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Abstract: This paper describes the combined detection of coating and rust damages on painted metal
structures through the multiclass image segmentation technique. Our prior works were focused
solely on the localization of rust damages and rust segmentation under different ambient conditions
(different lighting conditions, presence of shadows, low background/object color contrast). This
paper method proposes three types of damages: coating crack, coating flaking, and rust damage.
Background, paint flaking, and rust damage are objects that can be separated in RGB color-space
alone. For their preliminary classification SVM is used. As for paint cracks, color features are
insufficient for separating it from other defect types as they overlap with the other three classes in
RGB color space. For preliminary paint crack segmentation we use the valley detection approach,
which analyses the shape of defects. A multiclass level-set approach with a developed penalty term is
used as a framework for the advanced final damage segmentation stage. Model training and accuracy
assessment are fulfilled on the created dataset, which contains input images of corresponding defects
with respective ground truth data provided by the expert. A quantitative analysis of the accuracy
of the proposed approach is provided. The efficiency of the approach is demonstrated on authentic
images of coated surfaces.

Keywords: level-set method; color image processing; coating damage; rust detection; multiclass

image segmentation

1. Introduction

The use of protective coating is the most common way to prevent damage to the
surface of different construction materials. The type of protective coating depends on
the material itself and the environment it operates in. Many studies were conducted to
investigate their properties and ways of monitoring their state during operation. The
availability of metal, oxide, composite and non-metallic coatings allows for rationally
combining the base and coating materials’ properties. The most frequently used coatings
are paint coatings [1-5], polymers [6-8], and biopolymer films [9,10]. All these types of
widespread coatings are used in various fields of technology and medicine. In addition,
paint coatings are also used as sensors to determine the temperature and coefficient of
thermal conductivity [11,12], pressure, and deformations in the studied samples [13,14].

Design, technological, and operational methods are used to provide long-term op-
eration of coated products. Design methods include the selection of base and coating
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(a)

materials, conduction of corrosion [15-17], and tribocorrosion tests [18]. In particular, the
scientists [15,16] apply microelectrochemical studies of the stressed state of the metal on
its structural components and crack-like defects, and in [17], the corrosion behavior of
coated carbon steels in salt water is investigated. Porosity studies of coatings [19] and
tribological tests are carried out using computer image processing [20-22]. For example,
researchers [20] used the image processing technique to develop a method of tribotechnical
testing of coatings under conditions of wear by unfixed abrasive; and in works [21,22],
a photogrammetric approach was used to study the wear process and estimate volume
loss. Strength tests [23,24] as well as modeling and performance of thermal calculations of
coatings [25,26], are also performed.

Analytical methods of stress analysis in layered coatings under local load [27-29],
studies of the influence of flexible [30,31] and composite [32-34] coatings on the limited state
of cracked plates and shells are worth considering. In addition, the coating of damaged
surfaces can be treated as the healing of cracks by injection technologies with pliable
aggregates [35-37] or non-contrast materials [38,39].

It is necessary to consider technological heredity to ensure the product’s functioning
throughout its life cycle when preparing the surface for coating [40-42]. Technologies for
applying environmentally friendly hydrophobic, photocatalytic, and antimicrobial coatings
that do not cause environmental pollution are being developed [43-45]. Operational
methods include surface cleaning and repair of damaged areas of coatings. It is crucial to
establish a reasonable period for carrying out such works.

Automating different types of object surface inspection tasks draws more attention to
developing image processing techniques. Such automation usually implies the acquisition
of inspected object images with their subsequent computer processing. Object images
can be taken remotely, avoiding direct visual inspection. The growing accessibility of
autonomous drones allows the visual inspection of distant, large, or hard-to-reach objects.
One such inspection task is the monitoring of the state of coated surfaces. In this scope,
we mainly focus on painted steel surfaces of infrastructure objects (oil tanks, bridges, high
voltage power lines towers, etc.). Such coated surfaces can be subjected to various possible
damages that may lead to further structural degradation and, if detected, ought to be dealt
with. In this work, we restrict our research to three types of such damages. Paint cracks
and flaking are two coating-related damages, and the third is rust damage affecting steel
surfaces.

