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Abstract: This study proposed a control method, a data-driven predictive control (DDPC), for the
hand exoskeleton used for active, passive, and resistive rehabilitation. DDPC is a model-free approach
based on past system data. One of the strengths of DDPC is that constraints of states can be added
to the controller while performing the controller design. These features of the control algorithm
eliminate an essential problem for rehabilitation robots in terms of easy customization and safe
repetitive rehabilitation tasks that can be planned within certain constraints. Experiments were
carried out with a designed hand rehabilitation system under repetitive and various therapy tasks.
Real-time experiment results demonstrate the feasibility and efficiency of the proposed control
approach to rehabilitation systems.

Keywords: DDPC; hand rehabilitation; subspace identification

1. Introduction

To regain the limb movement ability lost because of any disease or accident, a repeti-
tive and intense rehabilitation process is required. Physiotherapists treat patients during
this process. They frequently use rehabilitation robots to help patients perform the right
movements with the right intensity while under control inside or outside of the clinic [1]. In
recent years, academic or R&D studies were conducted frequently for design and implemen-
tation of rehabilitation robotics. Exoskeletons, which allow for direct limb manipulation,
or end-effect robots, that support therapy by manipulating the limb’s distal point, are
two mechanical structures that are used in rehabilitation robot design. Specially designed
hand rehabilitation robots are used to treat post-stroke hand movement limitations. These
robots need to be made in accordance with the complex structure of the hand, which has
about 20 degrees of freedom; it should also be supported by a robust and adaptive control
algorithm so that it can function consistently for each patient [2–5]. Devices that support
active rehabilitation can be used during the patient’s completely lost movement during the
passive phase of the repetitive rehabilitation process. The rehabilitation robot should per-
form fewer movement tasks as the patient recovers more and give them more responsibility.
It should assist in this instance with active-assistive rehabilitation procedures. Resistance
exercises for muscle strengthening can be done once the patient regains his mobility [6,7].
Robot control design must have an adaptive structure to perform the rehabilitation pro-
cesses. Active power control is not possible for the direct trajectory control robots described
in the literature. Rehabilitation robots are controlled to carry out active, active-assistive,
and passive rehabilitation tasks using control algorithms, such as impedance or admittance
control [8–10].

Systems with nonlinear structured uncertainties can also be controlled using vari-
able structure controllers. These controllers allow for the use of parametric perturbations
between lower and upper limits to deal with complexity and noise from the external
world [11]. The control of a lower extremity exoskeleton was accomplished in [12] using

Sensors 2022, 22, 7645. https://doi.org/10.3390/s22197645 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22197645
https://doi.org/10.3390/s22197645
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8152-1291
https://orcid.org/0000-0002-8154-5883
https://doi.org/10.3390/s22197645
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22197645?type=check_update&version=2


Sensors 2022, 22, 7645 2 of 19

the anti-disturbance sliding mode controller. Additionally, a robust adaptive sliding mode
controller is proposed in [13] to deal with unknown and bounded dynamic uncertainties of
the upper limb exoskeleton for passive rehabilitation tasks. A fuzzy approximation-based
backstepping control is another approach to the control of an exoskeleton for rehabilita-
tion [14,15].

System identification is crucial for establishing the controller design. The kinematic
and dynamic parameters must be accurately determined, and the robot must generate the
force required by the patient for it to adapt to the kinematic structure of each patient [16,17].

The limb that the robot works on simultaneously during rehabilitation is breakable
and sensitive. While manipulating this limb, the robot must avoid harming it. Both the
patient and the robot must cooperate, and the robot can only move the patient’s hand
within limits. In this instance, the control algorithm should find the best solution—not just
any solution—for the targeted task while taking the constraints into account. Algorithms
for model predictive control can be employed to achieve this [2,18].

Model-based control algorithms, such as model predictive control, are frequently used
in process control applications because they produce the optimal solutions possible, given
the constraints. These algorithms can also be used for rehabilitation procedures because
they use past data collected over a specific horizon to determine which estimation model
offers the best solution [19,20]. For every patient, a unique model will be developed with
unique system parameters and dynamics. A universal model cannot be used in this case.
Since MPC algorithms are model-based algorithms, continuous identification data-driven
predictive control algorithms can be applied in this situation [21].

The subspace-based parameter estimation approach is used in this study to estimate
system parameters. The parameters appropriate for the model defined along a horizon are
obtained using the state data and control signal gathered during open loop operation along
this horizon [22]. A predictive control algorithm and an optimal control rule are built using
the model and parameters acquired here. The control rule is handled independently of the
constraints, and experiments are carried out to determine how much each model variable
contributes to the control rule’s success.

