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Abstract: A trunk-twisting posture is strongly associated with physical discomfort. Measurement
of joint kinematics to assess physical exposure to injuries is important. However, using a single
Kinect sensor to track the upper-limb joint angle trajectories during twisting tasks in the workplace is
challenging due to sensor view occlusions. This study provides and validates a simple method to
optimally select the upper-limb joint angle data from two Kinect sensors at different viewing angles
during the twisting task, so the errors of trajectory estimation can be improved. Twelve healthy
participants performed a rightward twisting task. The tracking errors of the upper-limb joint angle
trajectories of two Kinect sensors during the twisting task were estimated based on concurrent data
collected using a conventional motion tracking system. The error values were applied to generate the
error trendlines of two Kinect sensors using third-order polynomial regressions. The intersections
between two error trendlines were used to define the optimal data selection points for data integration.
The finding indicates that integrating the outputs from two Kinect sensor datasets using the proposed
method can be more robust than using a single sensor for upper-limb joint angle trajectory estimations
during the twisting task.
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1. Introduction

The trunk twisting posture is frequently found in occupational settings, which can
be found in various industries, e.g., nursing [1,2], construction [3], and manufacturing [4].
The relationship between awkward posture (e.g., twisting) and the risk of work-related
musculoskeletal disorders (WMSDs) was previously evidenced [5]. Most research has
focused on the effects of the twisting movement on lumbar moments [6] or ergonomic
assessment scores [4]. Upper-limb injuries are a major complaint in the workplace among
janitorial workers [7], physical therapists [8], etc. According to the annual statistics report
published by the Health and Safety Executive in 2021, cases in upper limbs or neck areas
accounted for 45% of 470 thousand workers suffering from WMSDs [9].

An ergonomically designed working environment may help to reduce the occurrence
of ergonomic issues [10]. Exposure assessment plays an important role in determining the
priority of ergonomic interventions; therefore, efficient strategies of ergonomics exposure
assessment that allow more accurate predictions of injury risk need to be defined [11].
Joint kinematics can be used as an ergonomics tool that identifies inappropriate working
strategies to decrease the risk of injuries [12]. It is important to measure the upper-limb
joint angle to assess physical exposure to upper-limb MSDs in the workplace; if it is because
of the working environment, including the task design and layout arrangement, there is a
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requirement for improvement that should be examined, thereby promoting appropriate
ergonomic interventions.

Typically, joint angles are obtained using a conventional marker-based motion tracking
system (MTS); however, the need to use an array of cameras makes their implementation
unrealistic in the field [13]. Correspondingly, a low-cost and markerless Kinect sensor
can be an affordable 3D sensing device and provide an accessible alternative to MTSs for
working posture assessment in field studies for companies that do not have the financial
capacity to afford high-priced systems and for full-time ergonomists to use the assessment
tools properly. Microsoft has released three different Kinect sensor versions [14]. Each
one of the versions can identify the locations of a human skeleton which is composed
of a specific body landmark amount [15]. The applicability of the three versions of the
Kinect sensor has been studied and includes both the Kinect v2 [16] and Azure Kinect
in gait analysis [17], the Kinect v2 for kinematic assessments [18], and also movement
measurements for patients performing clinically functional movements [19] and wheelchair
transfer tasks [20] based on Kinect v1. However, the literature is scarce on the accuracy of
using Kinect sensors in monitoring upper-limb joint angle trajectories during twisting tasks
based on ground truth data from an MTS.

