
process of analyzing the antenna radiation and receiving electromagnetic fields, the antenna
should be regarded as a point magnetic dipole source by making the aperture size of the slot
antenna considerably smaller than its operating wavelength [18]. Therefore, the antenna
slot sizes were designed with a long side value L1 = 0.14λ = 1.1 cm, a wide boundary
value w0 = 0.1λ = 0.8 mm, and a height value h3 = 0.14λ = 12 mm. Due to the small
size of the antenna, it operated in a non-resonant state; therefore, the input impedance
resistance of the antenna was small. In order to achieve excellent electrical contact between
the antenna and the feed coaxial line and to improve the resistance of its impedance, three
measures were taken. (1) The probe length was increased and designed using coaxial line
theory. The impedance calculation formula of the coaxial cable is shown in Equation (2).

z0 ≈
138√

εr
log10

D2

d0
(2)

where εr denotes the dielectric constant value of the loaded dielectric in the cavity 4.4; z0 is
the characteristic impedance value of the coaxial cable 50 Ω; D2 is the external diameter
value of antenna feed ∅3.5 mm; d0 is the diameter value of the antenna probe ∅0.6 mm.
(2) The light brown area in Figure 2 is the laser welding groove, and its position is selected
at heights of h2 = 0.27h ≈ 3.3 mm, and its diameter is D1 = ∅1 mm. (3) The central axis of
the end-fire antenna probe and the broadside antenna probe shall be located in the middle
of the long and wide edges of the slot opening surface, respectively. The broadside antenna
probe is located at w0

2 = 4 mm, the end-fire antenna probe is located at L1
2 = 5.5 mm

(Figure 2d,e). Based on the requirements for antenna installation and fixation, other size
parameters of the antenna, such as D0, h0, L0, L2, h1, w1, D3 , were selected, respectively,
as ∅24 mm, 30 mm, 3.5 mm, 8 mm, 5 mm, 21.5 mm, and ∅4 mm.

The proposed antenna structure has several advantages: it is easily fabricated; its
performance depends on the size of the current in the loop; and it is relatively unaffected
by environmental changes.

2.1. Performance Analysis of Single Antenna

The working principle of each antenna is simplified in Figure 3a. The fan wire indicates
that the antenna probe is in contact with the inner conductor of the feeding coaxial line. The
green part represents the housing of the antenna slot in contact with the outer conductor
of the feeding coaxial line. The red solid line arrows represent the high-frequency current
fed through the inner conductor of the feeding coaxial line. The current passes through
the antenna probe, antenna housing, and outer conductor of the feeding coaxial line and
generates electromagnetic radiation [19].
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The antenna pin, the extension of the core of the feeding coaxial cable, touches the
opposite side of the slot. Because the wavelength of the antenna (λ = 7.4 cm) working in
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a medium is greater than the longer side of the aperture (∆l = 1.1 cm), the antenna can
be regarded as a magnetic dipole located at the origin (Figure 3b). The solid blue arrow
represents the magnetic moment, which is equal to the product of the high-frequency
current and the equivalent area of the antenna (m = IS

→
z0).The electric and magnetic fields

generated by it are shown in Equations (3)–(5):

→
E∅ =

ISk2

4πr

√
µ

ε

(
1 +

i
kr

)
eikrsinθ

→
∅0 , (3)

→
Hr = −

ISki
2πr2

(
1 +

i
kr

)
cosθeikr→r0 , (4)

→
Hθ = − ISk2

4πr

(
1 +

i
kr
− 1

k2r2

)
sinθeikr

→
θ0 . (5)

The basic oscillator of the magnetic dipole can be considered equivalent to a mag-
netic dipole with a distance of ∆l and magnetic charges at both ends of +qm and −qm,
respectively.

→
m = qm

→
∆l = qm∆l

→
z0 = IS

→
z0 (6)

Further, the magnetic current of the magnetic dipole basic array can be obtained as
shown in Equation (7), and the corresponding magnetic current is expressed as Equation (8):

im =
dqm

dt
=

S
∆l

di
dt

=
S
∆l

d[Jm cos(ωt + ϕ)]

dt
, (7)

Im = iω Jmeiϕ S
∆l

= iωI
S
∆l

, (8)

IS =
Im∆l
iω

. (9)

After substituting Equation (9) into Equations (3)–(5), Equations (10)–(12) are obtained:

→
E∅ =

Im∆lk2

4πrωi

√
µ

ε

(
1 +

i
kr

)
eikrsinθ

→
ϕ0 , (10)

