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Abstract: The electrohysterogram (EHG) is the uterine muscle electromyogram recorded at the
abdominal surface of pregnant or non-pregnant woman. The maternal respiration electromyographic
signal (MR-EMG) is one of the most relevant interferences present in an EHG. Alvarez (Alv) waves are
components of the EHG that have been indicated as having the potential for preterm and term birth
prediction. The MR-EMG component in the EHG represents an issue, regarding Alv wave application
for pregnancy monitoring, for instance, in preterm birth prediction, a subject of great research interest.
Therefore, the Alv waves denoising method should be designed to include the interference MR-EMG
attenuation, without compromising the original waves. Adaptive filter properties make them suitable
for this task. However, selecting the optimal adaptive filter and its parameters is an important task
for the success of the filtering operation. In this work, an algorithm is presented for the automatic
adaptive filter and parameter selection using synthetic data. The filter selection pool comprised
sixteen candidates, from which, the Wiener, recursive least squares (RLS), householder recursive least
squares (HRLS), and QR-decomposition recursive least squares (QRD-RLS) were the best performers.
The optimized parameters were L = 2 (filter length) for all of them and λ = 1 (forgetting factor) for
the last three. The developed optimization algorithm may be of interest to other applications. The
optimized filters were applied to real data. The result was the attenuation of the MR-EMG in Alv
waves power. For the Wiener filter, power reductions for quartile 1, median, and quartile 3 were
found to be −16.74%, −20.32%, and −15.78%, respectively (p-value = 1.31 × 10−12).

Keywords: uterine electromyography; electrohystherography; alvarez waves; adaptive filters; pregnancy
monitoring; respiratory electromyography

1. Introduction

Premature birth, defined by the World Health Organization (WHO) as any birth
occurring before 37 completed weeks of gestation [1], carries significant risks for both
the mother’s and newborn’s health. According to reports provided by this entity, about
15 million premature births occur annually, of which, more than 1 million children die
each year due to its complications. Those who survive often face impairments that include
learning, visual, respiratory, and hearing deficiencies [2]. According to the same source,
prematurity is the leading cause of newborn death in the world and second leading cause
of death in all children. For all these reasons, the prediction of preterm births has been a
topic that has attracted researchers’ attention. Some risk factors for premature birth, such
as the previous history of preterm birth, ethnicity, low socio-economic status, maternal
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weight, smoking, and periodontal status, seem to play a minor role [3]. The majority of
spontaneous preterm deliveries occur in women with no identifiable risk factors for this
condition [4–6]. The pathophysiology of this condition is not completely understood [4].

To overcome these problems, recent studies have emerged [7–10] regarding the elec-
trohysterogram (EHG) potential for applications in preterm and term birth prediction. The
EHG, also called uterine electromyogram, consists of non-invasively recording the electrical
signal generated by the contractile activity of the uterus [11]. Additionally, the analysis
of this bioelectrical signal is useful for the general monitoring of uterine activity during
pregnancy. The EHG also contributes to advances in uterine electrophysiology [8].

The EHG signal includes noise from the maternal respiration electromyogram (MR-
EMG), motion artifacts, and maternal electrocardiogram (ECG), which affects the interpreta-
tion of the results. The MR-EMG signal present in the EHG is an outcome of the diaphragm
and skeletal muscle movements associated with the chest wall [12–14]. The MR-EMG signal
is a prevalent interference in the EHG, since its frequency band (from 0.20 to 0.34 Hz) [15,16]
overlaps with the frequency band of one of the most important components composing the
uterine signal, the Alvarez (Alv) waves, whose bandwidths range from 0.20 to 0.40 Hz [17].
According to this study, there are two subtypes of Alv waves: Alvarez low (AlvL) waves,
with peak frequencies between 0.2 and 0.3 Hz, and Alvarez high (AlvH) waves, with peaks
between 0.3 and 0.4 Hz. The correct identification and analysis of the Alv waves could be
of paramount importance in the prediction of preterm delivery. When interpreted with the
correct tools, EHG data incorporated into clinical algorithms could allow for better patient
risk-stratification and avoidance of unnecessary hospitalizations and tocolytic therapy, both
of which are not unharmful for patients.

Indeed, signal noise attenuation is an important issue in biomedical data analysis.
In this context, the application of classical filtering techniques is one of the widely used
options. However, when the bandwidth of the interference overlaps with the bandwidth
of the signal of interest, classical filtering techniques produce limited results, since, by
attenuating the noise, they also reduce the components of the signal of interest [18]. To
overcome this effect, adaptive filtering techniques have been considered a valid alternative,
since they may allow for the attenuation of the noise from the signal, while significantly
preserving the characteristics of the latter, even if both exhibit an overlap in the frequency
band. Another advantage of adaptive filters is the adaptation of their coefficients to the
varying characteristics of the noise [19,20]. However, this technique requires a robust noise
component estimation, i.e., the MR-EMG, in the study at hand. The respiration data used
in this work were calculated indirectly by the electrocardiogram-derived respiration (EDR)
algorithm applied to the maternal ECGs and retrieved from the EHGs of the considered
database in this work.

The first report of an EHG recording is from Otto Bode in 1931 [21]. The technique
has been evolving ever since, with contributions regarding signal processing and inter-
pretation of the EHG signal [22–27] for pregnancy monitoring. With this perspective, the
understanding of the EHG signal demands the study of its different components, including
the Alv waves.

Alv waves were firstly described by Alvarez and Caldeyro in 1950 as high-frequency,
low-amplitude waves reflecting myometrial contraction activity. The used signal was
obtained through a pressure sensor, placed invasively in the vicinity of the uterus [28]. In
recent times, Alv waves have become the subject of study, in the context of their possible
contribution to pregnancy monitoring and term or preterm birth prediction, with an
emphasis on the EHG as the used signal [8,17,29].

If, on the one hand, studies advocate that Alv waves can trigger the occurrence
of more synchronous contractions, with increasing intensity leading to term or preterm
labour [30–33]; on the other hand, other researchers support a non-causality relationship or
are skeptical about it [34,35]. The latter group is, however, the minority [29]. Regardless
of the methodology used to analyze Alv waves, a pre-processing noise attenuation step is
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required. Moreover, with Alv waves being low-amplitude events, noise contamination can
be exceedingly detrimental for the results of the downstream algorithms to be applied.

Given this, a denoising step is required to be applied to the EHG and specifically
designed to target the noise contamination that may affect Alv waves. Granted, this
denoising process will also improve the EHG, in general. As mentioned earlier in this
section, adaptive filters seem to be an appropriate technique for attenuating the MR-EMG
from the EHG, a requirement for the reasons presented above. So, the scope of the herein
presented work regards the application of adaptive filters for the task under study.