Aimed at conducting a more efficient long-term risk assessment in industrial practice,
Kinect sensors have also been used to develop semi-automatic evaluation tools based on
observational ergonomic methods, such as Rapid Upper Limb Assessment (RULA) [21] or
the Ovako Working Posture Assessment (OWAS) [22]. These are used to address certain
limitations that exist in manual subjective observation, such as a low sampling rate and
inter-/intra-rater variability. However, different accuracy levels were observed in Kinect
sensors at different viewing angles [23,24]. A previous study stated that the optimal
placement of the Kinect sensor is task-dependent, and the performance of kinematic
measurement when using a single Kinect-based motion capture system should be examined
carefully during each upper limb functional task, especially under scenarios when body
occlusions existed [25]. Occlusions can reduce the accuracy of an optical system if a sensor’s
field of view (FoV) is blocked [26]. The occurrence of occlusions due to surrounding
objects [27] and self-occlusions [28] was reported to be a problem when assessing work
tasks using the data collected via Kinect sensors. A large-scale study tested more than
500 thousand configurations, which were based on a virtual mannequin in various poses
being tracked using Kinect sensors from different orientations. The results indicated that
the pose estimation inaccuracy strongly increases when the occlusions are induced by some
specific upper limb poses and the sensor placements [29]. A Kinect-based system, under
tracking conditions and with intended occlusions, did perform worse when compared to
cases without occlusions [30]. With respect to tracking upper-limb joint angle trajectories
during twisting tasks in the workplace, the projection angle of a worker relative to a sensor
can frequently change; further, a variety of objects (i.e., box, conveyor, or worktop) can
occlude the sensor view. Therefore, it is reasonable to hypothesize that integrating multiple
Kinect sensors can be more robust than using a single Kinect sensor for measuring upper-
limb joint angle trajectories during twisting tasks, thereby providing effective information
for performing physical work exposure assessments. On the other hand, instead of focusing
on the improvement of those measurements under only one twisting condition, a method
that provides a systematic procedure for relevant applications that can obtain more accurate
data is worth developing.

Various technical solutions have been developed to deal with the problems of Kinect
data fusion from multiple viewpoints. Moon et al. [31] have developed a human skeleton
tracking system that is based on combining measurements from five extrinsically calibrated
Kinect sensors by employing a Kalman filter framework. The system showed better
accuracy in identifying the 3D position of body joints when compared to the results
generated via a single Kinect sensor as well as a simple average method. A solution for
skeletal data fusion from three Kinect sensors using algebraic operations in vector space was
established for improved monitorization and analysis of the motion characteristics during
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physical exercise [32]. Compared with a single Kinect system, the proposed multi-Kinect
system showed a 15.7% improvement in accuracy. However, the use of such techniques
usually requires specific calibration procedures for multiple devices, as well as a deep
knowledge of technical mathematics. Although the method itself has the possibility to be
realistic in practical applications, the on-site ergonomic practitioners may not be familiar
with these complex methods, thus making them inapplicable in evaluations for each of
the tasks. Hence, it will be helpful for a simple but systematic method to exist that can be
followed to collect data with comparable accuracy for the use of ergonomics assessments.
With the help of commercial software, a previous study [26] merged two Kinect sensors’
data from two different perspectives to reduce the influence of occlusion when capturing
human upper-limb motions. However, the measurement errors still increased when the
participants held a box during the experiment. The second Kinect sensor does not appear
to fully compensate for another sensor’s occluded view. In terms of this consideration, the
question of how to select accurate data from multiple Kinect sensors at different viewing
angles instead of using all raw data from the sensors to form a Kinect-based motion-tracking
system is worthwhile to explore.

This study aimed to provide and validate a simple method to optimally select upper-
limb joint angle data from two Kinect sensors during the twisting task using polynomial
regression for ergonomic analysis. In addition, the measurement error of using Kinect
sensors to monitor upper-limb joint angle trajectories when twisting was also examined.

2. Materials and Methods
2.1. Participants

Twelve healthy participants (age: mean = 23.50, SD = 1.00 years old; height:
mean = 170.88, SD = 6.41 cm; mass: mean = 64.58, SD = 10.55 kg) without a history of
musculoskeletal diseases were recruited and asked to perform a rightward twisting task.
Informed consent was obtained from all participants involved in the study. The experi-
mental protocol was approved by a local Institutional Review Board at National Tsing Hua
University, Taiwan.

