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Abstract: Telehealth systems have evolved into more prevalent services that can serve people in
remote locations and at their homes via smart devices and 5G systems. Protecting the privacy
and security of users is crucial in such online systems. Although there are many protocols to
provide security through strong authentication systems, sophisticated IoT attacks are becoming more
prevalent. Using machine learning to handle biometric information or physical layer features is key to
addressing authentication problems for human and IoT devices, respectively. This tutorial discusses
machine learning applications to propose robust authentication protocols. Since machine learning
methods are trained based on hidden concepts in biometric and physical layer data, these dynamic
authentication models can be more reliable than traditional methods. The main advantage of these
methods is that the behavioral traits of humans and devices are tough to counterfeit. Furthermore,
machine learning facilitates continuous and context-aware authentication.

Keywords: telehealth; IoT security; dynamic authentication; continuous authentication; machine
learning; deep learning

1. Introduction

Telehealth is the distribution of health-related services and information using telecom-
munication technologies and Internet of Things (IoT) devices. This opportunity allows
patients to have admission, advice, care, education, and remote monitoring. In this way,
telehealth provides quality medical care for stay-at-home patients and remote communi-
ties [1]. The increased use of telehealth in recent years has indicated a need for a reliable
and secure system. Telehealth uses online platforms to transfer and store information;
however, preserving security and confidentiality is complex. In 2019, only 1% of patients
used telehealth; while in the year 2020, after the COVID-19 outbreak, more than 38% of
health specialists visited patients through telehealth systems [2].

The lack of investigations, implementations, and evaluations of data protection ap-
proaches in telehealth, and the flaws in cyberspaces, make it possible for intruders to gain
unauthorized access to health information. The lack of consideration for data security and
privacy is especially disconcerting in medical settings where confidentiality is paramount,
and data corruption can prove fatal. Security and privacy often come as afterthoughts to
the designers of telehealth systems; thus, many areas of input, data, and output protection
are deficient, and protecting user interactions (and access to the devices themselves) is
insufficient in many of the proposed systems.

In the US, the Health Insurance Portability and Accountability Act (HIPAA) [3] was
developed to protect (and provide rules for accessing) the patient’s information. Authenti-
cation provides access control for systems by controlling whether a user’s credentials align
with the available records on the server. Traditional security controls rely on static authenti-
cation methods [4], such as passwords, login patterns, or personal identification numbers
(PINs). Besides the simplicity and accessibility of these methods, they are vulnerable to
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impersonation [5]. To address this issue, dynamic authentication can play a significant role
in ensuring that only authorized persons or devices can connect to the telehealth system’s
information and applications. Dynamic authentication uses dynamic traits that can change
in each session to authenticate users and devices.

Machine learning (ML) provides a key solution to using dynamic authentication. ML
can be established to lessen security traps and address security issues. Biometric traits
have been used widely in many authentication platforms. Even if the human mind can
realize the relationship between biometric features, ML can handle them more reliably and
at-scale. ML is a significant tool for extracting concepts behind available data. Moreover,
ML models can be trained to identify patterns in data and find relationships between input
data and automate routine processes. This way, ML can extend the extracted knowledge
in available data to make decisions or predictions on unseen cases. To protect the user’s
massive private data in the telehealth system, it is extremely critical to design reliable
privacy and security protection mechanisms that can accurately authenticate users. Users
in smart environments include humans or IoT devices. Data collection for training models
is a pillar of all ML algorithms; this technology can leverage biometrics or physical layer
features to authenticate human or IoT devices, respectively [5].

The biometrics of humans involves their physiological or behavioral traits, which
can be used to train an ML model for user authentication in digital healthcare systems.
Physiological characteristics can be taken into account by scanning features, such as fin-
gerprints [6], palm prints [7], or irises [8]. Furthermore, behavioral biometrics observe
the user’s behavior when using the system. Most of these biometrics have already been
implemented into smart devices such as smartphones. Regarding the importance of per-
sonal data in the healthcare system, we can leverage the power of ML on biometrics to
increase the security of telehealth [9]. However, physiological biometrics are more at risk of
counterfeiting; an advantage of using behavioral biometrics for authentication is that they
are more difficult to imitate. Furthermore, collecting behavioral features in most cases does
not require extra hardware and scanners that can decrease the solution costs [10].

The physical layer features in the Internet of Medical Things (IoMT) devices (mostly
used for authentication) include spatial correlations of wireless channel characteristics, such
as channel impulse response(s) (CIR), received signal strength indicators (RSSI), channel
state information (CSI), and media access control (MAC) addresses [10]. CIR depends on the
parameters and dynamic noise and fading characteristics of the communication channel [11].
CSI describes how a signal propagates from the transmitter, such as IoT devices, to the
receiver in the network [12]. Therefore, CSI can make it possible to adapt transmissions
to current channel conditions to achieve reliable communication in smart environments’
networks. A MAC address is a unique identifier assigned to digital devices for use as
a network address in communications within a network. Furthermore, the presence of
different competing MAC addresses gives information about the devices surrounding
the device in question and could help in establishing context-aware authentication. A
combination of the mentioned physical layer features is useful to authenticate each IoT
device in the network’s communication, such as telehealth systems confidently [10].

Using biometric features in ML for authentication not only works as an added layer
of protection but also allows people and devices to be identified automatically based on
dynamic features in each session [13]. Another advantage of these methods is constantly
controlling the system and users through continuous authentication. This way, users and
IoT devices can be verified constantly to enhance cybersecurity protection on an ongoing
basis. In addition, continuous authentication may provide a reinforced measure that reads
users’ behavioral changes to make a secure authentication for them [14].