A survey was conducted focusing on the literature, concerning the adaptive filtering
applications to the EHG. Upon literature inspection, it was considered advantageous to
highlight the adaptive filtering publications in three categories, according to the follow-
ing criteria:

• Retrieval of the fECG [36–38];
• Maternal ECG, and electronic electromagnetic interferences attenuation [20,39];
• Pre-term and term prediction and signal-to-noise ratio improvement in the EHG [19,40].

Regarding the retrieval of the fECG, the comments are as follows: in 2011, Liu et al. [36]
presented an application of RLS and the normalized least mean squares (NLMS) adaptive
filters to the EHG. The goal of this study was to extract the fetal ECG (fECG) from the
collected abdominal signal, which contained both the mother’s and fetus’s ECG signals.
It was concluded that the RLS algorithm is a signal processing technique suitable for
fECG extraction. The parameters’ filter selection criteria were not disclosed, and neither
was the population under study. The paper seems to investigate the adaptive filters’
capability to detect the fECG in the EHG, as a proof of concept. In 2013, Khalaf et al. [37]
demonstrated that it was possible to obtain the fECG using the EHG. A combination
of a blind source separation method with adaptive filtering (LMS) attenuated the noise
arising from the maternal ECG. The parameter information was undisclosed. The studied
population included five subjects. Blind source separation techniques were combined with
adaptive filtering to attenuate the maternal ECG signal. Kahankova et al. [38] studied the
application of the RLS and fast transversal filter (FTF) algorithms to the EHG signal to
extract the fECG. The results demonstrated that the output of the RLS adaptive filter was
identical to the reference signal, which supported the hypothesis that this algorithm would
be advantageous for extracting the fECG from the EHG signal. A comparative analysis
with previously used adaptive filtering algorithms was performed, which demonstrated
that the standard RLS algorithm significantly outperforms the remaining tested methods.
Synthetic data were used for parameter optimization using a grid of values. The authors
suggest using real data in future works. These studies highlight the RLS filter as the best
performer, except for Khalaf et al., where the LMS was used, along with independent
components analysis (ICA) techniques. In this last study, a comparison between the LMS
and other filter architectures seemed not to have been performed. Additionally, the authors
reported a successful retrieval of the fECG and, consequently, adequate attenuation of the
maternal ECG.

Regarding the maternal ECG and electronic electromagnetic interferences attenuation,
the comments were as follows. In 2016, Limem et al. [20] looked into the efficiency of
using the LMS and RLS algorithms for noise attenuation from the EHG signals, using the
simulations performed via the MATLAB® and Simulink® platforms. The filter parameters
were undisclosed. Four subjects were under study. The adaptive filter results were com-
pared with the band-pass and wavelet filters. In a more recent study [39], in 2019, the same
research group validated the previous results. Similar to the aforementioned studies, the
RLS was the best performer for the task under study.

Concerning pre-term and term predictions and signal-to-noise ratio improvement in
the EHG, the comments are as follows. J. Terrien et al. [19] used adaptive filters, namely
least mean squares (LMS) and recursive least squares (RLS) to increase the signal-to-noise
ratio in the monopolar EHG. Afterward, he compared the results with those using the
Laplacian filter and concluded that the RLS filtering algorithm provides a higher signal-
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to-noise ratio than the LMS method or Laplacian filter. An accurate parameter selection is
deemed to be a future work task, as well as the need to include a higher number of uterine
contractions. This was a forerunner work, regarding EHG and adaptive filters. On the other
hand, Smrdel et al. [40] used adaptive autoregression as one of the methods to estimate the
spectrograms of the EHG signal. The goal was to separate and classify the delivery date
as term or preterm. A set of filter parameters were tested. Frequency bands up to 4 Hz
were under investigation. The study raises the possibility of pre-term delivery prediction
from as early as the 23rd gestational week. These two studies highlight the RLS filter as
a competent method to generally denoise the EHG; although, the second study did not
include the exploration of other adaptive filter configurations.

Despite the following study not using the EHG, it is still a contribution to the pregnancy
monitoring field. Cardiotocography was used, instead of the EHG. Huiling Tong et al., in
2017, presented a study regarding the application of adaptive filters to the intrapartum
cardiotocography method for fetal monitoring [41]. Three adaptive filtering algorithms
were used for the fetal monitoring system’s automated analysis. The proposed algorithms
outperformed the classical filtering method for recognizing uterine contractions. It was
observed that adaptive filtering provided the highest performance, compared with the two
classical algorithms. A dedicated user interface was developed in Matlab®.

Table 1 provides detailed information about the aforementioned studies. Outside of
the context of the EHG, adaptive filters have been used to attenuate noise in other types
of biomedical signals, such as the ECG [42,43], shoulder and neck electromyogram [44],
electroencephalogram [45], and electrogastrogram [46].

Table 1. State of the art regarding adaptive filters applied to the EHG.

Authors and
Year

Purpose of the
Work

Reference
Signal Filters Parameters and Data Results and Observations

Jérémy
Terrien et al.,
2007 [19]

Exploring the
performance of RLS
and LMS adaptive
filters as a
preprocessing
technique for
monopolar EHG
signals. The used
metric was the
signal-to-noise ratio.

Average of
the four
vertical EHG
monopolar
channels

RLS and LMS
(adaptive) and
Laplacian
(non-adaptive)

fs = 200 Hz;
ε = 0.001;
λ = 1;
µ = 0.1;
L = (4,8,12,16,20,24,28,32,36,40,48,56).
Measurements were performed by a
16-channel physiological signal
recorder. The sample was from two
women in spontaneous labour
(37 and 39 weeks).

• Contractions’ segmentation was
performed manually.

• The RLS filter provides a higher
signal-to-noise ratio than the LMS
filter.

• The RLS filter is less sensitive to the
filter order than the LMS filter.

• The highest signal-to-noise ratio was
obtained for an RLS filter of order 4.

• For the LMS filter, the
signal-to-noise ratio gets worse as
the filter order increases.

• Statistical analysis: there are no
differences between the results
obtained by the RLS and Laplacian
filters.

• Qualitative analysis: the RLS
algorithm results have a higher
signal-to-noise ratio than the
Laplacian filter.

• RLS adaptive filtering shows the
best results when applied to the
monopolar EHG.

Shi-jin Liu
et al.,
2011 [36]

Maternal ECG signal
attenuation,
followed by fECG
extraction using
adaptive filtering
algorithms (RLS and
NLMS).