The rest of the paper is organized as follows: Section 2.1 introduces the suggested
control strategy, followed by Sections 2.2 and 2.3, which describe the subspace identification
method and data-driven predictive controller, respectively. The experimental setup is also
described in the Section 2. The Section 3 of the paper includes the experimental results.
This section examines and presents the impact of all parameters on the success of the DDPC.
Finally, every result is discussed and concluded.

2. Materials and Methods
2.1. Exoskeleton for Hand Rehabilitation

The mechanical structure of the exoskeleton that was previously proposed is effective
with the simple design. In this structure, the middle and proximal phalanxes serve as
links for two 4-bar mechanisms that are sequentially coupled. Additionally, the metacarpal
phalangeal (MCP) joint has a range of motion of 55 degrees of flexion, whereas the proximal
interphalangeal (PIP) joint has a range of motion of 65 degrees of flexion from a fully
extended posture. The linear actuator may move at a maximum speed of 12 mm per
second and a maximum force of 45 N. A full hand opening or closing action requires
roughly 5 s for a stroke of 50 mm. The mechanical structure and biodynamic fit of the hand
make the designed system more practical in terms of usage and productivity than similar
ones [2,23,24].

The system consists of L0, L1, L2 linkages. The MCP joint angle (φ1) and PIP joint
angle (φ2) rely on the length of the linear actuator (l0), as shown in Figure 1. Therefore,
simultaneous actuation of both joints occurs. Whenever a new user (subject or patient) puts
on the exoskeleton on their hand, the exoskeleton and the finger unite to form a single,
distinctive 1-DOF system.
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expensive process. Additionally, it is ineffective for a system that will be applied to multi-
user processes with various mechanical characteristics. The benefit of the DDPC method 
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in mechanical parameters. The need for memory is made clear by the necessity of storing 
historical data for modeling. This may also be viewed as a drawback. 

The input and output signals obtained from open loop data are used as input and 
output variables in the DDPC. The obtained sub-space matrices can be used to calculate 
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keep track of the reference using a control rule based on past input and output data as 
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Figure 1. Designed exoskeleton for hand rehabilitation.

2.2. Proposed Control Method

In this study, position tracking was performed with a DDPC designed using subspace
identification and model predictive control (MPC) techniques. MPC is a model-based
technique that was successfully applied over the years. The difficulties (cost, time, and
effort) associated with the identification of a predictive model of the system are major
barriers that prevent the widespread adoption of MPC for complex systems.

It is challenging to describe the system model when using rehabilitation robots, or-
thotics, and prosthetic applications, because the controlled system’s parameters vary de-
pending on the patient or the healing process. Therefore, data-driven algorithms are chosen
over model-based algorithms. Model-based control is often a time-consuming and expen-
sive process. Additionally, it is ineffective for a system that will be applied to multi-user
processes with various mechanical characteristics. The benefit of the DDPC method is that
it contains historical data continuously, making the system sensitive to any changes in
mechanical parameters. The need for memory is made clear by the necessity of storing
historical data for modeling. This may also be viewed as a drawback.

The input and output signals obtained from open loop data are used as input and
output variables in the DDPC. The obtained sub-space matrices can be used to calculate
the DDPC algorithm weight parameters. During the specified horizon, the system can
keep track of the reference using a control rule based on past input and output data as well
as tracking errors. By closely monitoring all activity along the horizon, the rule based on
previous data will be able to react quickly. Particularly, the fast and accurate identification
of new circumstances will enable quick adaptation. The structure of the proposed control
method is shown in Figure 2.
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2.3. System Identification Methods
2.3.1. Output Error Method for Identification

The purpose of the output error method is to find the best parametric model according
to the given specific criteria. The criteria is the error between the measured noisy output
and the simulated model output, as shown in Equation (1).

ε = x2 − x̂2 (1)

Here, x̂2 is the estimated state variable of the system calculated using estimated values
of unknown dynamic parameters. If the parallel model configuration of the model is similar
to 2, we can find the parameter with equations in 3.

.
x̂2 = −âx̂2 − f̂ssgn(x̂2) + b̂u, x̂2(0) = (x̂2)0 (2)

where a, b, and fs are the unknown parameters to be identified. In this equation, x2 is the
state variable, and u is the input of the system, and both are measured and/or observed.

.
â = −γ1εx2,

.
b̂ = γ2εu,

.
f̂ s = γ3εsgn(x2)

(3)

where γ1, γ2 and γ3 are the gain of the error effected to parameter. The parameters a, b, and fs,
estimated by the output error method, were studied and compared in [2] previous studies.

2.3.2. Subspace Identification Method

Background information on the subspace identification matrices from open-loop data
is provided in this subsection. The following section will use these matrices to design a
data-driven predictive controller. We will begin by defining the system’s state-space model.
As a result, the equations below can be written in state-space form for a linear discrete
time-invariant system:

xk+1 = Axk + Buk + Kek (4)

yk = Cxk + Duk + ek (5)

where uk ∈ Rm, yk ∈ Rl , and xk ∈ Rm are the input variables, the output variables, and the
state vector variables of the system, respectively; ek ∈ Rl is white noise disturbance. The
system matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, D ∈ Rl×m, and K ∈ Rl×l are the state,
input, output, feed-through, and Kalman filter gain matrices of the system, respectively.