Examples considered in this paper damages are shown in Figure 1. Paint cracking
is the defect of damage to the structural integrity of paint coating in the form of a crack
that allows access to air and humidity on the steel surface. Flaking is the damage where
some local region of the steel surface loses its protective paint coating but has no signs of
rust damage. Moreover, finally, rust damage is a defect where the local region of the steel
surface loses its protective paint coating and is affected by corrosion.

(b) (o)

Figure 1. Examples of images of coated surface damages: (a) rust and paint cracking; (b) paint flaking
and cracking; (c) rust damage and paint flaking.
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Metal rusting usually causes the protective coating to break down and thus leaving
distinguishable marks on the inspected object’s surface. The significant contrast between
rust damage and protective coating colors allows the segmentation of the damaged areas
based on the color features only. Numbers of articles were dedicated to the segmentation
of color images. Many of them were using k-means [46], Gaussian mixture based models
(GMM) [47], graph-based approaches [48,49], neural networks [50-53], support vector
machines (SVM) [54-56], shape index [57], level set models [58,59] etc. A significant
amount of research has been devoted to rust images.

Digital image processing and pattern recognition are powerful tools in non-destructive
testing. A comprehensive survey of the application of image processing to assess material
degradation was made by Xia et al. [60]. The authors started with a description of basic
image types and standard image pre-processing methods. Considerable attention was
focused on the processing methods of corrosion images, in particular model-based measure-
ments, structural methods, statistical parameters, co-occurrence of matrix-based features,
and transform-based models. The assessment of material degradation, including different
types of corrosion (pitting, uniform, undercoating, stress cracking) and degradation of
the organic coatings, was considered. The cooperation of image processing with other
rust detection methods was reviewed. Modern challenges in rust detection using image
processing are listed, and the ways of problem solutions, especially by artificial intelligence,
machine learning, and deep learning, are outlined.

Jardim et al. [61] proposed an approach to color image segmentation consisting of
region extraction by successive combining of k-means clustering and watershed methods.
The experimental results and comparison with other methods are provided on both graphic
and natural images. The proposed algorithm is stated to cope well with image databases
with high variability.

Cluster-weight and group-local feature-weight learning in fuzzy C-means algorithm
(CGFFCM) was proposed to cope with image segmentation task [62]. This method is based
on clustering. The features from three groups (local homogeneity, color, and structure) are
extracted and used by CGFFCM. The imperialist competitive algorithm (ICA) optimizes
the weighted feature process. The method applies to images of different semantics.

Katsamenis et al. developed a method for corrosion localization and classifying rust
grades based on a U-Net convolutional neural network [63]; the proposed method consists
of three steps. The first step is the segmentation of corroded regions; the second is contour
refining using the data projection scheme, and the third is the rust grade classification.
Experienced engineers segmented and assigned corrosion grades to 400 images. They
were used for training the U-Net models of the first layer. The performance was evaluated
using such metrics as accuracy, precision, recall, F1-score, and intersection over the union.
The proposed SLPAC U-Net demonstrated improvement in comparison with k-means and
GMM methods.

Khayatazad et al. detected corrosion regions on the steel structures using roughness
and color [64]. They measured image uniformity on the base of the grey-level co-occurrence
matrix. Color images were converted to greyscale with 8 levels of grey. The authors used
the HSV color space and normalized histogram of H and S to describe corrosion colors.
The performance was evaluated using recall and precision metrics. The training dataset
contained eight images. Authors categorized corroded areas in images with an average
recall of 85%.

Not many studies have analyzed defects different from rust on painted steel surfaces
using image processing. For example, Zhang et al. used Michelson interferometer for paint
flakes detection and modification of Chan and Vese’s method of flake segmentation [65].