2.2. Procedures

A total of 32 skin markers were attached to the participants’ body landmark lo-
cations based on the “Rab Upper Extremity Model” [33] and the “Conventional Gait
Model” [34–39], which can be implemented in a professional biomechanical software Vi-
sual3D (C-Motion Inc., Boyds, MD, USA) to compose a whole-body model for analysis. The
participants were then asked to hold a box (36 cm × 16 cm × 17 cm) in a standing position
with two hands on either side of the box. The box was intended to create occlusions with
respect to Kinect sensors at different viewing angles. The participants’ upper arms were
positioned perpendicular to the ground and aside from the trunk. The elbows were in a
90◦ flexion at the ready pose. The participants were then asked to carry the box and twist
the trunk 90◦ to the right at their self-selected pace without moving their legs (Figure 1).
Each participant performed this twisting task once.

Two Microsoft Kinect v2 sensors were placed in front of the participants (Front-view)
and at the left of the participants (Side-view). The horizontal distance between each sensor
and the participant was 2 m, and the heights of both sensors were 0.75 m. It should be noted
that this study deliberately set up the Side-view Kinect on the left side of the participants
to track the rightward twisting motion that moves away from the sensor to create a poorer
tracking condition. This situation always has a chance to take place at the work site. It
would be worth exploring a solution to counter such critical tracking conditions rather than
under an ideal setup. The projection angles of a worker relative to a Kinect sensor in front
of him/her and another Kinect sensor placed on his/her right side are complementary. The
trends of the data based on these two sensors should be easier to infer in theory.
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Figure 1. The simulated twisting task in this study. (A) is the point on the ground between the
participant’s feet, (B) is the point on the ground underneath the Front-view Kinect, and (C) is the
projected point on the ground from the midpoints of the participant’s two wrist locations.

Kinect SDK 2.0 was used to develop an application for recording and outputting
coordinate data of joint locations based on the Kinect skeleton model at 30 Hz. The
OptiTrack motion tracking system (NaturalPoint, Inc., Corvallis, OR, USA) was used to
track the reference motion data at 125 Hz. The postural data were simultaneously tracked
using two Kinect sensors and the MTS.

2.3. Data Processing

The reference data captured through the MTS were first inputted into Visual3D to
obtain the anatomical joint center locations for the following analyses. The MTS-based
anatomical coordinate system of the thorax was defined based on recommendations from
the International Society of Biomechanics [40]. For the Kinect-based data, the thorax coordi-
nate system was created by referring to a previous study [24]. The adduction/abduction
and flexion/extension angles of the shoulder and elbow with respect to the orientation
of the thorax were calculated based on two Kinect sensors and the MTS, respectively.
The adduction/abduction movement was obtained from the x-axis rotation, and the flex-
ion/extension movement was obtained from the z-axis rotation (Figure 2).
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Figure 2. The thorax coordinate system and definition of movements.

To calculate the participant’s twisting angle, two reflective markers were placed on the
ground. One was placed on the ground between each participant’s feet (A), and the other
was placed on the ground and underneath the Front-view Kinect (B). The midpoints of both
wrist locations were extracted from the MTS dataset and then projected onto the ground
plane (C). The locations of points (A), (B), and (C) are shown in Figure 1. The twisting angle
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was calculated using Equation (1), where
⇀
v AB expresses the vector from point A to B and

⇀
u AC represents the vector from point A to C.

θ = cos−1
((

⇀
v AB·

⇀
u AC

)
/
(∣∣∣⇀v AB

∣∣∣∣∣∣⇀u AC

∣∣∣)) (1)

Reference data from the MTS were synchronized with the Kinect-based data using the
network time protocol. The joint angle of the upper limbs per twisting angle was calculated
based on the Front-view Kinect, the Side-view Kinect, and the MTS. The differences between
the MTS-based angle and the Kinect-based angle were calculated as errors.

2.4. The Proposed Simple Method to Find the Optimal Data Selection Point

Polynomial regression has been extensively used in almost all topics of science since it
is a tool to study the relationship between variables [41]. It seems that there is no agreement
on the right order of the polynomial for the best data fitting. An overfitted complex model
typically shows low bias and high variance; this shows that it can be heavily affected by
the noise from the training dataset [42], and then fail to replicate in future samples [43].
To avoid a model that is too simple or overfitted, the highest polynomial order that has
been used in relevant works is preferred to be used in the proposed method. The third-
order polynomial regression was used to generate angular displacement of body joints in a
biomechanical lifting technique analysis system [44], as it is suggested as an appropriate
option to estimate muscle moments based on a limited number of input variables [45].