We assume that the measurements of the inputs uk and the outputs yk for k ∈
{1, 2, . . . , N} are available for identification. The input Hankel matrices for uk are repre-
sented as Up and U f .

Up ,


u1 u2 · · · uN−2M+1
u2 u3 · · · uN−2M+2
...

...
. . .

...
uM uM+1 · · · uN−M+1

 (6)

U f ,


uM+1 uM+2 · · · uN−M+1
uM+2 uM+3 · · · uN−M+2

...
...

. . .
...

u2M u2M+1 · · · uN

 (7)

where the subscripts ‘p’ and ‘f ’ represent the ‘past’ and ‘future’ matrices of the vari-
ables. Similarly, Hankel matrices for yk, represented as Yp and Yf defined as (8) and
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(9), respectively. The dimensions of the matrices are
{

Yp, Yf

}
∈ RMl×N−2M+1 and{

Up, U f

}
∈ RMm×N−2M+1, respectively.

Yp ,


y1 y2 · · · yN−2M+1
y y3 · · · yN−2M+2
...

...
. . .

...
yM yM+1 · · · yN−M+1

 (8)

Yf ,


yM+1 yM+2 · · · yN−M+1
yM+2 yM+3 · · · yN−M+2

...
...

. . .
...

y2M y2M+1 · · · yN

 (9)

These data block Hankel matrices are made rectangular in the subspace identification
method to reduce the undesirable effects of noise on the identification system. This situation
can be achieved via having a large set of data, denoted by the variable N. Moreover, M in
Equations (6)–(9) can be understood as the order of the predictor equation. For a successful
identification of the system behavior, the order M must be bigger or at least equal to the
real system order n as manifested in the dimension of the state matrix A [25]. The system’s
past and future state vectors are written as:

Xp , [x1 x2 · · · xN−2M+1] (10)

X f , [xM+1 xM+2 · · · xN−M+1] (11)

As a result of the derivation of Equations (4) and (5), the equations can be written as
below. These equations are known as the subspace matrix input–output equations used for
identification [26,27].

Yf = ΓMX f + Hd
MU f + Hs

N E f (12)

Yp = ΓMXp + Hd
MUp + Hs

N Ep (13)

X f = AMXp + ∆d
MUp + ∆s

MEp (14)

ΓM ∈ RMl×n can be described as the extended observability matrix, ∆d
M ∈ Rn×Mm

as reversed extended controllability matrix (deterministic), and ∆s
M ∈ Rn×Ml as the

reversed extended controllability matrix (stochastic) [20,28]. Yf can be written with
Equations (12)–(14) as below:

Yf =
[
Γm AmΓ†

m − Am(Hm + ∆m)
][Yp

Up

]
+ HmU f + (∆s

M − AmΓm
†Hs

M)Ep + Hs
ME f (15)

Since the effect of E f is constant white noise, and cause of the stability of a Kalman
filter, Equation (15) can be written to give an optimal prediction expression of the system
output Yf as follows:

Ŷf = LwWp + LuU f (16)

where Wp =
[
Yp Up

]T , U f consists of past inputs and outputs and future inputs, respec-
tively. Lw ∈ RMl×M(l+m) is the subspace matrix corresponding to the past input and output
states, and Lu ∈ RMl×Mm is the subspace matrix corresponding to the future inputs. Future
output values in Equation (16), as well as the system’s future input, can be formulated as a
linear combination of the system’s past input and output states. The system’s behavior will
then be described using Equation (16), rather than going back to the identification techniques
that yield the traditional transfer function or state-space description of the system.
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The following least squares problem is solved to calculate Lw and Lu from the Hankel
matrices.

min

∣∣∣∣∣
∣∣∣∣∣Yf −

[
Lw Lu

] [Wp
U f

]∣∣∣∣∣∣∣∣2
F

(17)

This problem can be solved from the orthogonal projection of the row space of Yf into the

row space of the matrices Wp =
[
Yp Up

]T. This can be defined by Equation (18) as follows:

Ŷf = Yf /
[

Wp
U f

]
(18)

2.4. Data-Driven Predictive Controller

The data-driven predictive control algorithm uses the linear subspace predictor and
the cost function of MPC algorithm.

M and N are lengths of data. Furthermore, yd(k + 1), y(k + 1), u(k−M) are the
desired output r, output, and the input, respectively. All I/O data are stored in a database
and then can be used again in control.