This tutorial investigates the applications of ML in smart environments, especially
telehealth, to enhance system security. In such systems, ML-based models are applicable in
making reliable authentication systems based on behavioral features or physical layer data
extracted from users or physical layers. For a better understanding of ML applications in
authentication, we investigated the ML life cycle and customized it to apply to authentica-
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tion schemes used in telehealth. Then we categorized ML models and took some examples
of recent research that employed ML to enhance this work field.

This tutorial is presented as follows: Section 2 defines the authentication concept
and introduces some authentication requirements to enhance security in ever-growing
environments. Section 3 investigates the ML life cycle for authentication schemes and
takes some real examples of this area. Section 4 presents the hierarchy of AI, ML, and
DL and categorizes the ML learning methods. We present a brief explanation of famous
ML models that have primarily been used to address authentication problems. Finally,
Section 5 concludes this tutorial and sheds light on further study in this area.

2. Authentication

Authentication is considered a key requirement for trusting the individuals and
devices participating in a telehealth environment. A single compromised device can be
turned malicious and bring down the whole system or cause a major loss to the patient. In
such a big data analytic environment, traditional authentication schemes, such as Kerberos,
are either not applicable due to resource constraints or lack providing high availability
for thousands of connected devices in real-time [15]. Moreover, devices from different
manufacturers with different authentication schemes may lead to a viability challenge while
integrating the authentication schemes. Furthermore, in digital healthcare systems, a huge
number of medical devices with different permissions and accesses to the stakeholders,
such as patients and doctors, could also greatly impact the whole system’s availability.

Single-factor authentication is the least secure method that involves the user or device
submitting an ID and a password. The ID could be a username, email, or device’s unique
ID. As passwords or patterns are prone to be disclosed, multi-factor authentication (MFA)
has gained more attention to increase the assurance of authentication for networks, services,
or applications. MFA can include two or more of the following factors:

1. What you know, such as a secret password or lock pattern.
2. What you have, such as a smartphone or a smart card.
3. What you are, such as the user’s biometrics (fingerprint) or a device’s unique ID.
4. The context you are in, such as location, the activity you are doing or not doing, etc.

For example, some cell phones will not allow you to use your phone if it detects you
are in a moving vehicle; if you are in Canada, it should be investigated if someone
wants to log in to your account from somewhere in Europe.

Figure 1 provides some examples of factors that can be used in MFA techniques.

Figure 1. Some examples of factors that are used in multi-factor authentication.

Figure 1 shows some examples of commonly used features in MFA. We are now
familiar with the two-factor process of logging in to an online service, such as telehealth,
where the user starts the process by attempting to log in using a username and password.
The server then sends a one-time access code to the user’s smartphone and waits for the user
to enter that code that remembers “what you have”. A combination of the password and
the transferred code can raise the security level for authentication. In the literature, using
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smart devices to help authentication has been referred to as “smart authentication”. Bhunde
et al. [16] developed an application for bus pass renewal and web security using smart
authentication. They considered a cell phone as the second authentication factor to perform
a web login on a PC. To this end, the authors proposed a smart authentication prototype
that included a Java-based web server, a Chrome browser extension, and an Android
application. Agrawal et al. [17] provided three security checks for mobile authentication,
including matching the three-dimensional angle of the mobile, shape of the password
pattern, and time taken to draw the pattern on a cell phone, which is a behavioral biometric
for users.

MFA is preferred for interactions by enabling user-friendly, fast, and reliable authenti-
cation for accessing the applications [18]. “What you know” and “what you have” factors
require user interaction to be authenticated in a system. “What you are” and “the context
you are in” factors help to unobtrusively monitor and authenticate users throughout their
interactions with mobile devices [19]. This concept has been referred to as context-aware
authentication, which does not need the user’s attention to be authenticated [20]. ML plays
a significant role in context-aware authentication. Furthermore, in continuous authentica-
tion based on monitoring all network entities constantly by dynamic features, using ML is
inevitable [21].

Need for Authentication in Telehealth System

Signal spoofing can seriously impact patient health by providing false information
to physicians unable to make informed decisions on the treatment options. Techniques
for detecting anomalies could include a mix of AI, strong authentication between physical
sensors and servers, and physical layer authentication.

Any new technology comes with risks, threats, and vulnerabilities that need to be
identified, evaluated, and mitigated in order to protect the user of the technology. As
security is a painful necessity in many sectors, in this case, medical practitioners and
patients in a hyperconnectivity setting will need to be in trust with the system at all times
during a consultation or a medical intervention. More specifically, since an adversary could
easily gain access to the biometric sensor data from an honest participant and try to spoof
that data to gain unauthorized access to the system, modify the information or even cut
access to the data, we need strong protection against those types of attacks (and others).
We created an adaptive authentication approach, using machine learning techniques that
allow attackers and defenders to be pitted against each other and to adapt to each other’s
strategy (with the goal of automatically detecting unauthorized access), reducing the risks
of data breaches, triggering alerts on abnormal behaviors or interactions, and finding faulty
IoMT devices [22].

Dynamic authentication relies on authenticating users based on access to data patterns,
extracted features from the network, applications used, and any other data produced
dynamically in real-time [21]. ML plays a significant role in mining such data and extracting
required features to accept or deny a user in the system. Furthermore, extracting biometric
features from users and dynamic analysis of behavior patterns contribute to continuous
authentication that can enhance cybersecurity protection and identity confirmation on an
ongoing basis [14]. Such an authentication scheme is so comfortable for users because they
only need to fulfill their regular routines in order to be identified. Since continuously tracing
users is not affordable for humans, the only solution to perform ongoing authentication is
by using ML. The next section provides readers with an overall insight into ML models
and their applications in authentication schemes.