Rezaie et al. demonstrated the advantages of a deep convolutional neural network
over thresholding the maximum principal strain map for segmenting cracks in the images
of stone walls [66].
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Abas and Martinez used mathematical morphology and grid-based automatic thresh-
olding for crack segmentation. Classification is based on such features as orientation and
length of line segments [67].

A crack detection approach to monitoring the civil infrastructure is proposed [68].
Technical elements are discussed to optimize the image acquisition process. The mor-
phological operator was used for crack-like pattern segmentation. The feature extraction
process was fulfilled by linear discriminant analysis (LDA). The neural networks, SVM,
and a nearest-neighbor classifier were used. The representation of detected cracks was
done with a multi-scale crack map. The proposed approach was tested on the database of
220 real concrete cracks and 200 non-crack images.

A novel deep crack segmentation network was proposed [69] to succeed in two
mutually exclusive tasks: increasing speed and accuracy. The feature extraction consists of
two directions—morphological and shallow detail. The proposed method’s effectiveness in
comparison with state-of-the-art CNN-based networks was justified based on three public
datasets.

Our previous works [70-74] were dedicated to rust damage segmentation under
conditions that can distort its damage percentage assessment. They were focused on the
detection of one type of damage—rust. In particular, rust detection based on HSV image
color model [71], the use of the single-scaled retinex method [72], the influence of color
restoration based on a color checker [73], and the reduction of shadow effects [74] algebraic
model with an asymmetric characteristic [75] and methods of logarithmic type image
processing [76] as well as the application of inhomogeneity inforced piecewise smooth
model [77] for image segmentation were considered. A dimensionality reduction PCA
technique was applied in [78] for the rust segmentation in images obtained in irregular
lighting conditions.

The majority of reviewed papers are dedicated to the detection of certain types of
defects. Most of them focus purely on rust detection or paint damage separately. In the case
of real-world applications of such approaches to regular inspection of industrial structures,
it is reasonable to detect simultaneously protective coating damages. The reason for that is
that even in case of the absence of explicitly visible rust damage, there can be damage to
the protective paint coating. Such coating damages are the signs of possible future rusting
of the steel surface. Thus detection and treatment of such defects in the early stages can
prevent further rusting of the underlying steel surface.

The most common defects of protective coating (relevant for developing rust damage)
are paint cracks and paint flaking. Thus, this work aims to develop the approach for detect-
ing multiple damages (of the steel surface and protective coating) within one computational
framework. To achieve this goal, the following tasks should be solved: construction of
the optimization multiclass segmentation method based on a new regularizer; application
of advanced techniques on the image dataset; comparison of segmentation results with
ground truth data and calculation of segmentation accuracy.

The main innovation of this paper is the introduction of the label-dependent penalty
term that incorporates segmentation results of multiclass SVM and valley detection methods
for refined, resulting multiclass segmentation. To the best of our knowledge, it is the first
time that three types of damage (coating crack, coating flaking, and rust damage) are
detected within one computational framework.

2. Materials and Methods

The proposed approach suggests a combination of machine learning and image pro-
cessing methods for multiclass segmentation of different defect types. Development, testing
and validation of the considered approach were done based on the dataset of images of
different defect types.

We used a set of 150 images with a resolution of 480 x 640. The images in the database
show coatings of different colors, as well as different types of their damage—coating crack,
coating flaking, and rust damage. There are images with one type of defect presented on it
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and images with multiple types of damage in the dataset. Image examples are presented
in Figure 1. Painted steel surfaces (low carbon structural steel St3 State Standard GOST
380-2005 with glyphtal enamel as a protective coating) of infrastructure objects of long-term
operation in a moderate climatic zone in the open air were analyzed. All images were
acquired in conditions of natural lightning. Images were saved in the RGB color space.
Digital camera Canon PowerShot 595, ISO-speed ISO80, 10.0 megapixels was used with
sRGB color gamut and 6.0-22.5 mm focal length.