The MPC algorithm cost function form [29,30] can be written with the prediction and
control horizon Np and Nc equal to f as follow:

J =

 Np

∑
kp=1

(
Ŷt+kp − rt+kp

)T
WQ

(
Ŷt+kp − rt+kp

)
+

Nc

∑
kc=1

∆UT
t+kc

WR∆Ut+k

 (19)

where WQ and WR are the weight matrices, rt is the reference signal at the current time t,
Np and Nc are the prediction and control horizon, respectively. Nc maybe less than or equal
to the prediction horizon Np

(
Nc ≤ Np or Nc ≤ f

)
.

We maintain to improve the basics of DDPC via rewriting the cost function of MPC
Equation (19) in quadratic form. Using Equation (16) and the reference signal of rt, we can
update the cost function as follows:

J =
(

Lw∆Wp + LNc
u ∆UNc + Yt − rt+1

)T
WQ ×

(
Lw∆Wp + LNc

u ∆UNc + Yt − rt+1

)
+ ∆UT

Nc
WR ∆UNc (20)

If we solve the cost function, the control rule can be written as follows:

∆UNc = −
((

LNc
u

)T
WQ

(
LNc

u

)
+ WR

)−1
×
(

LNc
u

)T
WQ

(
Lw∆Wp + (Yt − rt+1)

)
= −K∆Wp ,Nc ∆Wp − Ke,Nc(Yt − rt+1).

(21)

where −K∆Wp ,Nc and Ke,Nc are the weight of the past data vector and the weight of the
tracking error, respectively.

At each time condition, only the first element of ∆UNc is used to calculate the control in-
put Ut+1, which complies with ∆Ut+1. Hence, abbreviating the first m rows in Equation (21)
gives as below:

∆Ut+1 = −K∆Wp ∆Wp − Ke(Yt − rt+1) (22)

With,
K∆Wp =

[
Im 0m×(M−1)m

]
K∆Wp ,Nc (23)

Ke =
[

Im 0m×(M−1)m

]
Ke,Nc (24)

where Im is an identity matrix of size m while 0i×j is a zero matrix with i rows and j columns.
Consequently, the control input Ut can be written as follows:

Ut = Ut−1 + ∆Ut (25)
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2.5. DDPC with Considering Constraints via Quadratic Programming

The ability of MPC and other predictive control algorithms to include constraints in
the final control solution is one of their advantages. In this section, a constrained DDPC
algorithm is provided, taking the constraints in Equation (26) into account.

Fm∆umin ≤ ∆uNc ≤ Fm∆umax
Fmumin ≤ uNc ≤ Fmumax
Flymin ≤ ∆y f ≤ Fl∆ymax

Flymin ≤ y f ≤ Flymax

(26)

Here Fm and Fl are defined as Fm =
[
Im Im . . . Im

]T ∈ RNcm x m, Fl =[
Il Il . . . Il

]T with identity matrices Im and Il . Further, uNc =[
uT

t+1 uT
t+2 . . . uT

t+Nc

]T
.

The control signal is optimized in the constrained DDPC algorithm while taking
into account the constraints placed on the cost function specified in the earlier sections.
The inequalities shown in Equation (27) are reached when the constraints defined in
Equation (26) are rewritten as a function of [2,20].

INcm
−INcm

Γm
−Γm
LNc

u
−LNc

u
Γl LNc

u
−Γl LNc

u


︸ ︷︷ ︸

AQP

∆uNc≤



Fm∆umax

−Fm∆umin
Fmumax − Fmut
−Fmumin + Fmut

Fl∆ymax − Lw∆wp
−Fl∆ymin + Lw∆wp

Flymax − Flyt − Γl Lw∆wp
−Flymin + Flyt + Γl Lw∆wp


︸ ︷︷ ︸

bQP

(27)

It can be discovered by optimizing the cost function for the DDPC algorithm given in
Equation (28) with constraints.

min
∆uNc

1
2

∆uT
NcH∆u f + ∆uT

Nc f s.t. AQP∆uNc ≤ bQP (28)

The quadratic programming (QP) algorithm can be used to solve this optimization
process. The QP algorithm determines the ideal control signal ∆uNc while accounting for
the constraints.

2.6. Experimental Setup

For the execution of the parameter estimation algorithms, the Matlab/Simulink envi-
ronment is used. STM32F4107 CPU was used to run control algorithms. The dual-channel
H bridge L298 driver IC was used for DC motors and a 9V Li-Po battery was used as the
voltage supply for the motor. The Matlab/Simulink environment was also utilized during
the studies to gather and store data. Communication is established between the micropro-
cessor and the Matlab/Simulink environment with the UART protocol. In each experiment,
control signals or reference position values were sent from the Matlab/Simulink environ-
ment to the CPU using the serial communication protocol. The employed experimental
setup is shown in Figure 3.
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Figure 3. Experimental setup.

The data-driven predictive control method was validated on a real-time system by differ-
ent experiments. The system position was directly measured using a linear potentiometer.