The error values in the entire twisting duration of two Kinect sensors (Front-view
and Side-view) were calculated. For each Kinect sensor, the error values were fitted to
generate the error trendlines of each segment’s movement using third-order polynomial
regression based on the whole dataset. Regression was then used to predict the error value
based on the twisting angle (per degree). Discrete errors were used to find an intersection
between two error trendlines as the optimal data selection point (Figure 3). The data source
to integrate the two Kinect sensors could then be defined to form the Integration Kinect.
If two or more intersections existed between two trendlines, the sensor data that had an
overall higher error during the entire twisting task were excluded.

2.5. Analysis

All of the data were divided into four data groups. As shown in Figure 4, the error
values collected from three of the four groups as the training dataset were applied to identify
the optimal data selection points for integrating the data in each upper-limb segment’s
movement based on the proposed method. The defined optimal data selection points were
then used to integrate the data of the remaining group. A total of four trials were performed,
and each trial alternately took one data group at a time as the validation dataset. In a trial,
the RMSEs from the Front-view Kinect, the Side-view Kinect, and the Integration Kinect
to estimate upper-limb joint angle trajectories were calculated based on the data collected
using the MTS. The RMSEs from the four trials were then averaged. The Shapiro–Wilk
test was used to check the assumption of normality. Where data were found to follow
a normal distribution, a one-way analysis of variance (ANOVA) was applied, otherwise
a non-parametric method (Wilcoxon signed-rank test) was conducted to check the error
difference between the use of different Kinect sensors. This analysis was performed using
IBM SPSS version 22.0. The significance level was set at a p-value < 0.05.
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Figure 3. An example of our proposed method: the error trendlines of the Front-view Kinect (—)
and the Side-view Kinect (—-) for tracking each upper-limb joint angle trajectory are used to find the
intersection point between the two tracking error trajectories. The intersection point can be defined
as the optimal data selection point for switching the sensor’s viewing angle. For example, in this
figure, the data of the Integration Kinect are based on the 0◦ to 29◦ duration joint angle data from the
Side-view Kinect and the 30◦ to 90◦ duration data from the Front-view Kinect.
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Figure 4. The framework to validate the proposed method.

3. Results

Representative examples of the upper limb joint trajectory measurement during the
entire twisting task comparing the Front-view Kinect, the Side-view Kinect, and the
Integration Kinect against the MTS are provided in Figure 5. Except for the errors of
using the Integration Kinect in estimating the left elbow flexion/extension movement
(p-value = 0.004), all of the other error values conformed to the assumption of a normal
distribution (p-value > 0.05).
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Figure 5. Representative example of the measured joint angle based on the Front-view Kinect, the
Side-view Kinect, and the Integration Kinect with respect to the MTS. The gray circles represent the
measurement obtained from the MTS, and blue squares and green diamonds indicate the data based
on the Front-view Kinect, and the Side-view Kinect, respectively. The red cross sign marks are the
data selected to form the Integration Kinect.

The RMSEs of using the Front-view Kinect and the Side-view Kinect for tracking the
twisting task were calculated based on the reference data measured via the MTS. The error
values of the integrated data obtained by applying the optimal data selection method are
also provided in Figure 6. The averaged RMSEs based on the four experimental trials
are 26.85◦, 36.18◦, and 24.18◦ for the Front-view Kinect, the Side-view Kinect, and the
Integration Kinect, respectively. The Integration Kinect produced the lowest error among
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them, with an overall reduction in the estimation errors with respect to the Front-view
Kinect and the Side-view Kinect at around 3◦ and 12◦, respectively.
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Figure 6. Comparison of the averaged root-mean-square error (RMSE) of the Front-view Kinect,
the Side-view Kinect, and the Integration Kinect for adduction/abduction and flexion/extension
movement estimates in each upper-limb segment (left shoulder/left elbow/right shoulder/right
elbow). * indicates that there was a significant difference between the two datasets based on the
Wilcoxon signed-rank test (p-value < 0.05).