→
Hr = −

Im∆lk
2πr2ω

(
1 +

i
kr

)
cosθeikr→r0 (11)

→
Hθ = − Im∆lk2

4πrωi

(
1 +

i
kr
− 1

k2r2

)
sinθeikr

→
θ0. (12)

where k represents the electromagnetic propagation constant in the formation; ∆l is the
opening size of the antenna; ε denotes the formation dielectric constant; µ represents the
relative permeability of the formation; I is the high-frequency time–harmonic current;
S represents the effective area of the antenna loop current; r is the distance between any

point in space and the center of the magnetic dipole;
→
E∅,

→
Hr,

→
Hθ are the electromagnetic

field strengths of the antenna in the spherical coordinates:
→
E∅ is the electric field intensity

in the direction of ∅, and
→
Hr,

→
Hθ are the strengths of the magnetic field components in the

direction of r and θ, respectively;
→
∅0 ,

→
r0,

→
θ0 are the unit vectors in the direction of ∅, r,

and θ of the spherical coordinate system, respectively.
The dielectric logging sensor comprises two transmitting antennas, T1 and T2, in

the middle and four receiving array antennas, R1, R2, R3, and R4, placed on both sides
(Figure 4d). The red arrow represents the broadside antenna, and the green arrow the
end-fire antenna (Figure 2).
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Figure 4. Two-dimensional radiation plot and detection depth of the antenna: (a) xy-plane radiation;
(b) xz-plane radiation; (c) yz-plane radiation; (d) schematic diagram of detection depth of antenna.

Assuming that the transmitting antenna is located at the origin, the antenna only
receives the magnetic field component in the direction of its equivalent magnetic dipole,
not the magnetic field component orthogonal to the magnetic dipole. Therefore, the
magnetic field component received by the broadside antenna is Hθ , and the magnetic field
component received by the end-fire antenna is Hr. According to Equations (9) and (10), if
kr is greater than 1, the amplitudes of the signal received by the broadside antenna and
end-fire antenna are proportional to 1

r and 1
r2 , respectively. With the same spacing, the

signal received by the broadside antenna is stronger than that received by the end-fire
antenna. The dashed red shaded area in Figure 4d is formed by the intersection of the power
radiation patterns transmitted and received by the broadside antenna, indicating that most
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of the received signals propagate through the thick mud cake and the shallow layers of
the intrusion zone. Further, the dashed green shaded area in Figure 4d is formed by the
intersection of the transmitting and receiving patterns of the end-fire antenna, indicating
that most of the received signals propagate through the thin mud cake and the deep layers
of the intrusion zone. Therefore, the detection depth of the end-fire antenna is greater than
that of the broadside antenna. In the antenna radiation coordinate system, the x-axis is
the borehole direction, and the z-axis is the stratum. The radiation of the antenna in the
xy-plane is an “eight-shaped” pattern (Figure 4a), and radiation patterns in the xz and yz
planes point to the formation plane (Figure 4b,c).

The 3D antenna radiation gain diagram (Figure 5) indicates that the radiation intensity
in the direction of the formation (z-axis) is the strongest. The radiation of the broadside
antenna shown in Figure 5a is along its horizontal probe direction (y-axis). The radiation of
the end-fire antenna shown in Figure 5b is perpendicular to the probe direction (x-axis),
indicating that the antenna with the working frequency of 1 GHz will have the strongest
radiation along the probe direction; this proves that the antenna works as a magnetic dipole.
However, the antenna gain is about −43 dB, and the low efficiency is about −49 dB. To
improve the radiation efficiency of the antenna, an antenna impedance matching circuit is
designed.

Sensors 2022, 22, 7667 7 of 16 
 

 

power radiation patterns transmitted and received by the broadside antenna, indicating 
that most of the received signals propagate through the thick mud cake and the shallow 
layers of the intrusion zone. Further, the dashed green shaded area in Figure 4d is formed 
by the intersection of the transmitting and receiving patterns of the end-fire antenna, in-
dicating that most of the received signals propagate through the thin mud cake and the 
deep layers of the intrusion zone. Therefore, the detection depth of the end-fire antenna 
is greater than that of the broadside antenna. In the antenna radiation coordinate system, 
the 𝑥𝑥-axis is the borehole direction, and the 𝑧𝑧-axis is the stratum. The radiation of the 
antenna in the 𝑥𝑥𝑦𝑦-plane is an "eight-shaped” pattern (Figure 4a), and radiation patterns 
in the 𝑥𝑥𝑧𝑧 and 𝑦𝑦𝑧𝑧 planes point to the formation plane (Figure 4b,c).  