The cyber risk assessment system for a bio-cyber-physical system (BCPS) (a.k.a. tele-
health) is different from the traditional cyber-physical system (CPS). In a telehealth envi-
ronment, where humans (e.g., doctors) and CPS (e.g., Internet of Medical Things (IoMT)
devices) work together to accomplish a task (e.g., operating on a patient), the nature of
the relationship can be addressed as an interaction between two systems: the human (bio-
logical) and medical devices (cyber-physical) [23]. Physically unclonable functions (PUFs)
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is the preferred option for endowing hardware components with unique identities [24].
Figure 2 demonstrates the available entities in a telehealth system and the overall schema
that can be considered for authentication.

Figure 2. Schematic view of a telehealth system and the relationship between entities that should be
authenticated.

A telehealth system could potentially consist of the following components, from left
to right:

1. Emergency medical transport where paramedics need to alert the main healthcare
facility and perhaps share the patient’s vitals with emergency room personnel to better
deal with the emergency and prepare the needed resources at the hospital.

2. Stay-at-home patients where elderly patients could recover better at their homes and
to reduce healthcare delivery expenses and hospital beds.

3. Remote clinics with general practitioners and nurses desire to provide quality health-
care at remote distant communities or disaster recovery areas.

4. Main hospital or central healthcare delivery system.

It is vital that several security features must be provided to all these components to
ensure delivery of quality healthcare and thwart potential attacks, miscommunications, or
wrong patient identity.

3. Machine Learning Life Cycle for Authentication

The ML life cycle is the cyclical process of deriving the practical value of using ML
in defined criteria. It can perform end-to-end processing and give a perspective of how
an entire project should be structured to approach reliable results in practical problems.
Figure 3 depicts a schematic view of the ML life cycle in five high-level stages. In this
section, we tailor this roadmap to address authentication problems by ML and elaborate by
taking some pragmatic examples.
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Figure 3. Machine Learning Life cycle Schematic View.

3.1. Define the Project Objectives

The first step in addressing a problem is scoping and selecting the relevant use cases
to define the project objectives. To design a reliable authentication platform in telehealth,
we need to define the objectives and constraints for data analysis and modeling that can
discriminate a user. It is imperative to investigate the required authentication scenarios.
In a telehealth environment, where doctors and IoMT devices work together to operate
on patients, the nature of the relationship can be addressed as an interaction between
human and medical devices, respectively, with biological and cyber-physical traits [23]. For
example, each IoMT device must possess a unique ID that is anti-tamper resistant. Such
devices should be authenticated using MFA. Using a PUF for the device ID also helps in
establishing secure session key exchange. Using physical layer data from IoT devices in
the network to continuously authenticate each node in the network of a telehealth system
needs planning to collect data from IoMT and connected devices, such as patients visiting
platforms. Furthermore, we need to collect data that can show the device owner’s personal
behavior and define an ML model that can discriminate users based on the gathered data.
Defining project objectives are not confined to data collection and encompass all stages
until model deployment. Using smart planning can increase the probability of a project’s
success and decrease the project’s costs.

3.2. Acquire and Explore Data

Data effectiveness is a pillar to training an ML model that operates efficiently for
human and device authentication in telehealth. Therefore, extracting discriminative features
that can be considered as each person or device’s signature for authentication is essential. In
the first stage, the required data for authentication are collected by an application or scanner
on the users’ devices. In the next stage, specific behavioral features are extracted from the
data collected. Siddiqui et al. [5] compared many behavioral-based biometric systems to
conclude which features work best for authentication. Following, we will investigate some
simple data that can be used to authenticate people or IoT devices.

Keystroke dynamics are typing patterns useful for authentication of the system
users [25]. The touchscreens of mobile devices allow collecting features ranging from
the finger area to screen pressure, or time-based features. Mouse movement is another
type of biometric-based authentication information useful for the continuous monitoring
process and authentication on desktop devices [26]. Typically, clicking actions, timing, and
the movement direction of the cursor can constitute a user profile for authentication. Since
granting access to the secure information of patients to doctors, nurses, and other parties in
the telehealth platform is a critical task, it is noteworthy to monitor them continuously from
their typing and clicking behavior to detect and prevent anomalous activities in the system.
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The physical activity and movement of a person is another reliable behavioral bio-
metric that can identify them using ML models [27]. Accelerometer, gyroscope, and
magnetometer are three embedded sensors available in most smartphones often used to
recognize the activity of smartphone users, such as running, walking, sitting, lying down,
etc. [28], so-called human activity recognition (HAR). This data can also be applicable for
authenticating smartphone users with high confidence [27]. Furthermore, other sources
of HAR data can be used to train ML models for both behavioral traits analysis [29] and
user authentication. These data can also be collected from wearable sensors [30], such
as smartwatches and camera devices, such as Kinect [31,32]. Moreover security surveil-
lance [33] and authentication [27], the mentioned HAR data can be useful for healthcare
systems [30], smart environments [33], remote care to elderly people living alone for smart
healthcare [33], etc.