4. Discussion

This study presented a simple method to optimally select the output data of two
Kinect sensors for upper-limb joint angles during the twisting task. Overall, the estimates
of the upper-limb joint angle trajectories based on the proposed method showed better
accuracy for monitoring the twisting movement in comparison with the uses of a single
Front-view Kinect or Side-view Kinect. The main hypothesis that integrating the output
from two Kinect sensor datasets can be more robust than using a single Kinect sensor for
upper-limb joint angle trajectory measurements during the twisting task was verified.

This study observed various levels of measurement errors for tracking different upper-
limb joint angle trajectories (Figure 6). Larger errors were found at the right joint angle
trajectory measurement compared with the data of the corresponding joint angles in the left
segments. A previous study reported a similar result in which the estimates of the left-side
shoulder joint angles were more accurate than the right-side shoulder measurements when
the Kinect sensors were located to the left of the participants [24]. This finding implies that
an appropriate sensor view angle is important when tracking joint angles. Another reason
could be speculated that both self-occlusion and object occlusion can also influence accuracy.
The identification of the right segments was interfered with by participants’ left segments,
box, or/and trunk for the Front-view Kinect and Side-view Kinect during the rightward
twisting task. The occlusions induced by the performed poses and the relative location
of the virtual mannequins, compared with those of the Kinect sensor, were indicated to
be factors that led to inaccurate data [29]. That study used a numerical mannequin with
well-controlled poses to evaluate the tracking accuracy of human limb motion, with an error
that increased to exceed 40◦ for shoulder angle measurement during a few specific body
configurations when the mannequin’s body was partially occluded by other segments in the
Kinect axis [27]. Another study [46] also showed that it was challenging to estimate human
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kinematics through Kinect sensors when occlusions were present, due to human–object
interactions. By using a Kinect-based system to compute major joint angles during various
tasks with/without intended occlusions, the mean error values were 13.4◦ and 18.3◦ for the
tasks without intended occlusions and the tasks with intended occlusions, respectively [30].
According to Figure 6, compared with using a single Kinect sensor, using the Integration
Kinect could significantly improve tracking accuracy in the elbows on the right and left
sides. The use of a single Front-view Kinect would produce significantly higher errors in
monitoring the adduction/abduction movement of the elbow on both sides of the body.
Based on these findings, the Side-view Kinect might be considered to be a better option
for this body part. However, a single Side-view Kinect showed a significantly higher error
level in capturing the right and left elbow flexion/extension movements. It showed that
setting up a Kinect sensor at only one location could be adequate for the needs of tracking
certain segments’ movements, while it might compromise the accuracy of tracking other
segments’ movements during a twisting task. When the Kinect sensors were placed at the
azimuth angle of 30◦ and 60◦ on the subject’s both sides, the Kinect sensors located at the
contralateral to the tracked moving arm showed a higher error in tracking the range of
motion in comparison with those from the Kinect at the same side [47]. Integrating the
data of upper-limb joint angle trajectories from two Kinect sensors at different viewing
angles can help improve the adverse conditions for simultaneously tracking the upper limb
movement of both sides. Although using the joint data based on the Kinect skeleton model
to measure upper-limb joint angle trajectories still yielded errors, the proposed method in
this current study did improve the outcomes in comparison with the use of either one of
the Kinect sensors alone.