Maternal
ECG

RLS and NLMS
(adaptive)

fs = 500 Hz;
λ = 0.98;
µ = 0.16;
L = 4;
σ = 0.001.
The used data corresponds to real
signals. They were recorded by
placing skin electrodes on the
abdominal region. Each signal
contains 4000 sampling points.

• The RLS algorithm is more robust
than the NLMS method and
converges faster.

• The RLS algorithm is one of the
signal processing techniques
suitable for fECG extraction.
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Table 1. Cont.

Authors and
Year

Purpose of the
Work

Reference
Signal Filters Parameters and Data Results and Observations

Jamila Khalaf
et al.,
2013 [37]

Directly retrieves the
fECG from the
composite signals,
without using the
maternal ECG
reference signal.

ICA
estimation of
the maternal
ECG

LMS (adaptive)
and bandpass
filter between
1 and 150 Hz
(non-adaptive)

fs = 1 kHz.
Parameters’ information was
undisclosed.
Clinical data pool: abdominal
surface recordings from five women
between 38 to 41 weeks of gestation,
collected during labour.
Each data set comprises six different
signals: four composite signals
through four electrodes. A direct
fECG recorded from the fetal scalp
was used for correlation analysis.

• All recordings were bandpass
filtered between 1 and 150 Hz and
then normalized by the standard
deviation.

• The ICA technique was used.
• It was possible to attenuate the

maternal ECG signal to obtain only
the fECG by combining a blind
source separation technique with
adaptive filtering.

Ales Smrdel
et al.,
2015 [40]

Prediction and
classification of EHG
term and pre-term
recordings.

Undisclosed RLS (adaptive)

fs = 20 Hz;
λ = 0.9995;
L = 12.
Several parameters were tested, and
the best performer was presented.
Data pool: term–preterm EHG
(TP-EHG) database (300 recordings).

• A sample entropy technique was
additionally used.

• In the power spectra of the signals
that correspond to term births, the
peaks appear in the frequency band
up to 1 Hz.

• Premature birth recordings show
spectral peaks that are less
prominent and appear below 1 Hz

• Both recordings’ types present peaks
around the frequencies of 3 and
4 Hz.

Manel
Limem et al.,
2016 [20]

Attenuation of the
electronic
electromagnetic and
ECG maternal
interferences present
in the EHG, using
the adaptive filter
algorithms.
Comparing the
results of the
adaptive filtering
methods with the
wavelet transform
and bandpass filter.

The uterine
electromyog-
raphy signal
was
combined
with random
noise

LMS and RLS
(adaptive) and
bandpass filter
between 0.34 and
1 Hz and discrete
wavelet
transform: db4
(non-adaptive)

Filter parameters undisclosed.
Four EHG signals from the TP-EHG
database were used.

• The RLS filter provides better results
regarding noise attenuation in
uterine electromyography.

• RLS and LMS filters were compared
with bandpass filtering and wavelet
transform methods through the
values of the signal-to-noise ratio.

• The RLS algorithm provides a better
signal-to-noise ratio.

Kahankova
et al.,
2017 [38]

Extracting the fECG
from the EHG signal
using some finite
impulse response
(FIR) adaptive filters,
based on the RLS
algorithm.
Evaluation of the
filter’s performance.

Maternal
ECG

RLS and FTF
(adaptive)

RLS (λ = 1; L = 30);
FTF (L = 15; δ = 0.01).
These parameters were optimized for
the used synthetic data.

• RLS algorithm outperforms the FTF.
• The FTF algorithm is unstable and,

therefore, not suitable for extracting
the fECG.

• The RLS filter is a more robust
algorithm for the application.

• A grid of parameters was tested for
optimization.

fs: sampling frequency; ε: smoothing factor; λ: forgetting factor; µ: step size; L: filter length; σ: low positive
constant; δ: soft constraint initialization factor.

Despite the wide applicability of adaptive filters in the noise attenuation of biomedical
signals, so far, to the best of the authors’ knowledge, the herein presented study is the first
endeavour, regarding MR-EMG reduction in the EHG for improved Alv waves retrieval.
The performance of adaptive filters, in turn, depends on the choice of their parameters at
the time of implementation. This is one of the main challenges in the adaptive filtering
context. Often, the selection of parameters is achieved based on previous studies. Thus,
the propagation of parameter values that are not optimized for the application under
study may occur. In the herein presented work, an automatic optimization process for
adaptive filtering parameters’ selection is presented, regarding the application under study.
This optimization process includes the selection of the best-performing adaptive filter
architectures amongst a pool of 16 possibilities. This innovative approach can be used in
other adaptive filter applications for noise attenuation, namely in the biomedical field. The
next step is the application of the optimized filters to the real EHG signals.

As mentioned earlier, Alv waves have been pointed out as crucial components with
the potential for term and pre-term birth prediction. If Alv waves are contaminated with
maternal respiration, this may compromise its possible use as a tool to predict term or
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pre-term labour. Additionally, medical decision-making, regarding tocolytic therapy, whose
side effects must be considered, can potentially benefit from Alv waves signal integrity,
which will improve with the application of adaptive filtering.

2. Materials and Methods
2.1. Generation of Synthetic Data

The exploration and evaluation of adaptive filters will be performed using both
synthetic and real data. The need for using synthetic signals can be explained as follows:

• In real-life signals, for non-invasive acquisition systems, the Alv waves are substan-
tially contaminated with MR-EMG interference. Therefore, it is not possible, in this
case, to have the pure Alv waves, unless invasive electrodes are placed directly on the
uterine muscle. However, this procedure may raise ethical concerns in most situations
and, therefore, it is not practical.

• The aforementioned fact prevents an accurate filter and parameters optimization,
regarding MR-EMG attenuation.

• Hence, the need to use analytically defined signals for the MR-EMG and Alv waves,
which can only be achieved using synthetic data.

• These synthetic signals should be generated using features and properties as close as
possible to the corresponding real data.

Concerning the breathing signal pattern, it is known that the respiratory signal de-
pends on the physiological and pathological parameters of each subject and their physical
activity at the time of the EHG signal acquisition (talking, chewing and swallowing, cough-
ing, normal sleep, and sleep with apnea, amongst others). Thus, in this work, three
situations were simulated, all with the respiratory signal covering the entire frequency
band that is established as being typical of the majority of the population: 0.2 to 0.34 Hz [15].
Three respiratory signals were simulated:

• Smooth (chirp) breathing variation: a linear variation between temporal and frequency
limits, from slow to fast breathing. The study for this case will be designated as the
first simulation.