In addition to the mentioned behavioral traits, many human physiological features can
be used to authenticate a person. Human fingerprints [6], the face [34], eye movement [35],
ECG heart signals [36], and electroencephalogram (EEG) brain signals are examples of the
most commonly used features in smart environments and mobile devices for authentication.
Most smartphones are equipped with a fingerprint scanner and front camera to capture
face images or iris patterns for authentication. In some devices, such as virtual reality
(VR) headsets, eye movement features are extracted to authenticate the device’s legitimate
owner for access to bank accounts and in-app purchases [35]. Moreover, through ECG
authentication in smartphones, users only need to touch two ECG electrodes (lead I) of the
mobile device to be authenticated by the ML algorithm [36]. Collecting EEG signals are
more complicated as EEG electrodes need to be placed on the human scalp. On the other
hand, for the sake of mental conditions, unique EEG features are very robust and secure to
be used in the authentication process by an ML model [37].

3.3. Data Preparation

Depending on the data and the ML method for authentication, some preprocessing,
such as feature selection, feature extraction, data integration, and data cleaning, are needed
to enhance authentication performance. Performing feature selection and extraction can
help deal with high-dimensional data and avoid overfitting in model training [38]. Han-
dling incomplete data, missing values, outliers [39], and anomalous samples [40] are other
practical preprocessing techniques for data cleaning. Annotating samples is also required
to use supervised models to authenticate persons and devices.

Authentication datasets are very prone to imbalance conditions. The most conven-
tional classifiers and authentication schemes assume equally balanced classes [41]. Since
the imbalanced dataset might lead to poor performance after training the model, which is
so important in telehealth authentication, it is useful to check for enough instances from
each class or use other methods, such as resampling, to handle imbalance conditions [42].
Moreover, employing metrics that can handle the imbalance condition can be useful for
model training until approaching a stable model with available data. Such metrics will be
discussed in the next section.

Inspired by the AdaBoost algorithm, Tran et al. [41] proposed an approach to handling
the class imbalance issue in biometric authentication systems. First, they trained weak
one-class classifiers using data from both classes. They then combined weak classifiers to
improve the overall classifier performance without causing overfitting. Instead of using
different datasets to make diversity in the weak classifiers, they used different parameters in
their algorithm. Kim et al. [43] proposed a hierarchical classification model to mitigate the
issue of imbalanced class sizes in biometric data, specifically in healthcare. They managed
the issue of imbalanced class sizes in the biometric dataset by reorganizing the classes into a
hierarchical structure and designing a deep learning-based classifier. Lu et al. [44] proposed
a privacy-preserving federated learning framework to improve the diagnostic accuracy of
decentralized machines for biometric authentication in imbalanced class conditions without
data transfer.



Sensors 2022, 22, 7655 8 of 20

3.4. Model Selection and Training

To address dynamic authentication in telehealth, we face a complex problem involving
a plethora of data and lots of variables. Although ML would still be the best approach,
choosing the best model to deal with available data is a significant task. We must step
through data analysis and ML workflow to choose the best model for addressing the
problem at hand. For example, keystroke dynamics data points contain separate features
that can be used in most ML models, such as SVM, NB, RF, KNN, and regular ANN.
However, to analyze ECG signals, it is better to use models that can handle sequential
data or time series, such as the hidden Markov model (HMM), long short-term memory
(LSTM), and the convolutional neural network (CNN). In some authentication schemes
containing stationary data, such as face recognition, the best choice can be to use CNN.
While in traditional ML methods, it was prevalent to extract some features from images
and then proceed with other ML methods. For example, Fard et al. [45] employed an
autoencoder to reach the best feature space for discriminating each user in the system and
authenticate them based on their locally linear reconstruction error. Since their proposed
method is very low cost, it can be a good choice to be used in telehealth authentication
systems where we need to authenticate users in real-time.

Moreover, the model’s result quality is a fundamental factor that must take into
account to select a model. Regarding the problem, different metrics could be useful for
evaluation. Despite the popularity of the “accuracy” metric, it is not appropriate when
working with imbalanced data that the number of samples is much different in classes,
such as authentication problems. The area under the ROC curve, precision, and recall
are popular metrics for model evaluation in imbalance conditions, such as authentication
problems. Figure 4a depicts the ROC curve (the greater the area under this curve, the
better the final model). The ideal condition is when it reaches the upper bound with the
value of one. Moreover, the assessment of a biometric model is determined through three
parameters of false acceptance rate (FAR), false reject rate (FRR), and equal error rate
(EER). FAR and FRR show the percentages of false users authorized and the percentage
of legitimate users rejected by the model, respectively. While EER refers to the threshold
values for FAR and FRR and shows the point at which the FAR is equal to the FRR. A
lower EER indicates a more accurate biometric system. Figure 4b depicts the EER for two
biometric systems [46]. In this diagram, the system represented with the solid lines shows
better results than that represented by dashed lines.

Figure 4. (a) ROC curve based on false positive and true positive rate, (b) comparing EER for two
biometric systems.

The training procedure can be offline in authentication schemes and having a long-
time learning model is not a big challenge. On the other hand, in such problems, the
inference time is critical, and the trained model should accept or reject the user in the
system in real-time. For example, k-NN is a lazy model and does not contain any training
phase, while each time it wants to evaluate a user, it should calculate the distances and
define the neighbors, it is not proper to address a real-world authentication scheme in
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telehealth. Contrarily, training deep models take time, but their response time is reasonable,
and they are good choices for an online authentication scheme. From another point of view,
we can consider the dimensionality and the number of available samples for training a
model. For example, SVM is suitable for problems with high dimensionality, but it cannot
handle many samples. In contrast, deep models need much more samples for training, and
the sample dimensionality depends on the model’s structure.