The 3D antenna radiation gain diagram (Figure 5) indicates that the radiation inten-
sity in the direction of the formation (z-axis) is the strongest. The radiation of the broad-
side antenna shown in Figure 5a is along its horizontal probe direction (y-axis). The radi-
ation of the end-fire antenna shown in Figure 5b is perpendicular to the probe direction 
(x-axis), indicating that the antenna with the working frequency of 1 GHz will have the 
strongest radiation along the probe direction; this proves that the antenna works as a mag-
netic dipole. However, the antenna gain is about -43 dB, and the low efficiency is about 
−49 dB. To improve the radiation efficiency of the antenna, an antenna impedance match-
ing circuit is designed. 

  
(a) (b) 

Figure 5. Three-dimensional radiation patterns of antenna: (a) 3D radiation patterns of the broad-
side antenna; (b) 3D radiation patterns of the end-fire antenna. 

Antenna impedance matching circuits come in various forms, such as lumped-ele-
ment networks and microstrip lines. A simpler impedance matching network is usually 
cheap and reliable with minimum loss.  

In this study, we preferred a hybrid of microstrip and lumped element networks. The 
impedance matching of the microstrip line and parallel capacitance type is shown in Fig-
ure 6. The impedance of the antenna is represented by point A in the impedance diagram. 
First, the antenna is connected to a microstrip line, the length of which is designed to make 
the real part of the antenna admittance 0.02 and reach point B in the impedance diagram. 
Subsequently, a capacitance is designed to make the imaginary part of the antenna admit-
tance zero and reach point C, corresponding to 50 Ω in the impedance diagram.  

Figure 5. Three-dimensional radiation patterns of antenna: (a) 3D radiation patterns of the broadside
antenna; (b) 3D radiation patterns of the end-fire antenna.

Antenna impedance matching circuits come in various forms, such as lumped-element
networks and microstrip lines. A simpler impedance matching network is usually cheap
and reliable with minimum loss.

In this study, we preferred a hybrid of microstrip and lumped element networks.
The impedance matching of the microstrip line and parallel capacitance type is shown
in Figure 6. The impedance of the antenna is represented by point A in the impedance
diagram. First, the antenna is connected to a microstrip line, the length of which is designed
to make the real part of the antenna admittance 0.02 and reach point B in the impedance
diagram. Subsequently, a capacitance is designed to make the imaginary part of the antenna
admittance zero and reach point C, corresponding to 50 Ω in the impedance diagram.
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2.2. Transmission Performance Simulation of Dual Antennas

Based on the antenna element shown above, we simulated two antenna elements
spaced 12 cm apart in water (εr = 80, σ = 2 S/m), as shown in Figure 7. Antennas 2 and 4
and 1 and 3 were in broadside and end-fire configurations, respectively.
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At a working frequency of 1 GHz, the values of the transmission parameters S31 of
the broadside antenna and S42 of the end-fire antenna are about −100 dB, and the cross-
polarization isolation is greater than 20 dB (Figure 8). The transmission parameters between
the antennas can be improved considerably through impedance matching. The actual
measurement data showed that the transmission parameters increased by approximately
30 dB after impedance matching (Figure 9).



Sensors 2022, 22, 7667 9 of 15Sensors 2022, 22, 7667 9 of 16 
 

 

 
Figure 8. Simulation curve of transmission parameters of dual antennas. 

 
Figure 9. Actual measurement of transmission parameters of dual antennas: (a) measured curve of 
transmission parameters of dual antennas; (b) actual measurement diagram. 

3. Antenna Development and High-Temperature and Pressure Test 
3.1. Antenna Development 

The slot dual polarized antenna is mainly composed of four parts: antenna housing, 
an end-fire antenna dipole, a broadside antenna dipole, and loaded dielectric. In Figure 
10a, the green part is the antenna housing. The two orthogonal pink curved cylinders are 
the end-fire antenna dipole and broadside antenna dipole, respectively. In Figure 10b, the 
top center of the antenna is the loaded dielectric. 

Figure 8. Simulation curve of transmission parameters of dual antennas.

Sensors 2022, 22, 7667 9 of 16 
 

 

 
Figure 8. Simulation curve of transmission parameters of dual antennas. 

 
Figure 9. Actual measurement of transmission parameters of dual antennas: (a) measured curve of 
transmission parameters of dual antennas; (b) actual measurement diagram. 