• Breathing variation in a triangular wave shape from smooth to fast in 250 seconds for
eight cycles. The study for this case will be referred to as the second simulation.

• Random variation of the breathing regime in the previously mentioned band. The
study for this case will be referred to as the third simulation.

The Alv waves atoms will be simulated according to the results presented in [9].
The parameters for these cases will be based on the central frequency (f_atom), fractional
bandwidth (fract_bw), and fractional bandwidth reference level (fract_bw_r), which adopts
the default value of −6 dB and pulse envelope level (pulse_level) corresponding to −60 dB.
The −60 dB for the pulse envelope level was chosen because it allows for a time duration
that approximates the empirical values.

The central time, which is the location of the Alv atoms in the EHG signal, was selected
to achieve overlap with the respiration signal. This corresponds to the worst-case scenario
for testing the adaptive filters.

Figure 1 shows the normalized power spectral density for the AlvL and AlvH (solid
line) and their simulated versions (dotted line). The bandwidth has been reduced to
separate the multiple Alv contributions in the frequency marginals. This subject will be
explained further ahead.

The simulated Alv and respiratory signals were added up. A white noise component
was also included.

Figure 2 represents the obtained signals and respective spectrograms for the three
simulated cases. In the chirp and triangular respiration cases, it is possible to observe a time
and frequency overlap between this signal and Alv atoms. This is considered to challenge
the adaptive filters, regarding attenuating respiration and keeping the atoms.
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eight Alv waves (third and fourth subfigures), and random wave respiration and three Alv waves
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Table 2. Parameters for the simulated Alv waves.

Simulation Type Bandwidth (Hz) Central Frequency (Hz) Central Time (s)

First simulation 0.02
0.2500 1000
0.3500 3000

Second simulation 0.02

0.2084 500
0.3415 1250
0.2622 1604
0.2622 1896
0.3043 2173
0.3043 2327
0.3415 2750
0.2084 3000

Third simulation 0.02
0.2500 1000
0.3000 2000
0.3500 3000

2.2. Adaptive Filters and Parameters Optimization and Selection

For non-stationary signals, whose instantaneous frequency and bandwidth vary in
time, classical filters may not be the optimal solution, since the filter parameters are set
a priori. In this case, the use of a digital filter capable of readjusting its parameters as
time progresses, according to the characteristics of the input signal, is a better solution.
These filters are called adaptive filters. One important application of adaptive filters is
noise control, which is the subject of the herein presented work. As seen in Figure 3, the
input signal is often designated as the desired signal d(n), and it contains the clean signal
s(n) added to the noise component N(n). An estimation of the interference signal, x(n),
which should ideally be similar to N(n), must be present. The value n is the discrete sample.
The adaptive filter block output y(n) is an estimation of N(n), which will be, in the next
block, subtracted from the desired signal to produce the e(n) output, also called the error
signal [47]. The subtractor block is what makes the adaptive filter special, since the removal
of the offending interference is performed through a subtraction operation, in contrast with
the classical filters’ convolutional algorithms.
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Figure 3. Block diagram for an adaptive filter working as a noise reduction system. Adapted
from [47].

The following adaptive filters have been tested: least mean squares (LMS), normal-
ized least mean squares (NLMS), frequency domain adaptive filter (FDAF), block least
mean squares (BLMS), filtered-X least mean square (FXLMS), sign-error least mean squares
(SELMS), sign–data least mean squares (SDLMS), sign–sign least mean squares (SSLMS),
least-squares lattice (LSL), fast transversal filter (FTF), recursive least squares (RLS), house-
holder recursive least squares (HRLS), sliding-window recursive least squares (SWRLS),
householder sliding-window recursive least squares (HSWRLS), QR-decomposition recur-
sive least squares (QRD-RLS), and Wiener. The selection criterium was to be as comprehen-
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sive as possible, considering the computational platform and time planning. Additionally,
the code availability and confidence for the selected filters were taken into consideration,
and the adaptive filters found in the literature survey for biomedical applications were also
considered whenever possible.

For each adaptive filter, a set of parameters should be selected. Often, the authors do
not justify their selection criteria. Additionally, frequently, the used parameters’ justification
is presented as an inheritance from previous similar studies. In the latter case, there is a
risk of non-optimal parameter propagation. Additionally, parameters used for a particular
biomedical signal may not be optimized for another one or, indeed, a different framework.
In this study, an effort was made to obtain the optimal parameters for all the sixteen tested
adaptive filters applied for the maternal respiration interference reduction in the Alv waves
contained in the EHG. Additionally, the best performer adaptive filters are quantitatively
identified amongst the sixteen candidates.

The used metric was the root mean square error (RMSE) between the EHG, with
original simulated Alv waves (without noise component), and output of the filter, where
the noise respiration signal (MR-EMG) was the chirp, triangular, or random waveshape, as
seen in Figure 2.

The flowchart depicting the overall methodology in this work is presented in Figure 4,
where blue and green blocks correspond to the synthetic data analysis; yellow and red
refer to the real data application. In the top blocks, and after the simulated data generator,
the optimal regions for L, µ, and λ are obtained for the fourteen adaptive filters. The best
exploratory region is the first step for a coarse determination of the optimal parameters.
The operation for this involves finding the minimum value in the tridimensional surface
representing the RMSE variation, due to filter parameters’ different values. Figure 5 shows
this operation, as performed for the LMS filter. The coarse determination of the optimal
region, for the L and µ LMS filter values, for the third simulation signal, is represented by
the red pin. In the flowchart, for each filter and each simulated signal, a tridimensional
surface is obtained. In total, 42 surfaces are accounted for. The computational burden of this
operation is significant, and this requires widening the sampling intervals of the parameters
under testing. This strategy leads to the need for a second step for the fine-tuning of the
mentioned parameters. Overall, this two-step strategy allows for substantial savings in the
computational execution time. This approach was applied to the sixteen adaptive filters and
three simulated signals. The fine-tuning operation was performed by finding the minimum
RMSE, using a reduced interval in the tested parameters, which allows for testing a higher
number of combinations, without incurring excess computational execution time.

The next step is the selection of the best-performing adaptive filters amongst the
sixteen studied options. The best-performing adaptive filters will produce the lower RMSE
in the majority of the three simulation cases (majority criteria). It turns out that the best
performer was the Wiener filter. Given that the real-time implementation of this filter may
be, in certain applications, a challenging task, it was decided to score the second-best filter.
In this study, three filters break even in second place: RLS, HRLS, and QRD-RLS. In the
following step, two outcomes are possible:

• For each filter, if one of the parameters is equally valued in the three simulated cases,
it will be selected.