3.5. Model Deployment

Finally, we approach an authentication scheme that can respond in real-time and
performs well on evaluation metrics. In smart environments, such as telehealth systems,
it is more applicable to implement an authentication system that can evaluate users con-
tinuously without wasting time. As a result, the deployed model should be able to collect
required data, process, and extract features automatically, and make a reliable decision
based on the system requirements. For example, to continuously authenticate doctors, the
system can consider their voice while talking, their keystroke dynamics while writing a
prescription, and their faces while visiting the patients. A combination of such features
also can elevate the system’s security. As well, the physical layer data can be extracted to
authenticate the smart devices available in the network.

Testing the deployed model and monitoring its performance, respecting the evaluation
metrics and inference speed to ensure that it works as expected on new data, are necessary
to have a reliable authentication system. Moreover, having a maintenance plan to solve the
probable issues and system flaws can raise system confidence.

After deployment, it is necessary to keep a product up to date. Most ML-based
authentication schemes need to train the model using data from all available distributions.
On the other hand, the trained model cannot perform well on data from a new distribution.
As a result, enrolling a new user in the existing trained authentication model is a crucial
task. Ivanciu et al. [47] proposed an ECG-based authentication system using Siamese
neural networks to address this problem. In such systems, the model is trained based
on many couples of samples from “the same class” and “different classes”. So, the main
structure comprises a twin network and a binary classifier that returns “positive,” which
means two inputs are from the same user, and “negative,” which indicates a big difference
between them [48]. Siamese networks are not sensitive to adding new users to the system
because they consider the similarity between the input couples for decision and do not
need to see all classes while training. Since the authentication system needs to store at
least a sample from each legitimate user in a repository for the next comparison, in case of
changing the biometric features of a person during the time (concept drift), such as aging,
it is required to update the database. In this case, the Siamese network is more robust and
does not need to renew the model training, while other ML methods need to keep updated.

4. Machine Learning Models in Authentication Schemes of Telehealth

ML is a subfield of artificial intelligence (AI) that learns from available data through the
training phase [49]. As a result, algorithms can learn without explicitly being programmed.
Data are the pillars of training reliable ML models. Therefore, to develop an ML-based
authentication model, it is important to use features that represent users and can be
considered their signature. This way, the ML model can learn how to discriminate each
user from others or compare their new samples with the previous one to authenticate
them. In most cases, it is needed to perform some preprocessing, such as data cleaning,
denoising, outlier detection, handling missed values in collected data, and feature selection
and extraction.

Emerging deep learning (DL) in the recent decade is evolutionary in ML models. The
main advantage of DL is the power to extract relevant features related to the problem at
hand. DL is flexible, adaptive, and can extract features to achieve excellent performance.
Figure 5 shows the general hierarchy of the three main concepts of AI, ML, and DL [50].
We need this concept to define the role of algorithms in authentication problems. AI covers



Sensors 2022, 22, 7655 10 of 20

a vast category of models that may be built based on an expert’s knowledge or learned to
extract concepts from available data. ML contains part of these models that may be trained
based on data to analyze data or predict future events in unseen data. DL includes a branch
of ML models based on artificial neural networks (ANNs) containing some layers to extract
features automatically, and decide based on them.

Figure 5. Hierarchy of artificial intelligence, machine learning, and deep learning.

4.1. Machine Learning Categorization

In the following, we will introduce ML categories and investigate some famous models
in each category that has been used widely in state-of-the-art to address authentication
problems. This categorization provides insight into the roles of different ML models in the
authentication. Since these authentication techniques use dynamic data from human or
IoMT devices, they can be used widely in telehealth.

4.1.1. Supervised Learning

In supervised learning, a model learns an inferred function from annotated samples
to predict output values or forecast future events. In the training phase, the output of the
model is compared with the correct targets to find errors and modify the model accordingly.
The final model can generalize predictions for new inputs. Figure 6a shows a simple view
of supervised learning just to imagine learning from the annotated samples [51].

Figure 6. Schematic view of classification vs. clustering. (a) Blue: class-1, red: class-2, supervised
models learn patterns to discriminate data samples based on their labels. (b) Unsupervised model
cluster samples (just based on their similarities).

In supervised authentication, an ML model can use data from an intended person and
other individuals for training. Assume users’ typing patterns are monitored. Keystroke
dynamics [25] are representative patterns for each user. In model training, the keystroke
dynamics features are considered the model input, and the identity of each person is the
model output. The model learns how to map each person’s specifications to his/her identity.
Moreover, the trained algorithm can define whether the person is genuine or an imposter. In
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telehealth, accessing patients’ data is a critical action that this authentication technique can
handle. Therefore, the people who want to access critical data are monitored continuously
from their dynamic typing patterns to give permission, and anytime their typing patterns
do not match with the registered samples, the permission will be suspended, and a higher
level of security will be needed to continue their activity.

Naïve Bayes (NB) [52], k-Nearest Neighbor (k-NN) [52], random forest (RF) [53], and
support vector machine (SVM) [52] are popular supervised ML methods that have been
widely used in the literature to address authentication problems [4].