A described set of images was used to create a dataset to train the proposed model and
validate obtained results. The training dataset consists of several acquired input images
with respective ground truth data. Ground truth data consist of manually segmented input
images under the guidance of an expert with more than 40 years of experience in corrosion
engineering. Then we made the quantitative comparison of the developed method with
an expert’s evaluation. We calculate an error in the segmentation map obtained by the
developed method compared to ground truth data.

The proposed approach is shown schematically in Figure 2.

n
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C = {(x.0)e Q:0lxr)-0}
0, = (er)ioln ) >0} @ = {(v)ol)<0).

v damage type
v" percentage of damage

Figure 2. Flowchart of the proposed multiple type damage detection techniques.
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The proposed method consists of two stages that are briefly summarized below.
The first stage is an initial segmentation of the input image. For this purpose, two
different approaches are used:

(@) The SVM is trained in a supervised learning mode based on a previously labeled
training set with ground truth data for rust, flacking, and background classification.
SVM was chosen for its ability to build an optimal decision hyperplane that separates
classes. In this work, we use a multiclass SVM with a one against all approach. It is
used as a simple segmentation method only for three-class classification (background,
rust, and flaking). These three classes are discriminated by multiclass SVM because
their features do not overlap in RGB color space.

(b) We used a different approach for the primal segmentation of paint cracks. The reason
for that is that they do not have unique color features. As a result, paint cracks in RGB
color space overlap with the other three classes making color features insufficient for
classification. The characteristics that distinguish paint cracks are more of a geometric
nature. We use a modified “valleys” detection method as a primal segmentation
method for that purpose.

The second stage of the approach suggests the fusion of outputs of the first stage to
produce the final segmentation map.

In this work level-set approach is used to aggregate results of the initial segmentation
of background, rust, and flaking by multiclass SVM and segmentation of paint cracks
by the valley detection method. The proposed in this paper level-set approach uses a
specially developed label penalty term to aggregate the results of two primal classifiers and
to produce a final segmentation map.

3. Results
3.1. Level-Set Method for Image Segmentation

The level-set method [79,80] is an optimization-based approach widely used for image
processing tasks. It is used in variety of different formulations [80-86] and solves number
of image processing problems [87-89]. It allows the formulation of image processing tasks
in terms of energy minimization. Therefore it is possible to design different constraints and
properties imposed on a developed image processing method.

Let up:Q — R it be a greyscale image and QO € R? be an image domain. The
level-set method allows representing the image partition using a level-set function (LSF)
@ (x,y) where (x,y) € Q) spatial coordinates are used. The contour C that divides the
input image 1y into disjoint segments is represented via LSF ¢(x,y). More formally C is
represented by a zero level-set of ¢(x,y) and defined as C = {(x,y) € Q: ¢(x,y) = 0}.
Thus, partitioning the overall image domain () into two disjoint regions is defined as
follows Oy = {(x,y) : @(x,y) >0} ={(x,y): ¢(x,y) <0}

Modern level-set developments take their origin from the research by Mumford and
Shah [79]. In general, the solution of the Mumford—Shah problem is a complicated task that
makes it less flexible for various image processing tasks.

Chan and Vese [80] simplified the original problem [79] by introducing a variational
formulation of the original Mumford-Shah functional for a limited number of image
partitions. For the two-class image segmentation Chan and Vese’s functional looks as
follows

Fler,cz,) = [ VH(@) dxdy + A [ [uo(x,y) - c1|2H<<p>dxdy+Ag luo(x,y) — e2|*(1 — H(g))dxdy, )

where y and A are coefficients,H(¢) represent Heaviside function, ¢; and ¢, represent

the mean of greyscale values for ()7 and (), respectively. In [90] authors developed an

additional penalty term R, = v [ p(|VH(¢)|)dxdy, where v is the coefficient, p is the
o)

potential function defined as p(s) = (s — 1)%. 1t forces LSF @(x, y) to maintain properties
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of the signed distance function for better convergence. With additional penalty term R,
expression (1) can be represented in terms of energy minimization as follows