3. Antenna Development and High-Temperature and Pressure Test 
3.1. Antenna Development 

The slot dual polarized antenna is mainly composed of four parts: antenna housing, 
an end-fire antenna dipole, a broadside antenna dipole, and loaded dielectric. In Figure 
10a, the green part is the antenna housing. The two orthogonal pink curved cylinders are 
the end-fire antenna dipole and broadside antenna dipole, respectively. In Figure 10b, the 
top center of the antenna is the loaded dielectric. 

Figure 9. Actual measurement of transmission parameters of dual antennas: (a) measured curve of
transmission parameters of dual antennas; (b) actual measurement diagram.

3. Antenna Development and High-Temperature and Pressure Test
3.1. Antenna Development

The slot dual polarized antenna is mainly composed of four parts: antenna housing,
an end-fire antenna dipole, a broadside antenna dipole, and loaded dielectric. In Figure 10a,
the green part is the antenna housing. The two orthogonal pink curved cylinders are the
end-fire antenna dipole and broadside antenna dipole, respectively. In Figure 10b, the top
center of the antenna is the loaded dielectric.

Compared to the existing designs, based on the optimal balance between antenna
performance and small size, the design of the antenna structure is improved in two aspects.
(1) Through the integrated design of the dipole and the feed end of the antenna, the dual
polarized array is installed in a narrow space. In this way, the antenna input impedance
resistance is increased by increasing the length of the antenna pins. As a result, the
antenna and feed coaxial are excellently electrically connected, and the energy transfer
is improved, further increasing the antenna radiation efficiency. (2) For a small antenna
to work normally in a special logging environment with a temperature of 175 ◦C and a
pressure of 140 MPa, the specialized design process includes material selection, machining,
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metal heat treatment, probe assembly, laser welding, grouting, the sintering of glass, metal
plating, a high-temperature and pressure test, and post-treatment, as shown in Figure 11.
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The antenna shell and feed oscillator are made of high-temperature-and-pressure-
resistant alloys, GH145 and 4J29, respectively. The expansion coefficients of these alloys
are close to those of glass, ensuring a good combination with glass. The antenna feed
oscillator with a diameter of 1 mm requires fine machining, and a special lathe is used to
achieve the accuracy of a small-size feed array by reducing the linear speed of turning. The
metal heat treatment process includes high-temperature wet hydrogen, purification and
degassing, and peroxidation treatments to form a dense oxide film on the outer surface of
the metal. The oxide film firmly adheres to the metal matrix and molten glass. Antenna
probe assembly includes welding and sintering. The welding ensures two things: (1) the
two probes of the antenna are relatively vertical without contacting each other, especially
the curved part of the arc; (2) the end of the probe is welded to a point closest to the
metal shell to avoid poor contact between the antenna vibrator and shell owing to virtual
welding. Before sintering is performed, a pre-fabricated glass body is tightly installed
into the antenna gap, and the gap is further filled with glass powder to avoid voids in the
antenna glass during the sintering process. Laser welding is used to weld the different
materials (GH145 and 4J29) of the antenna. During welding, the closed structure at the
upper end of the antenna vibrator is designed as an open structure, which solves the
difficulty of the narrow welding space in the small hole and ensures position accuracy. The
grouting and sintering of glass are divided into two steps: pre-sintering and grouting. First,
a square glass block is pre-fired to fill the lower part of the antenna vibrator. Because the
density of the pre-fired glass block is very high and the gas generated by the additive is
fully discharged, it is easier to control the deformation and sintering quality of the vibrator.
Subsequently, a glass tube is filled in the narrow part between the feeding vibrator and
shell, and powdered glass is used to grout the joints between the shell and vibrator. Metallic
gold plating or gilt is used on the antenna feeder terminal to ensure the good electrical
performance of the antenna dipole.

During the development process, the steps in Figure 10 solve the problems that
occur owing to the electrical and mechanical properties of the antenna such as the high
probability of sintered glass having pores, the easy deformability of the pins of the antenna,
the incomplete welding of the contact parts between the pins and shell, and inconsistency in
the direction of the vibrator. The performance of the small antenna under a high pressure of
140 MPa and a temperature of 175 ◦C was verified; the verification device for this purpose
is shown in Figure 12a. Figure 13 shows the specially designed borehole, which was the
testing environment for the antenna.
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3.2. Measurement of High-Temperature and Pressure Endurance of Antenna

A total of four sealing rubber rings were installed on the upper and lower parts of the
inner wall of the antenna pressing device to realize sealing and pressure endurance on the
bottom and outside of the antenna mounting cavity, respectively. The antenna was fixed at
the antenna mounting cavity. The external pressure was only applied through the end face
of the antenna (Figure 12).