NB is a simplified probabilistic ML method for classification tasks. The features of the
problem were assumed to be independent and equal for simplification, and the presence
of a feature cannot affect the frequency of other features. In authentication problems, NB
determines the probability that a user is genuine, given the known probabilities extracted
from training data in the model. Estrela et al. [54] proposed a framework using touch
dynamics biometrics for continuous authentication in mobile banking applications. Touch
dynamic is a biological recognition method based on individuals’ touch patterns. In that
research, NB outperformed other methods among six ML models including RF, SVM,
gradient boost (GB) [55], Extreme Gradient Boosting (XGB) [56], Naive Bayes Bernoulli
(NBB) [52], and Naive Bayes Gaussian (NBG) [52].

k-NN is a lazy and non-parametric classifier that uses proximity to define k nearest
neighbors of an individual data point. Lazy models in ML defer data processing until
receiving a request to label a new example [52]. Then they will annotate the new example
based on the majority labels of instances in the intended example neighborhood. Moreover,
non-parametric ML models do not make strong assumptions about forming a mapping
function and are free to learn any functional form from training samples. Wang et al. [57]
used k-NN to authenticate individuals through touch dynamics. We need to have previous
instances from each person in the database to authenticate them. When a new data point is
entered, for example, if k is five, the five closest data points to the new point are chosen,
and the majority of the data point labels can annotate the new instance.

RF, as an ensemble ML method, has been used widely in many authentication schemes.
Smartphone user identification [58], continuous authentication in mobile devices [59], using
smartphone sensors and keystroke dynamics for authentication [60], bimodal behavioral
biometric authentication [61], touch dynamic authentication [62], and multimodal smart-
phone user authentication [63] are some new research methods used in RF to authenticate
users. Belgacem et al. used RF for human authentication with electrocardiogram (ECG)
data (used widely in healthcare). RF is an ensemble of multiple decision trees that are
slightly different from each other, considering sample sets used to train each model. Since
bagging is used for sub-sampling, RF can ensure that the behavior of each decision tree is
not (too) correlated with other decision trees. To compare the strengths of ML algorithms,
Almalki et al. [64] analyzed mouse click streams for online continuous authentication using
NB [52], k-NN [52], and RF [53], in which RF outperformed other models.

SVM is a robust supervised classifier that has been used in many authentication
schema, such as touch dynamic [65], and swipe gesture authentication [66,67]. Ismail et al.
employed SVM to authenticate patients, especially elders, in the smart healthcare system
using their voice signal [68]. SVM aims to find a hyperplane in the feature space that
distinctly classifies data points with maximum margin among many possible hyperplanes.
Maximizing the margin distance provides more confidence for the classification of unseen
data points. In binary classification tasks, the data points can be labeled as genuine or
imposter, and maximizing the distance between these two groups can guarantee the model’s
generalization. Specifically, SVM is more effective in high-dimensional spaces and can be
used with many Kernels. Hinge loss is the loss function used in SVM to maximize the
margins between classes.
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4.1.2. Unsupervised Learning

Unsupervised learning aims to cluster and analyze unlabeled data. Unsupervised
models can discover hidden patterns in data without human intervention and any label as
guidance. Their ability to explore differences and similarities in information makes them a
potential solution for anomaly detection. Figure 6b shows a simple view of unsupervised
learning for clustering just to imagine training a model based on the similarity of samples.
As a result, imposter data points are not confined to clusters’ boundaries and can be defined
as anomalous or outlier data samples. In recent years, gait data have been used widely
for authentication purposes [69,70]. For example, Cola et al. [71] used the user’s gait
pattern automatically when a device owner starts wearing that in a healthcare system. To
authenticate the device owner, any gait behavior far from the learned pattern is considered
an anomaly. Tan et al. [72] proposed an unsupervised anomaly detection scheme for
authentication, and so on; they deployed a certificateless authentication technique for
conditional privacy-preserving. Gebhardt et al. [73] also employed unsupervised anomaly
detection for document authentication. Chen et al. [74] used clustering in physical layer
data from edge computing systems for authentication IoT devices that can be very effective
to detect intruder IoMT devices in telehealth.

Dimensionality reduction techniques, such as principal component analysis (PCA)
and singular value decomposition (SVD), are also unsupervised methods used for feature
extraction. The results of all methods discussed above are highly relevant to the set of input
features of the model. As a result, PCA and SVD can help find the proper feature space
to search for the best hypothesis to solve the problem. On top of all mentioned methods,
deep learning models are able to extract the best feature set related to the problem’s
goal. Nakanishi et al. [75] tackled the effects of PCA feature extraction in brain waves as
unconscious biometrics used for continuous authentication. Moreover, Muratyan et al. [76]
used PCA for feature extraction to propose a multi-modal user authentication system in IOT
wearables for health-tracking. SVD is mostly applicable in image-based feature extraction.
For example, Yu et al. [77] proposed an SVD-based authentication scheme. They used SVD
to decompose image data into three matrices of left singular value, right singular value, and
singular value and performed authentication through a value calculation method based on
the singular value matrix.

4.1.3. Semi-Supervised Learning

Semi-supervised learning offers a method between supervised and unsupervised
learning. Semi-supervised learning uses a smaller annotated dataset while training to
guide classification and continues with a larger unlabeled dataset to fine-tune the model.
In some problems, such as authentication, there is no access to enough labeled data to
train a supervised model; therefore, semi-supervised algorithms can address this issue.
Yildirim et al. [78] used a semi-supervised method of learning from behavioral biometrics
of mouse dynamics data for authentication. This behavioral authentication model is very
applicable to authenticate legal operators of telehealth platforms while connecting with
patients or accessing their data. Moreover, Kaiafas et al. [79] employed a semi-supervised
outlier detection method for authentication.