• For each filter, one of the parameters is different for at least two simulation cases.
In this case, the parameter corresponding to the second simulation is selected. This
corresponds to the worst-case scenario, since this simulated signal contains abrupt
changes that are challenging for the adaptive filters.

At this point, the description of the algorithms involving simulated data in the
flowchart in Figure 4 is complete.
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2.3. Application of the Selected Filters to Real Data

For the real data, the Iceland Uterine Electromyography database [48] was used. It
comprises 123 EHG recordings from 45 pregnant subjects. The EHG was collected non-
invasively from the abdominal surface, with a sampling frequency of 200 Hz. Sixteen (4 × 4)
acquisition channels were used. The gestational age at delivery was 39.76 ± 1.40 weeks
(mean ± standard deviation).

Alv waves dataset from previous work was available, for which they have been
automatically detected in the EHG [17]. These components were identified in bipolar
channels, shown in Figure 6, where the 4 × 4 Icelandic database electrode structure was
represented.

After selecting the four best performance adaptive filters for the reduction of the
respiratory signal in the EHG and, consequently, in the Alv waves, as has been explained in
previous sections, the next step was to apply these selected filters to the Icelandic EHG data.

It should be emphasized that this step of the work was not about validating the
previously executed filter selection or the parameters. As mentioned before, that operation
should be performed with simulated data, where the pure and noise signal components
are known beforehand, which is only possible with synthetic data.

In this section, the effect of the selected adaptive filters in real data will be explored,
namely in the Alv waves. The following features will be included in the study, regarding
comparing the periodograms of filtered Alv waves with the non-filtered:

• Bandwidth (bw) defined as the frequency band that contains 75% of the energy of each
Alv wave, Hz.

• Bandwidth low frequency bound (flo), Hz.
• Bandwidth high frequency bound (fhi), Hz.
• Signal power in the occupied bandwidth (power), Watt.
• Amplitude peak (peak), V.
• The frequency corresponding to the amplitude peak (freq_peak), Hz.

The rationale for using the Welch periodogram for Alv waves analysis is described
in [17]. The flowchart in Figure 7 highlights the methodology in this section.

For the real data, the respiration signal was obtained through the application of the
EDR method to the maternal ECG [49], followed by a post-processing step that includes
outlier removal and wavelet filtering between 0.20–0.34 Hz. The used EDR technique
produced a signal that was an interpolated time series of the QRS areas in maternal
ECG. This requires normalization and rescaling to realistic interference levels. A z-core
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normalization was applied in the first step, followed by a rescaling using the EHG standard
deviation and a division by four. The maternal ECG data was retrieved from the current
EHG electrodes. This signal was used as the estimated interference to be input to the
adaptive filters. A significant fact here is that the estimation was not obtained from an
extra sensor.
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In this work, for each recording, the bipolar channel with a higher number of Alv
waves was selected to improve statistical validation. Since it has been reported that
bipolarity can reduce the respiratory component in the EHG [11], a decision was made to
apply the adaptive filters to the monopolar channels arising from the respective bipolar
arrangement. This was followed by returning the filtered monopolar channels to the
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corresponding bipolar arrangement. This last step was mandatory, since the original Alv
waves were detected in bipolar channels.

Statistical Validation Method

In the following step, statistical validation was performed, regarding the above fea-
tures, to understand how the optimal adaptive filters modify the original Alv waves. For
each feature, the mean value of the raw signal was compared with its filtered version by
performing the following two bilateral tests:

H1
0 : µFeaturei(raw signal) = µFeaturei(Wiener f ilter)

vs.
H1

1 : µFeaturei(raw signal) 6= µFeaturei(Wiener f ilter)

H2
0 : µFeaturei(raw signal) = µFeaturei(RLS,HRLS,QRD−RLS)

vs.
H2

1 : µFeaturei(raw signal) 6= µFeaturei(RLS,HRLS,QRD−RLS)

where

• µFeaturei(raw signal) represents the mean value of the raw signal,
• µFeaturei(Wiener f ilter) is the mean value of the outputs of the Wiener filter,
• µFeaturei(RLS,HRLS,QRD−RLS) is the mean value of the output of RLS/HRLS/QRD-RLS

filters, for the i-th feature (i = 1, . . . , 6).

The superscripts in the null and alternative hypotheses H j
0, H j

1, j = 1,2, distinguish
between the comparison of the raw signal with the Wiener and RLS/HRLS/ QRD-RLS
filtered signals, respectively.

To carry out the above hypotheses testing, paired z-tests were performed; therefore,
no distributional assumptions were made to the underlying populations [51]. The p-values
were adjusted by the Bonferroni procedure, since there are two hypotheses for each feature.
Let pj

i , j = 1,2 denote the unadjusted p-value of the j-th hypothesis testing for the i-th feature;

then, the Bonferroni adjusted p-value is given by pj
Bon f , i = min{1, kpj

i}, j = 1,2, where k is
the number of hypotheses under study, which, in this work, is k = 2 [52,53].

3. Results
3.1. Application to Synthetic Data

In the first run, the boundaries and steps for the filter parameters were established
empirically, with the following constraint: A minimum would have to be present in RMSE
values of the surface plot, whose independent variables are the parameters, as seen in
Figure 5 and Section 2.2. Table 3 summarizes the initial values that will be the seed for the
remaining algorithms.

The next step is to input these seed values to build a three-dimensional plot, where
the interest optimal region was defined as the area around the minimum in the surface
plot. This minimum corresponded to the lowest RMSE value on this surface. This is
illustrated in the first line of the flowchart in Figure 4. However, the Wiener filter was
not coarse optimized, since it depends on one parameter only, L. For the FTF filter, it is
recommended that the λ value be within the [1–0.5/L, 1] interval, so the coarse optimization
was also skipped.

Fine-tuning was then applied to the interest region to obtain optimal values for L, µ,
and λ for each filter and simulation type. Table 4 summarizes the optimized values for three
simulation signals and each adaptive filter. Using the optimized parameters in Table 4, for
the three simulation signals and the sixteen filters, the RMSE error was obtained between
the pure EHG and filtered one. The results are shown in Table 5, with Figure 8 being the
corresponding pictorial representation.
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Table 3. Parameters’ limits and steps that ensured an RMSE minimum in the surface plot for the
second simulation data.