A previous study [26] that merged two Kinect sensors to measure upper-limb joint
angles when the participants performed basic movements while handling a box also found
high error values. For example, the highest RMSE was 40.7◦ in the flexion/extension angle
measurements of the left elbow segments. In that previous study, the participants stood
straight without moving their legs or bending their backs during the basic movement
tasks; in contrast, the twisting task performed in this study consisted of a continuously
large range of motion. Nevertheless, integrating the two Kinect sensors’ data based on
the proposed method kept the error of tracking elbow flexion/extension angle trajectories
below 30◦, regardless of the body sides. On the other hand, compared with the RMSEs
associated with using Kinect sensors to assess 3D shoulder kinematics during computer
use, including typing, reading, and clicking tasks [24], slightly higher RMSEs were found
in this study when using a Kinect sensor to track upper-limb joint angle trajectories in a
twisting task. Wang et al. (2015) compared the accuracy of estimating joint positions during
seated and standing exercises using Kinect sensors; the results showed that sitting poses
generated smaller variability postures because they consisted of a greater number of static
joints [23]. In addition, the occlusions created by the holding box during twisting might also
contribute to higher errors. Utterly distorted skeletons with significant errors in estimating
joint positions could be observed from Kinect during occluded conditions or tracked from
non-frontal views [30]. In the case of this study, extremely large error values were observed
when the Kinect model misidentified joint locations during twisting. The RMSE values
of the proposed Integration Kinect under this condition still cannot avoid effects that
result from those extreme errors. Since the Kinect skeleton model is a non-anthropometric
kinematic model, higher limb length variability can be produced based on its output joint
data [48]. To improve the skeletonization of the Kinect skeleton model, an additional
anthropometric model could help. It is important to notice that bone lengths have been
used as constraints to overcome the problems during synthesizing the inconsistency of
skeletons, which are identified via duplex Kinect sensors [49]. Yet, the concern of how to
incorporate other advanced techniques to reduce errors caused by misidentification of a
human skeleton model, while retaining the advantages of applying the proposed method
such as ease of use and no complicated calibration procedure required, is worth exploring
in the future.
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Researchers have continuously dedicated themselves to finding a better way to obtain
more valid human movement data based on combining data from multiple Kinect sensors,
such as using Kalman filtering [31] and algebraic operation [32], to perform the data fusion.
This can also be performed by identifying a constrained optimization model to overcome
the problems when synthesizing the inconsistency of skeletons generated by two Kinect
sensors [49]. However, such advanced techniques typically incur complex procedures,
requiring robust hardware or efficient software for synchronizing and fusing data, therefore
making them less practical for the on-site practitioners to perform ergonomic assessments
under real workspace conditions. To this end, considering that the proposed method is
relatively easy to use, it could be a good option depending on the desired accuracy.

This study has several limitations. First, different orders of polynomials can create
different curve fittings of the errors to identify the intersections between two trendlines.
To avoid overfitting, this study used a third-order polynomial based on previous stud-
ies [44,45]. The effect of the orders of the polynomial on the results was not investigated.
Second, the joint angle measurement of the upper limbs per twisting angle is static. In
the current stage, the herein-reported error values may not be able to be used to directly
represent the applicability of using the proposed method in some certain comprehensive
kinematic analyses. The application of the proposed method to effectively acquire other
measures (i.e., kinematics, tracked markers, and segment lengths) has not been examined
in detail within the scope of this study. Further research is worthwhile to expand the
applicability of the idea of our proposed method. Third, participants were asked to perform
the twisting task at their self-selected speed. The effect of speed on such determinations
was not included in the scope of this study. Lastly, the experimental postures were limited
in that participants could not move their feet during the twisting task. Although different
twisting postures could occur in reality and contribute to upper-limb joint angle measure-
ment errors, controlling these variabilities allows us to understand the effects of twisting
angles on the accuracy of Kinect sensors.

5. Conclusions

This study provides a simple regression method to optimally select upper-limb joint
angle trajectory data from two Kinect sensors during the twisting task. The proposed
method is not intended to replace accurate data obtained via an MTS. Rather, it can provide
an alternative that is more suitable for on-site applications based on the consideration that
the Kinect sensor is low-cost and markerless. When compared with manual data selection,
this method allows us to apply the same posture measurements in a consistent manner, thus
permitting the possibility of exposure evaluation over longer periods of time efficiently. The
idea of this proposed method should be that it can be applied to identify specific optimal
data switching points of joint angle trajectories for different twisting conditions.
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