4.1.4. Reinforcement Learning

Reinforcement learning (RL) algorithms learn from trial-and-error search and delayed
rewards. RL models interact with the environment to exercise rewards and penalties
and automatically determine the ideal behavior to maximize the defined performance
metric. This reward feedback in the RL model can be used to find the best action for
classification [80–82], feature selection [38], or any other required decision in the system.
Cui et al. [80] used RL to propose an adaptive authentication scheme. They developed
a multi-factor authentication method that uses different combinations of authentication
models proportionate to the level of authentication confidence requirements. Xiao et al. [81]
used RL for authentication in controller area networks (CANs) in smart environments using
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physical-layer data. Moreover, Xu et al. [82] used voltage data in a similar RL platform for
the authentication process in CANs. This trend can be very useful to trace the activity of
legal IoMT and connection devices in telehealth platform.

4.2. Deep Learning (DL)

The main advantage of DL is the ability to extract features regarding the problem’s
requirements, which is a challenge in other ML models. Figure 7 depicts the overall views
of traditional ML models and compares them with a DL model [83].

Figure 7. A comparison of deep learning and traditional machine learning models.

A deep neural network (DNN) extends the number of hidden layers in an artificial
neural network (ANN) to empower feature extraction ability which is the main advantage
of DL over other ML methods. Using multiple layers in DNN can help extraction of
higher-level features from the raw input progressively. For example, dense networks fit the
problems containing independent and identically distributed (IID) data points despite time
series and stationary data points. Moreover, dense layers are mostly used in the network’s
final stages to conclude the entire network’s result. CNN is another famous architecture
effective for analyzing data with stationary specifications such as visual imagery [84].
CNNs are regularized versions of dense networks which are confined to the number of
parameters in each layer by tying them to each other. As a result, it is enough to train a fixed-
size filter’s parameters instead of learning the weights of all connections. Facial images,
fingerprints, and sequential multi-dimension data from accelerometers are examples of
data to train models based on CNN structures. For instance, three-dimensional data from
accelerometer, gyroscope, and magnetometer sensors may constitute a nine by n matrix
that can be processed in a CNN-based model [85]. Such data is very effective in both gait
recognition of patients for disease diagnosis or using in dynamic authentication system at
the same time for patients and doctors in the telehealth system.

A recurrent neural network (RNN) is an architecture to handle temporal dynamic
behavior with feedback connections. RNN is mostly used in time series analysis having
variable length sequences of inputs [86], such as NLP problems. LSTM is an improvement
in RNN designed to remember or forget values over arbitrary time intervals. As a result,
LSTMs are insensitive to time series length that can process data sequentially and keep
its hidden state through time. As an example, LSTM is a useful structure for analyzing
time series, such as ECG and EEG signals for disease diagnosis and authentication in a
healthcare platform.

The mentioned structures are only three models widely used in many fields, such as
authentication. In a DNN, either of these structures or a hybrid can be used, while the
learning procedure is the same as the previously discussed methods. Deep models contain
similar categorizations to ML, which are discussed in the following.
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4.2.1. Supervised DNN

As mentioned, a supervised model is trained based on input features and available
labels. As well supervised DNN models follow the same concept (regarding the data type),
they can use either neural network structure. As a result, annotated sample dense network
classifiers suit episodic data points. CNN classifiers are best for stationary data and LSTM
classifiers fit the time series and inertial signals where input data sequences depend on
the adjacent values. In the literature, several hybrid models have also been proposed for
authentication purposes [69,70].

Zeroual et al. [87] used a deep CNN classifier to authenticate people based on their
face images. To handle complex computation in this model, they allocated the training
process to the cloud because of the huge amount of data. Abuhamad et al. [88] investigated
LSTM classifiers in three different architectures of simple LSTM, bidirectional LSTM, and
multi-layers LSTM for user authentication. The dataset was collected from participants
using readings of accelerometer, magnetometer, and gyroscope sensors from cellphones
with a high authentication frequency. Both mentioned supervised models used dense
networks in their last layers for classification. Xia et al. [69] combined LSTM and CNN
layers to recognize human actions in mobile and wearable devices. In their architecture, the
raw data from the accelerometer and gyroscope was fed into an LSTM followed by CNN
layers to make a robust classifier. Since IoMT wearable devices are prevalent in digital
healthcare systems, all of the mentioned models are effective in such use cases.

4.2.2. Unsupervised DNN

Autoencoder is one of the most common unsupervised models in DNN. In this ar-
chitecture, a bottleneck is imposed in the middle of the network to force a compressed
knowledge representation of the input, i.e., encoded data. Autoencoder takes an unlabeled
dataset and try to reconstruct the input from encoded data. For authentication applications,
the intended user is considered the genuine class, and the unauthorized users constitute
impostor classes. As a result, the autoencoder is trained only with genuine data from an
authorized user until the reconstruction error converges to a low value. Then, the model
can detect imposter instances as their reconstruction error is higher than a defined threshold.
The model can be adaptive considering the problem sensitivity by adjusting the threshold.
For example, in secure environments, by choosing lower thresholds, any deviation from
legal instances is detected as an intruder to the system.

Oza et al. [19] proposed a one-class classifier autoencoder for active authentication
using the mentioned unsupervised technique. Since they used face-active authentication
datasets, the one-class classifier was a CNN autoencoder to learn meaningful feature
representations. An advantage of such networks is that they can use any pre-trained model
instead of initializing network weights from scratch. This way, they can take advantage of
transfer learning in DNN to expand the trained model’s ability based on similar data to the
present dataset [89]. Ashraf et al. [90] designed an algorithm to recognize intrusions from
the central network gateways of the Internet of Vehicles (IoVs). The proposed algorithm
used data from the UNSW-NB15 dataset for external network communications and the car
hacking dataset for in-vehicle communications, which is applicable for smart healthcare
environments and smart tracking ambulances in such systems. As the data can be converted
to sequential data, they employed an LSTM autoencoder to detect abnormal activities in
the network, i.e., continuous authentication.