L µ λ

Filter Min Max Step Min Max Step Min Max Step

LMS 2 20 2 0.0 10.0 0.5 - - -

NLMS 2 20 2 0.0+ 2.0 0.5 - - -

FDAF 2 20 2 0.0+ 1.0 0.2 - - -

BLMS 2 20 2 0.0 10.0 0.5 - - -

FXLMS 2 20 2 0.0 10.0 0.5 - - -

SELMS 2 20 2 0.0 10.0 0.5 - - -

SDLMS 2 20 2 0.0 3.0 0.5 - - -

SSLMS 2 20 2 0.0 5.0 0.5 - - -

LSL 5 100 5 - - - 0.10 1.00 0.10

RLS 2 20 2 - - - 0.95 1.00 0.01

HRLS 2 20 2 - - - 0.40 1.00 0.10

SWRLS 2 20 2 - - - 0.95 1.00 0.01

HSWRLS 2 20 2 - - - 0.20 1.00 0.10

QRD-RLS 2 20 2 - - - 0.10 1.00 0.10

Table 4. Optimized (after fine-tuning) parameters for the three simulation cases.

Filter Sim. Type L µ λ Filter Sim. Type L µ λ

LMS
1st Sim. 2 4.80

- FTF
1st Sim. 2

-
0.99

2nd Sim. 2 0.70 2nd Sim. 11 1.00
3rd Sim. 4 3.70 3rd Sim. 2 0.98

NLMS
1st Sim. 11 0.05

- LSL
1st Sim. 6

-
1.00

2nd Sim. 2 0.05 2nd Sim. 3 1.00
3rd Sim. 4 0.05 3rd Sim. 33 1.00

FDAF
1st Sim. 16 0.10

- RLS
1st Sim. 2

-
1.00

2nd Sim. 10 0.10 2nd Sim. 2 1.00
3rd Sim. 13 0.10 3rd Sim. 2 1.00

BLMS
1st Sim. 2 4.60

- HRLS
1st Sim. 2

-
1.00

2nd Sim. 2 0.70 2nd Sim. 2 1.00
3rd Sim. 4 3.50 3rd Sim. 2 1.00

FXLMS
1st Sim. 7 1.70

- SWRLS
1st Sim. 2

-
1.00

2nd Sim. 6 0.20 2nd Sim. 2 1.00
3rd Sim. 10 2.50 3rd Sim. 2 1.00

SELMS
1st Sim. 2 0.15

- HSWRLS
1st Sim. 2

-
1.00

2nd Sim. 2 0.05 2nd Sim. 2 1.00
3rd Sim. 2 0.20 3rd Sim. 2 1.00

SDLMS
1st Sim. 2 0.10

- QRD-RLS
1st Sim. 2

-
1.00

2nd Sim. 2 0.05 2nd Sim. 2 1.00
3rd Sim. 4 0.05 3rd Sim. 2 1.00

SSLMS
1st Sim. 2 0.05

- Wiener
1st Sim. 2

- -2nd Sim. 2 0.05 2nd Sim. 2
3rd Sim. 2 0.05 3rd Sim. 2
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Table 5. RMSE between EHG pure signal and filtered one for the three simulation cases. The blue
cells correspond to the best-performer filters/parameters in each simulation.

Filters First Simulation
Signals

Second Simulation
Signals

Third Simulation
Signals

LMS 4. 29 × 10−3 8. 85 × 10−3 3. 44 × 10−3

NLMS 8. 80 × 10−3 2. 56 × 10−2 1. 35 × 10−2

FDAF 7. 85 × 10−3 1. 30 × 10−2 4. 78 × 10−3

BLMS 4. 34 × 10−3 8. 90 × 10−3 3. 52 × 10−3

FXLMS 5. 21 × 10−3 1. 56 × 10−2 6. 92 × 10−3

SELMS 2. 81 × 10−3 4. 60 × 10−3 1. 49 × 10−3

SDLMS 4. 09 × 10−3 1. 02 × 10−2 3. 66 × 10−3

SSLMS 6. 35 × 10−3 1. 97 × 10−2 7. 24 × 10−3

FTF 4. 89 × 10−3 1. 19 × 10−2 3. 95 × 10−3

LSL 5. 96 × 10−3 6. 55 × 10−3 5. 00 × 10−3

RLS 2. 01 × 10−3 5. 18 × 10−3 1. 25 × 10−3

HRLS 2. 01 × 10−3 5. 18 × 10−3 1. 25 × 10−3

SWRLS 7. 21 × 10−3 2. 59 × 10−2 9. 31 × 10−3

HSWRLS 7. 21 × 10−3 2. 59 × 10−2 9. 31 × 10−3

QRD-RLS 2. 01 × 10−3 5. 18 × 10−3 1. 25 × 10−3

Wiener 1. 60 × 10−3 3. 21 × 10−3 6. 87 × 10−4

Mean Error 4. 79 × 10−3 1. 22 × 10−2 4. 79 × 10−3
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Figure 8. Representation of RMSE values in Table 5.

The lowest RMSE in the majority of the simulation cases is the criterium for optimal
filter selection. In Table 5 (blue cells correspond to low RMSE values), the following
comments apply:

• The lowest RMSE for the three simulation signals corresponded to the Wiener filter.
This filter implementation may be challenging for certain real-time applications. Hence,
the need to score other filters.

• In the first and third simulations, the lowest RMSE values corresponded to the RLS;
HRLS and QRD-RLS tied.

• Since the lowest RMSE value of the second simulation corresponded to the SELMS
and, using a majority criterion, the winners after the Wiener filter were: RLS, HRLS,
and QRD-RLS alike.
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For the Wiener, RLS, HRLS, and QRD-RLS filters, the optimal parameters for the
three simulation cases were identical (L = 2 for all of them and λ = 1 for the RLS, HRLS,
and QRD-RLS). If the parameters were different, the criterium would be to select those
corresponding to the second simulation case, which is considered the worst-case scenario,
regarding the respiration signal.