2.7. Passive and Active Rehabilitation

The design of both active and passive rehabilitation tasks requires estimation or
measurement of the external force exerting on the exoskeleton’s endpoint. In this study,
a micro load cell is placed between end point of the linear actuator shaft and fork joint
to measure external force (Fex). External force can be used to stimulate a virtual mass-
spring-damper system, as shown in Figure 4 and its mechanical parameters can be adjusted
depending on the type and degree of rehabilitation required.
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When the measured external force is applied to the virtual system using Equation (29),
the virtual system’s response xd, can be found.

md
..
xd + bd

.
xd + kdxd = Fex (29)

For active rehabilitation task, the virtual system’s position response, xd, can be used to
deviate to the desired reference from the actuator’s actual position, x1 (Equation (30)). In
this instance, the behavior of the controller is a regulator and keeps the actuator in its actual
stroke position. If the external force is greater than zero, the desired reference is different
from the actual position of the actuator.

x′r = x1 − xd (30)

For passive rehabilitation, xd can be used to create a deviation from the predefined
trajectory xr, as shown in Equation (31), and the controller can make use of this desired
reference.

x′r = xr − xd (31)

It is possible to decide how the virtual mass-spring-damper system responds to
external force and carries out passive, active, or assistive rehabilitation tasks by setting the
parameters within the acceptable range of values.

3. Results and Discussion
3.1. Experimental Results of Subspace Prediction Algorithm

During the tests, the robot was not subjected to any external force and the exoskeleton
is tested on a healthy human hand. The predicted model was compared with the state-space



Sensors 2022, 22, 7645 9 of 19

model obtained by the output error method; those applications and results are explained
in past studies [23]. By using the model horizon parameters p = 30, f = 10, the subspace
estimation model parameters (Lur and Lwr) are calculated. The Lu and Lw obtained with
the same values as the previous p and f from the system are then calculated using the ut
input signal to be tested, the Lu and Lw are then calculated using the same values as the
previous p and f from the system (Figure 5. In the graphics, the results calculated using
the reference (Lur and Lwr) models and the actual Lu and Lw models are compared.
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Figure 5. Subspace prediction validation procedure.

The output error-based model (OEbM) output is compared with the sub-space model
(SPbM) estimation result obtained with the u input signal (u = A0sinω0t, ω0 = 0.5 rd/sn
ve A0 = 5) shown in the Figure 6. The linear actuator’s stroke length, which is considered
the system output, is represented by the y-axis on the graph as position.
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Figure 6. Selection of the sinus input signal ω0 = 0.5 rd/s and A0 = 5, and comparison of results.
(a) Single sinus signal, (b) Comparison of results.

The percentage error function in Equation (32) was obtained between the OEbM output,
which was used as the reference model, and the SPbM output to evaluate the outcomes of the
model estimate test, and this number was chosen as the performance criterion.

e = ∑n
i=1(yOEbM − ySPbM/yOEbM)

n
(32)

This experiment’s error value (e) was calculated as 1.1871%. Table 1 provides the
percentage error values of the test results with additional specified input signals.
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Table 1. Experiments with a single frequency input signal (u = A0sinω0t).

Experiments ω0 (rd/s) A0 Error (e)

1 0.3 5 0.0187
2 0.4 5 0.0266
3 0.5 5 0.0337
4 0.6 5 0.0395
5 0.7 5 0.0727
6 0.8 5 0.0825
7 1 5 0.1431
8 2 5 0.9273

The range of ω0 = 0.3 rd/s, where the input signal runs throughout the full stroke in
a single alternate, and ω0 = 2 rad/s, which gives 5% displacement on the motor stroke, is
tested using a single frequency component. The first eight experiments revealed a linear
correlation between the modeling success and the parameters of the frequency component
of the input signal. As a result, success increased and error decreased at higher frequency
values, while success increased at lower frequency values. Since the full stroke length could
not be studied in the experiments with high frequency u input signals, it can be argued that
all the system’s characteristics could not be apprehended in them. This has an impact on
modeling success.

The following experiments are performed with a sinusoidal input signal with two
separate frequency components (u = A0sinω0t + A1sinω1t). The experiment that was
performed using input signals with ω0 = 0.2 rd/s and A0 = 2, ω1 = 0.8 rd/s and A1 = 3
(Experiment 10) results are shown in Figure 7.
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Figure 7. Results of experiment 10: (a) input and output signal, (b) results.

It was noted that in experiments using the u input signal with two frequency compo-
nents, the average success rate increased. When experiments 9 through 12 in Table 2 are
examined, it becomes clear that the error function produces results that are similar across
the ranges of experimental parameters. It was noted that the error function is negatively
impacted by the separation between the two component frequencies.

Table 2. Experiments with a two-frequency u input signal (u = A0sinω0t + A1sinω1t).