Giorgi et al. [91] used a hybrid model including a combination of supervised and
unsupervised LSTM models for authentication. The authors used gait data analysis from
cell phone sensors to perform continuous authentication. Gait analysis is mostly used to
evaluate people’s dynamic posture and coordination during movement. To this end, Giorgi
et al. [91] conducted some preprocessing for noise reduction, normalization, and creating a
fixed sample size matrix to train the proposed model. Their hybrid model is a combination
of a supervised LSTM binary classifier and an unsupervised LSTM autoencoder.
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4.2.3. Semi-Supervised DNN

As discussed, it is often expensive to label large datasets. Specifically, collecting real
data and performing required preprocessing and annotations are very costly. However,
semi-supervised models can address this problem. For example, Wang et al. [92] proposed
a semi-supervised hybrid deep model to perform physical-layer authentication and detect
spoofing attacks by controlling channel state information (CSI), effective to detect legal
IoMT devices in the healthcare platform. They first used a CNN to extract the local features
and employed an RNN to capture the dependencies between different frequencies in CSI.
Then, they proposed a semi-supervised hybrid CNN and RNN deep model to extract
contextual and local information in CSI for user authentication, where only a tiny part of
the channel observations is annotated.

4.2.4. Deep Reinforcement Learning

Deep reinforcement learning (DRL) combines the advantages of deep learning and
reinforcement learning to overcome the problem of a computational agent. Wang et al. [93]
employed DRL with CNN structure through facial feature extraction, transformation,
and comparison for face authentication under the situation of vague facial features in
mobile payment. Moreover, Shahbazi et al. [94] used DRL in the context of blockchain to
authenticate IoT devices in smart environment gateway, such as smart healthcare.

Table 1 concludes this section by categorizing the applications of ML models in the
authentication. In this tutorial, we just used a few examples from each category of ML
models that have been used in addressing authentication problems.

Table 1. Categorization of the traditional ML and deep ML models and examples for further study.

Supervised
Learning

Unsupervised
Learning

Semi-Supervised
Learning

Reinforcement
Learning

Traditional
ML Models

NB [4,54] Clustering [71–74] Behavioral Biometrics
[78]

Classification [80–82]

k-NN [4,57] PCA [75,76] Outlier Detection [79] Feature Selection [38]

RF [4,58–64] SVD [77] — Adaptive Authentication
[80]

SVM [4,65–68] — — CAN [81,82]

Deep
Models

CNN Classifier
[84,85,87,88]

CNN Autoencoder
[19]

CNN Semi-supervised
LSTM [91]

CNN DRL [93]

LSTM [69,70,86] LSTM Autoencoder
[90]

Hybrid
Semi-supervised [92]

Blockchain-based
DRL [94]

Hybrid Models
[69,70]

Hybrid Autoencoder
[91]

— —

5. Conclusions and Future Work

The development of wireless communication technologies has become important in
the modern medical system, such as telehealth. In such systems, the patient’s data can
be collected and sent to health professionals to obtain the patient’s status anytime and
anywhere. Unauthorized access to such data may compromise the patient’s privacy, and
any change in data could affect the therapy procedure. Furthermore, the presence of
unauthorized devices in such a network can put the system at risk of data leakage and
eavesdropping.

Adaptive biometric authentication is currently deployed in online banking, e-commerce,
and payments, where frictionless real-time authentication is a must. It is not an alternative
to the typical password-based authentication, but it does prevent a single point-of-security
failure relying on the password and leverages continuous identity assurance requirements
for any critical infrastructure. Authentication can be considered a complementary level of
security enhancement to address unauthorized access issues proactively. Therefore, it is
not an alternative to traditional cryptography models. Traditional adaptive authentication
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is rule-based, where the access and authentication adapt to the context (e.g., who, when,
where) of each request, for instance, access can only be granted from a corporate, managed
group. However, future adaptive authentication systems would use machine learning,
advanced analytics along with rule-based authentication to cover many possible scenarios.
For example, unsupervised learning can be used to create profiles for the stakeholders, e.g.,
doctors, by which the decision of real-time access controls will take place.

The growing scope and complexity of modern IoMT identity and access manage-
ment (IAM) environments encourage the ubiquitous use of analytics. One of the most
pronounced next-generation access services is adaptive authentication. However, instead
of only using traditional rule-based adaptive authentication, researchers are introducing
machine learning and advanced analytics to cover all the possible scenarios. For example,
unsupervised learning can be used to create users’ profiles by which the decision of real-
time access controls will take place. An organization can establish a baseline for a patient
or a group of similar patients’ medical data, analyze the sudden changes in the patient’s
data (anomaly) that behave differently, and take necessary actions.

This tutorial investigates the available machine learning methods and the categoriza-
tion of the literature. The main contribution of this tutorial involved bringing machine
learning models to the concept of authentication in the telehealth network and investigating
their ability to handle different biometric data from human and physical layers for smart
devices. To enhance the authentication scheme performance, we needed to consider the
problem at hand in an entire machine learning life cycle. For this purpose, we discussed
the authentication problem from defining objectives to data acquiring, data preprocessing,
model building, and final deployment. In each stage, we provided examples of state-of-
the-art methods that used the introduced techniques in their authentication schemes and
customized the machine learning concepts for this realm. Since we have implemented
many machine learning-based authentication models, for a better understanding of this
topic, it is suggested that the following work sketch the prominent authentication models
practically and dissect them in detail.
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