Figure 9 summarizes the input and output for the RLS and Wiener filters for the second
simulation case. For further explanation regarding this figure, please refer to its caption.
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Figure 9. In the first subplot: representation of the EHG signal with eight Alv atoms (red) and filtered
output for Wiener (green) and RLS (blue) filters. The filtered Alv atoms are shown in green and
blue (practically overlapped). Second subplot: the time-frequency representation of the EHG signal
containing the respiration interference and eighth Alv atoms, which are visible and purposedly
placed over the respiration signal. Third subplot: output of the RLS filter, where the respiration signal
is attenuated and Alv waves are well-preserved. The blue arrows represent two cases, where the
amplitude of the filtered Alv atoms increased after filtering (note the darker atoms’ color). This reveals
a counter-phase relation between the respiratory signal and Alv waves in the original signal. Fourth
subplot: output of the Wiener filter, where a further attenuation of the respiratory component can be
observed. This is consistent with the obtained result, whereas the Wiener filter is the best performer.
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The frequency marginal, which is represented in Figure 10, is herein used for qualita-
tive analysis only, since a quantitative metric using this data would be negatively affected
by the fact that this representation arises from a projection of the signal into the time-
frequency domain that may not respect their ideal properties, such as time support and
total energy. Further insight regarding the frequency marginals is provided in the caption
of Figure 10.
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Figure 10. Frequency marginals for the second simulation data. The analysis should be performed,
relative to the EHG + resp (red dash) and pure EHG (blue) curves. The best-performing filter output
using the marginal criterium should approach the pure EHG curve. In that respect, the best and worst
performers are the Wiener and HSWRLS filters, respectively. The RLS/HRLS/QRD-RLS filters are
the second-best performers after the Wiener. The LMS filter performs below the RLS/HRLS/QRD-
RLS filters.

3.2. Application to Real Data

Using the bipolar montage to reduce respiratory interference should be performed
with caution, since the reverse outcome can happen. Figure 11 depicts a case where
bipolarity led to the amplitude enhancement of the respiratory interference. This can be
explained by the counter-phase respiratory signals in each of the monopolar electrodes,
possibly generated by certain patterns of respiratory muscle movements. This behavior has
been observed in several EHG recordings of the database in use.

Figure 12 represents an example of the application of the Wiener filter to a real EHG
recording retrieved from the used dataset. There are 75 Alv waves in this signal. For
readability reasons, only 11 are represented, in purple colour. The time-frequency plots
allow for the observation of the filter impact, leading to the attenuation of the MR-EMG.
For further details, please refer to the Figure 12 caption.

Figure 13 represents the original Alv waves for the bipolar channel 9 EHG recordings.
It is possible to compare the original version of the waves (blue dash) with the output of
different filters (see caption for details). The 1st, 10th, and 11th subplots, horizontally-wise,
depict the cases where the filtered signal amplitudes are above the original Alv waves. This
indicates a counter-phase effect between the Alv waves and MR-EMG. The 3rd, 4th, and
9th subplots represent the reverse situation, indicating that Alv waves and the MR-EMG
are in-phase. In Figure 14, the Welch periodograms of the above waves are illustrated, for
which the comments presented in Figure 13 apply, regarding the relative amplitudes of
these frequency representations. For example, the last two Alv waves (horizontally wise)
in Figures 12 and 13 show the following trend: the output of the Wiener filter produces a
higher amplitude signal and, consequently, higher amplitude periodogram, compared to
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the non-filtered Alv. In classical theory, digital filters designed without a gain feature are
not, generally, supposed to display this behavior, which is, however, in many instances,
observed in this study, from which the above-mentioned Alv waves are just an example.
The frequency marginals presented in Figure 15 are a helpful tool for understanding this
behavior. Please see the figure caption for more details.
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Figure 11. Illustration of how bipolar channels may enhance the respiratory signal, instead of
reducing it. This can be explained by counter-phase respiratory signals in each of the monopolar
electrodes, possibly generated by certain patterns of respiratory muscle movements.

Figure 16 illustrates the boxplots for the Alv waves before (non-filtered) and after
being filtered by the Wiener, RLS, HRLS, and QRD-RLS filters. All the filtered boxplots
show a decrease in the power of the filtered periodograms. For details, please see the figure
caption. For the other five features, similar boxplots are also available. However, to restrain
this document length, a table with the general result is otherwise presented.

Table 6 represents the features’ variation between non-filtered Alv waves and their
versions after adaptive filtering for respiration attenuation in real data.
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scalograms are obtained using the cmor-25-1 wavelet [11]. 

Figure 12. The first subplot represents a real EHG recording, where 75 Alv have been detected. For
readability reasons, only 11 Alv waves are represented, in purple. The vertical lines represent their
boundaries. The green line represents the Wiener EHG filtered signal, and the pink line is the signal
difference. The second subplot represents the EDR estimation respiratory signal. The third subplot
represents the scalogram of the EHG signal, where the respiratory component is present, overlapped
with Alv waves. In the fourth subplot, which represents the scalogram for the Wiener filter, it was
observed that the respiratory signal has been substantially reduced. Regarding Alv waves, two
behaviors are present the yellow arrows represent cases where Alv waves amplitude increased after
filtering and otherwise (blue arrows). This reveals, in the first case, that the respiratory signal and
Alv waves are in a counter-phase, whereas, in the second case, they are in phase. The fifth subplot
represents the scalogram for the EDR estimated respiratory signal. The scalograms are obtained using
the cmor-25-1 wavelet [11].
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Figure 13. Eleven real-life Alv waves in the time domain (blue dash) from one EHG recording of
bipolar channel 9. The filtered versions for the Wiener (red), RLS (pink), HRLS (cyan), and QRD-RLS
(black) are shown. The last three are overlapped.
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Figure 14. Welch periodograms for the 11 real-life Alv waves presented in Figure 13. Each plot
represents the unfiltered Alv waves (black) and filtered ones by Wiener (blue), RLS (green), HRLS
(brown), and QRD-RLS (pink) filters. The last three are overlapped.
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(red), RLS (brown), HRLS (pink), and QRD-RLS (cyan). The number of Alv waves included in this 
computation was 75. The last three marginal curves are overlapped. For the Wiener filter (red), it 
was observed that, for frequencies under 0.29 Hz, the filtered output has an amplitude below the 
input EHG (blue), whereas, above this frequency, an amplitude increase relative to the blue line is 
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signal and estimated noise filter output; in the second case, a counter-phase subtraction occurred. 
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Figure 15. A frequency marginal example for an EHG recording (blue) and filtered EHG: Wiener
(red), RLS (brown), HRLS (pink), and QRD-RLS (cyan). The number of Alv waves included in this
computation was 75. The last three marginal curves are overlapped. For the Wiener filter (red), it
was observed that, for frequencies under 0.29 Hz, the filtered output has an amplitude below the
input EHG (blue), whereas, above this frequency, an amplitude increase relative to the blue line is
registered. This means that, in the first case, there was an in-phase subtraction between the EHG
signal and estimated noise filter output; in the second case, a counter-phase subtraction occurred.
The two side plots explain this behaviour using sinusoidal waves.

Table 6. Features’ variation between non-filtered Alv waves and their versions after adaptive filtering
for respiration attenuation in real data.