Experiment ω0 (rd/s) ω1 (rd/s) A0 A1 Error (e)

9 0.3 0.4 2 3 0.0127
10 0.2 0.8 2 3 0.0267
11 0.2 0.8 1 4 0.0360
12 0.5 0.1 2 2 0.0235

The following experiments (13–16) use u input signals that have three distinct fre-
quency components (u = A0sinω0t + A1sinω1t + A2sinω2t), as shown in Figure 8. The
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experiments conducted are more useful than the earlier experiments, as shown in Table 3.
Different frequency components are found to increase the success of modeling.
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Figure 8. Results of experiment 10: (a) input and output signals, (b) results.

Table 3. Experiments with a three-frequency u input signal (u = A0sinω0t + A1sinω1t + A2sinω2t).

Experiment ω0 (rd/s) ω1 (rd/s) ω2 (rd/s) A0 A1 A2 Error

13 0.3 0.4 0.7 2 2 2 0.0088
14 0.3 0.4 0.1 2 2 2 0.0239
15 0.3 0.4 0.1 2 2 5 0.0251
16 0.5 0.4 0.1 2 2 5 0.0211

The following tests were conducted using input signals that contained a scanning fre-
quency as shown in Figure 9. These input signals are configurations for input signals that begin
with low-frequency components and increase throughout the designated range. The average
success is higher in these experiments, as shown in Table 4. This input signal, which has
components in several different frequency ranges, helps to clarify the system’s characteristics.
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Figure 9. Results of experiment 20: (a) input and output signal, (b) results.

Table 4. Experiments with input signals that configured by scanning frequency.

Experiment k0 A0 e (Error)

17 0.003 4 0.0149
18 0.005 5 0.0200
19 0.01 5 0.0083
20 0.01 3 0.0048

3.2. Experimental Results of Data-Driven Predictive Controller

The predicted model parameters and control parameters Ke and K∆wp1x2p are calcu-
lated. The step function and a sinusoidal trajectory response (2 π radians from position 0
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to 50%) are examined to analyze the parameters affecting the control algorithm, and the
results are discussed.

3.2.1. Effect of Data Length on Control Success

Figure 10 shows the relationship between the calculated control coefficients and
the control success as a function of the data size of the input signal (u), which is used
as the estimation input signal. In experiments, only the input signal u’s data length is
changed, while the other parameters, p = 30, f = 10, Q = 1, R = 2, and Nc = 5, remain
constant. As a result, it was found that as the number of data increases, overshoot decreases,
increasing the success of the control. The control coefficients from experiments with the
same frequency components but fewer data are seen to negatively affect the success as the
number of data decreases. The overshoot increases as N decreases. The quantity of data
has no meaningful effect on the rise time.
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3.2.2. Analysis of Model Horizon Parameters (p, f )

The system state equations along the chosen horizon are the basis of the subspace-
based estimation model. Using the input signal from the most successful experiment
(Experiment 20) from the previous test results, the test results referring to the horizon
parameter success characteristic are presented in this section.

As a result of parameter estimation using various historical model horizon values, the
control parameters are displayed in Table 5. Experiments are carried out with constant
parameters f = 10, Q = 1, R = 2, and Nc = 5 by varying the model horizon p between 30
and 60. The effect of the previous model horizon on the system response is investigated in
these experiments. Rise time and percent overshoot are used as performance factors in step
function experiments. The success factor in trajectory tracking is the mean of the squares of
the errors. Table 5 details all these values.

Table 5. Control parameters calculated using p.

Model
Horizon (p) Ke

Mean
of K∆wp1x2p

Standard Deviation
of K∆wp1x2p

Response of Step Function Tracking
Performance

Rising Time (s) Overshoot % mse

30 0.1908 0.0730 0.2499 3.88 0.17 4.3138

40 0.2853 0.0852 0.2493 5.77 0.20 18.4100

50 0.3746 0.0904 0.2399 3.84 0.18 1.4763

60 0.3780 0.1045 0.2202 * None * None 16.9600

* In this experiment, no rise or overshoot was observed during the experiment.

Without considering the experiment taken as p = 50 in the table, it can be said that
the other values show that the step response and trajectory tracking success are negatively
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impacted by an increase in the p value as shown in Figure 11. However, in the experiment
where p is set at 50, success increases once more. The control is seen to be totally broken in
the following experiment. This assumes that there might be a linear relationship between
control success and the past modeling horizon, p. When the response of the system to
the sine waveform is analyzed, it is seen that even the worst result (p = 60) follows the
trajectory with a certain error (mse = 16.96 from Table 5).
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Figure 11. Success of different past model horizon (p) values in tracking trajectories and success of
response of step function.