By simulating the high-temperature-and-pressure working environment of the dielec-
tric sensor in the specially designed test borehole, the three stages of pressure rise, pressure
holding, and pressure relief can be observed, especially when the pressure fluctuates greatly
when maintaining a certain pressure curve. A fluctuation indicates that the end face of
the antenna cannot withstand high pressure, and there is pressure leakage; in which case,
the antenna should be taken out and checked for liquid in ports 1 and 2 and at the bottom
of the antenna installation cavity. If there is liquid in the ports and cavity, it means the
antenna cannot withstand the high temperature of 175 ◦C and high pressure of 140 MPa.

As shown in Figure 13a, when a pressure of 140 MPa and temperature of 175 ◦C is
maintained in the borehole (as shown in the red square frame), there is no sudden drop in
the pressure and temperature curve. Furthermore, there is no fluid leakage in the cavity of
the detection antenna slot. The test verified that the antenna line could withstand the high
temperature of 175 ◦C and high pressure of 140 MPa.

The S11 amplitude of the developed antenna varies with temperature, as shown in
Figure 14. The S11 amplitude of the antenna with a working frequency of 1 GHz is less than
−10 dB in the operating temperature range of 20 ◦C to 175 ◦C, which meets the application
requirements.
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4. Practical Logging Application in Oilfield

The Songliao Basin oilfield, located in Northeast China, contains rich unconventional
shale oil and gas resources. The dielectric logging sensor using the proposed antenna was
successfully applied in the exploration of shale oil reservoirs in the basin. The results of the
dielectric logging sensor interpretation of a shale oil borehole are shown in Figure 15.

The first curve is the borehole depth curve with a depth of 2310–2355 m. In the
second channel, GR represents a conventional gamma logging curve, which can be used
for lithology identification to provide the shale content of the formation. CAL denotes
the borehole diameter, and BS is the diameter of the drilling bit. The third channel shows
RT10, RT20, RT30, RT60, and RT90 curves representing the formation resistivity measured
using a conventional array induction logging sensor (10–150 kHz). The resistivity of layers
25–30 covers one order of magnitude, ranging from 10 to 20 Ω·m. Therefore, from the
conventional resistivity curve measured using a conventional array induction logging
sensor, it is difficult to make a distinction between the dry and oil layers. The fourth column
shows DEN, the compensated density logging curve; CNL, the compensated neutron
logging curve; and AC, the acoustic logging curve, which can provide the total porosity of
the formation.

The fifth column shows the HR41 and HR32 curves; these are the resistivity values (in
the horizontal polarization direction of the formation) provided by the broadside antennas
of the dielectric logging sensor. The sixth column shows the VR41 and VR32 curves; these
are the resistivity values (in the horizontal polarization direction of the formation) provided
by the end-fire antennas of the dielectric logging sensor. The seventh channel shows
the HD41 and HD32 curves; these are the dielectric values in the formation horizontal
polarization direction provided by broadside antennas of the dielectric sensor. The eighth
channel shows the VD41 and VD32 curves; these are the dielectric values (in the vertical
polarization direction of the formation) provided by the end-fire antennas of the dielectric
logging sensor. In the ninth channel, PORT is the total formation porosity (red solid line)
determined from the intersection of the neutron density in the fourth column; SW and
PORW are, respectively, the formation water mineralization and water porosity based on
the dielectric constant logging curve. Because the oil-bearing porosity of the formation is
the difference between PORT and PORW, the oil-bearing characteristics of the formation
can be directly evaluated by comparing the PORT and PORW values in the ninth column.
Through a comprehensive analysis, layers 27 and 30 were determined to be class I oil layers;
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layers 25, 26, and 28 were determined to be class II oil layers; and layer 29 was defined as
the dry layer.
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5. Conclusions

Based on the theoretical analysis and simulation of a small antenna, we present an-
tenna processing and impedance matching methods suitable for applying dielectric logging
sensors in oilfields. We developed a dual-polarization slot antenna to be used in a dielectric
logging sensor. The testing established that the proposed antenna can withstand a high
temperature and pressure of 175 ◦C and 140 MPa, respectively. The antenna underwent a
practical logging application in an oilfield. The antenna was found to be suitable for dielec-
tric logging and could effectively evaluate the oil-bearing characteristics of the formation.
Although these antenna applications have only been tested in shale oil reservoirs in the
Songliao Basin, they can provide a basis for finding suitable applications of the antenna in
other unconventional reservoirs in domestic oilfields.
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