Filters Statistical
Parameters

Features Variation Relative to the Non-Filtered Alv

∆bw (%) ∆flo (%) ∆fhi (%) ∆power (%) ∆peak (%) ∆freq_peak (%)

Wiener

Quartile 1 10.88 −7.82 4.71 −16.74 −28.96 −4.84

Median 11.18 −7.09 3.63 −20.32 −25.39 −2.94

Quartile 3 11.40 −5.52 3.86 −15.78 −18.64 0.00

Mean 11.42 −6.54 4.03 −26.82 −35.45 −2.94

p-value 1.20 × 10−45 0.00 2.46 × 10−28 1.31 × 10−12 4.11 × 10−13 1.19 × 10−8

RLS
HRLS

QRD-RLS

Quartile 1 2.87 −4.34 1.83 −7.48 −13.74 −3.22

Median 4.35 −2.41 1.83 −9.81 −14.77 −1.47

Quartile 3 5.31 −1.95 1.62 −8.26 −7.11 0.00

Mean 5.02 −2.61 1.61 −8.50 −11.43 −1.10

p-value 1.66 × 10−12 4.44 × 10−16 6.39 × 10−9 3.82 × 10−5 1.46 × 10−5 3.59 × 10−4
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Figure 16. Boxplots for the Alv waves before (non-filtered) and after being filtered by the Wiener,
RLS, HRLS, and QRD-RLS filters. The studied metric is the occupied bandwidth power. A decrease in
median and quartiles was observed for all the filtered boxplots. This reveals that the adaptive digital
filters attenuated the respiratory interference. Additionally, it reveals that interference is mostly
in-phase, and the Wiener filter produces a higher attenuation. All the Bonferroni’s adjusted p-values,
based on paired z-tests, validated this hypothesis.

• A substantial power decrease (∆power) was observed for the Wiener filter (p = 1.31× 10−12).
For the other filters (p = 3.82 × 10−5), the power decrease was roughly halved in
the median and quartiles, relative to the Wiener filter. This may reflect the Wiener
filter outperforming the attenuation of respiratory signal, as has been verified in the
simulation data. This also highlights that the in-phase subtraction between the noise
estimation and Alv waves was prevalent, relative to the counter-phase one.

• The bandwidth increase (∆bw) for all filters (p = 1.20×10−45 for Wiener and p = 1.66× 10−12

for other filters) was a direct consequence of the reduction of the power (∆power). To
allow for the 75% energy ratio, the bandwidth must increase.

• To allow for the bandwidth increase, the frequency limits ∆flo (p = 0.00 for Wiener
and p = 4.44 × 10−16 for other filters) and ∆fhi (p = 2.46 × 10−28 for Wiener and
p = 6.39 × 10−9 for other filters) decreased and increased, respectively.

• A substantial decrease in the periodograms peak (∆peak) was observed, which is
consistent with the above-reported decrease in the power (∆power) for the Wiener
filter (p = 4.11 × 10−13). For the other filters, the ∆peak decrease (p = 1.46 × 10−5) was
roughly halved in the median and quartiles, relative to the Wiener filter.

• Since the ∆flo decrease was higher than the ∆fhi increase, the peak frequency deviation
(∆freq_peak) was negative or negligible in all cases (p = 1.19 × 10−8 for Wiener and
p = 3.59 × 10−4 for other filters). This indicates that the attenuation of the respiratory
signal led to a lower frequency peak.
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4. Discussion and Conclusions

The innovative components in this work are as follows:

• Maternal respiratory signal (MR-EMG) attenuation in the EHG, which is a problem
often overlooked or dealt with, in many cases, using bipolar channels.

• Algorithm development to find the optimal adaptive filters and their parameters for
the MR-EMG attenuation in the EHG.

• A contribution to adaptive filtering behavior insight, which is important for the
interpretation of the results. This information could be relevant for other researchers
in the biomedical signal processing field.

Maternal respiration is one of the most relevant interferences in the EHG, given that its
frequency band (0.2–0.34 Hz) overlaps with important EHG components, such as Alv waves.
Typically, bipolar channels are mounted, in an attempt to cancel the common mode MR-
EMG in the respective monopolar configuration. However, this operation, as mentioned
earlier in this work, can have the exact opposite effect of enhancing the respiratory signal.
This can be explained by the counter-phase MR-EMG presence in each monopolar channel
from which the bipolar one was obtained. Moreover, bipolarity can attenuate the signal of
interest if it is present in both monopolar channels, mainly if they are relatively close by.
Classical filtering, designed to reduce the MR-EMG, will also affect the signal of interest in
the shared bandwidth, so it is not the ideal solution.

Adaptive filters seem to overcome these predicaments, since, as explained earlier, their
operation is based on the subtraction of the estimated interference from the composite
signal of interest. In optimal conditions, this behavior allows for the attenuation of the
offending signal, which is added to the composite one, without disturbing the bandwidth
of the signal of interest. In terms of the work herein presented, the composite signal is
the EHG that inevitability contains the offending MR-EMG. Therefore, the application of
adaptive filters may preclude the need for the montage of bipolar channels.

An estimation of the MR-EMG, which is necessary as an input to the adaptive filters,
is unavailable on the existing open-source EHG databases. In this work, an innovative
approach included the estimation of the MR-EMG from the maternal ECG recorded in the
EHG electrode locations, using the well-established EDR technique.

An algorithm was developed to obtain the optimal filter and respective parameters
for the task at hand. The filters available for selection were Wiener, LMS, NLMS, BLMS,
FXLMS, FDAF, SELMS, SDLMS, SSLMS, FTF, LSL, RLS, HRLS, SWRLS, HSWRLS, and
QRD-RLS. In the selection step, synthetic data was used. The best performers were Wiener
(L = 2), RLS, HRLS, and QRD-RLS (L = 2 and λ = 1). This algorithm can be used for
other scenarios, where the users are looking for the optimal adaptive filter and parameters’
solutions for their applications.

As a complementary work component, the obtained optimal filters were applied to
real data from the Icelandic Reykjavik University EHG database. This step was not meant
to be for the filter and parameters validation, but rather a study regarding the effect of
the optimal filters on the Alv waves, before and after MR-EMG attenuation. A set of Alv
waves features were selected for analysis. It was found that, in all cases, the respiration
signal was attenuated from the original Alv waves, which led to an increase in bandwidth
and decrease in their power content. In practical setups of algorithm development using
Alv waves, it would make sense to apply one of the selected filters to the EHG as a first
pre-processing step.
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