In the following experiments, the past model horizon p, and other parameters (p = 30,
Q = 1, R = 2, and Nc = 5) are held constant to examine the control success of the future
model horizon f. Rise time and percent overshoot are considered performance factors in
experiments using the step function. The average of the squares of the errors is used as
a performance metric for trajectory tracking success. In Table 6, each of these values is
described in detail.

Table 6. Control parameters defined using f.

Future
Horizon (f ) Ke

Mean
of K∆wp1x2p

Standard Deviation
of K∆wp1x2p

Response of Step Function Tracking
Performance

Rising Time (s) Overshoot % mse

5 0.0476 0,0066 0.0222 3.38 0.0962 9.0828
10 0.1908 0.0733 0.2400 3.85 0.0322 4.3138
15 0.2191 0.0996 0.2946 3.94 0.0220 1.2027
20 0.2385 0.1580 0.3942 4.36 0.0018 3.9737
25 0.1688 0.1188 0.2980 4.48 0.0254 10.5345
50 0.1951 0.1897 0.4622 6.91 0.0524 60.1988

When the tables and graphics are examined, it is observed that there is a nonlinear
relationship between the model future horizon f and control success. The overshoot and
rise times are close to each other in experiments where the f value of the future horizon
is between 20 and 25. The increase in the mean value and standard deviation of Ke and
K∆wp has a negative effect on the rise time. The rise time increases as the f parameter
increases, but the average overshoot decreases. The response of trajectory also shows that
the overshoot is high in the experiment where f is set to 5 (Figure 12). This overshoot is
a result of the Ke value obtained in this experiment being much lower than in the other
experiments. Based on gathered data, it is seen that, even if the number of future horizons
is chosen as only 5, the steady-state stability is considered as critically stable.
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Figure 12. Effect of different future model horizon (f ) values on the success of tracking the step
response and trajectory.

The tables display control coefficients based on the parameters used in the experiments.
The graph in Figure 13 shows the control parameters (Ke) for all p and f values in the
determined range (5–100). When the Ke value is between 0.2 and 0.3, it is apparent
from the experiments, the results of which are evaluated, that the success rate is high.
Additionally, the tables display the mean and standard deviation values of the K∆wp
parameter calculated in successful results. Figures 13 and 14 can be used to analyze the
suitable numeric selections of p and f parameters for these values. The color scale of the
p and f pairs providing successful Ke values is shown in Figure 13. It is clear from all the
graphs that the values of p and f for the successful control task can be selected from a range
of 5 to 80 and 20 to 60, respectively.
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Figure 13. Ke and K∆wp calculated for the 5–100 range of p and f values.
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3.3. The Effect of Q and R Parameters on the Control System Succession

It is shown in equation 16 that the parameters Q and R in the general MPC cost function
are the weights of the reference error and the differential control signal, respectively. These
weights have a direct impact on the success of the control because the data-driven predictive
control rule is based on the MPC cost function. The success of trajectory tracking and step
response are examined using the experiments in this section with the Q and R parameters.
With p = 30, f = 10, and Nc = 5, various Q and R parameters are tested in experiments.

The Q parameter and the rise time have a linear relationship, as can be seen when
Table 7 is examined. In addition, the ratio of the Q parameter to R also affects the rise
time. It is clearly seen that the R parameter affects the overshoot as seen in Figure 15. The
overshoot increased up to a maximum value of 8% in the experiment where R was set to be
50. These tests led to the conclusion that selecting a small Q value would have a positive
effect on the rise time as shown in Figure 16. The experiments also confirmed that selecting
a low value (Q = 1) and choosing the parameter R within the optimal ranges (10,200) have
a positive impact on the response of step and trajectory tracking.

Table 7. Effect of Q and R parameters on control response.

Q R Ke
Mean

of K∆wp1x2p
Standard Deviation

of K∆wp1x2p
Response of Step Function Tracking

Performance

Rising Time (s) Overshoot % mse

5 2 0.7694 0.1969 0.8251 * None * None 288.1818
4 2 0.5693 0.1513 0.6184 5.654 0.0385 43.5554
3 2 0.4975 0.1354 0.5512 6.631 0.0084 65.2003
2 2 0.4329 0.1202 0.4776 3.093 0.0688 33.0765
1 2 0.2589 0.0806 0.2981 3.031 0.0050 11.8783
1 3 0.1897 0.0648 0.2269 3.528 0.0118 6.9044
1 5 0.1293 0.0510 0.1649 3.189 0.0286 3.7065
1 10 0.0807 0.0398 0.1152 3.493 0.0490 2.7420
1 20 0.0549 0.0337 0.0889 3.902 0.0626 2.4434

* In this experiment, no rise or overshoot was observed during the experiment.
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Figure 15. Effect of the R parameter on step and trajectory response.

The control horizon Nc in the data-driven predictive control algorithm is described in
Equation (16). Unlike f, which is the model horizon, Nc specifies the size of the space from
which the system control signal uc should be calculated. It is used by the control algorithm
to compute the system control signal uNc, which is the first component of ∆uNc along Nc.
These tests were conducted with the following parameters: p = 30, f = 10, Q = 1, and R = 2.
The impact of Nc on step function response and trajectory tracking response is shown in
Table 8 and Figure 17. It is clear from the tables and graphs that the rise time has a linear
relationship with Nc’s trajectory tracking response and step function response.
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Figure 16. Effect of the Q parameter on step and trajectory response.

Table 8. Effect of Nc parameter on control response.

Nc Ke
Mean

of K∆wp1x2p
Standard Deviation

of K∆wp1x2p
Response of Step Function Tracking

Performance

Rising Time (s) Overshoot % mse

5 0.1688 0.1188 0.2980 3.232 0.0254 10.5345
10 0.1799 0.0798 0.2429 3.224 0.0152 8.5312
15 0.2220 0.0768 0.2669 3.210 0.0084 3.9609
20 0.2589 0.0806 0.2981 3.180 0.0084 11.8783
25 0.3423 0.0870 0.3562 3.192 0.0684 17.3509
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Figure 17. According to Nc, the response of step function and trajectory.

3.4. Passive and Active Rehabilitation

The patient is completely passive during passive rehabilitation tasks. The patient’s
hand is completely guided by the exoskeleton. The patient did not exert any force on the
exoskeleton for the first 10 s, as shown in Figure 18. The controller in this case uses x′r = xd.
When a maximum counterforce of 7–8 N was applied in the final 10th second, the virtual
system response xd deviates from the reference x′r. This makes it possible for the system
to react to the patient in accordance with any unexpected issues that might arise on the
patient’s finger. The response stiffness of the system to the patient’s hand can be adjusted
by appropriately adjusting the parameters of the virtual mechanical system as shown in
Equation (26).
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Figure 18. Passive rehabilitation task.

The controller functions as a regulator during the active rehabilitation process and
tries to keep the current position of the actuator stroke. The reference shifted, as shown
in Figure 19, because of the patient applying an external force of about –6N in the 12th
second. The patient made the flexion movement with a stable force applied to the system.
The extension movement was carried out by exerting force in the opposite direction after
the 14th second. The system can be operated at greater forces by modifying the virtual
mechanical system’s parameters. The system can now perform in resistive mode as a result.
The system operates in assistive mode by taking xd in negative.
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Figure 19. Active rehabilitation task.

The study of the robustness of MPC can be approached in a variety of ways. The first
focuses on the closed-loop systems’ robustness when created utilizing the nominal system
(i.e., neglecting uncertainty). The second makes an effort to achieve robustness within
the context of conventional model predictive control by taking into account all feasible
realizations of the uncertainty. The third approach addresses this by introducing feedback
in the min–max optimal control problem solved online [31]. In this study, according to the
results obtained in some experiments, it was evaluated that the system is robust against
uncertainties. For example, in the analysis of model horizon parameter experiments, it was
observed that the system followed the trajectory even at the worst coefficients (p = 60, f = 5).
The model control values, Ke and K∆wp, are determined using this model and calculated as
optimum values, showing that the controller is robust enough to handle uncertainties.

The subspace prediction estimation results to be made with the ongoing past data
online will guarantee that the controller operates feasibly and continuously during the
rehabilitation tasks. Along with model parameters calculated throughout a specific horizon
with sub-space prediction, the model includes all model uncertainties associated with
the patient’s exoskeleton and measurement noises related to force and position. The use
of data-driven estimation methods and model-free control algorithms will improve the
effectiveness of studies with patients who can be evaluated in a wide range of spectrums as
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opposed to computing the model of a biomechanical structure, such as the human hand,
with conventional approximate methods.

4. Conclusions

In this work, a data-driven predictive control is developed for a hand exoskeleton robot
used for rehabilitation. The designed control rule was used in a set of experiments, and
the results were presented. The experiments are intended to examine how the parameters
affecting the suggested control algorithm influence the success of the control. A data-driven
predictive control algorithm is optimization-based and certain constraints are added to
the problem during the optimization process; it then suggests the best solution within the
boundaries set by those constraints. The rehabilitation process aims to regain the patient’s
lost mobility by having them perform repeated exercises that are suited to their situation.

In our experiments to evaluate the performance of the proposed control algorithm,
data length is investigated for subspace prediction, and it is expressed that, within a certain
range, data length was linearly related to modeling success. On the success of controlling
for the DDPC rule, the effects of the p, f, Nc, Q, and R parameters are examined and
discussed separately. When all the test results are evaluated, we can conclude that the
suggested solution is suitable for rehabilitation processes because it offers the best solutions,
while still considering some limitations.

It was shown that the exoskeleton controller operates in passive, active, and assistive
modes with the benefit of an auxiliary reference created using the measured external force.
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