E = Egata + Ec + Rp, ()
N
where Ej,, = )\Zf e;M;(x,y)dxdy, Ec = u [|VH(¢)|dxdy, N is a number of seg-
i=10 Q
mentation classes, ¢; = |ug(x,y) — c;j|* and M;(x,y) is a membership function

1, if (x , ) e Q)
Mitxy) = {o, it (y) ¢ O
Mi(x,y) = H(9), Ma(x,y) =1 — H(g).

The term E. acts as a penalty for the length of the contour C, to ensure its smoothness.
While E;,;, is a data term that acts as a similarity measure of an image 1y and its model is
represented by model parameters c;. Thus segmentation of the image u( is accomplished by
finding such function ¢ (x,y) and constants ¢; and ¢, that minimize the energy functional
E(2).

The common approach to energy functional E minimization is through the solution of
the Euler-Lagrange equation that leads to the following

which, in the case of (1), is defined through H(¢) as

Jdo  OE

Friiarrs 3)
Thus the solution to the minimization problem of (1) in terms of (3) is as follows
I 2 (Ve . [ Vo
— = — —_ div| —— — 4
o AR RO () R R A

1_¢
where 0¢(Z2) = =>1—
case where the image segmentation task requires the use of more complicated features
than greyscale pixel values, it was proposed in [91] to use the negative logarithm of the

probability density function as a data term

is the regularised representation of Dirac delta function In the

e; = —log(pi(x,y)), (5)

where p;(x,y) represents the probability density function that describes the model of i-th
class.

In this work, we consider the image segmentation task for the case of four classes
(N = 4). The distinguished classes present three types of damage described above with
undamaged coating being the fourth one. Originally in [81], segmentation of multiple
classes by (1) requires the use of more than one LSF and is referred to as the multiphase
level-set approach. Extension of the model (1) for four class cases requires the usage of
two LSFs.

Instead of a classical multiphase level set, we used a slightly different approach for
our work. Similarly to [92], we used multiple level sets—a separate LSF for every class.
Their codependent optimization is performed through the so-called label term .

The described model is flexible and allows the construction of multiclass segmentation
models with various data- and penalty terms. Such properties make it suitable for the
design of effective image segmentation techniques.

3.2. Energy Terms for Defect Segmentation

The color of rust is mainly defined by the color properties of its chemical components
and occupies a certain domain in the color space. It makes it possible to build a segmenta-
tion method using RGB features only for the rust segmentation task. Background and such
defects as paint flaking also can be separated by their color features only. For that purpose
we used three-dimensional feature vector (r,g,b), where r, g and b are “red”, “green”, and
“blue” values of pixel color components from the RGB color model, respectively.
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Paint cracking has to be segmented by a different method. The main reason for that
is that the color features of paint cracking can be similar to rust damage or steel surface.
Thus cracking requires additional features to be used for successful segmentation. Those
features should account structural characteristics of the cracks. For this purpose, we used a
well-known valley detection approach based on scale-space representation [93].

Unfortunately, there is an overlap (in feature space) between regions with flaking, rust
damage and paint cracking. The main reason is that the cracking region color can be close
to either rust color or color of the steel surface. Such overlapping leads to the additional
error of segmentation due to emerging ambiguity.

One of the main contributions of this article is the introduction of the label-dependent
penalty term Y. It allows incorporation segmentation results for two different classifiers
(multiclass SVM and valley detection method) and resolves the problem of their overlapped
segmentations. The proposed penalty term ¥ is defined as follows

-y Y, ®)

i=1j=1|(i#))
where ¥;; = f M;M;G;jdxdy; M; and M; are indicator functions and are defined as
Q

M; = H(g;) and M;=H ((p]-) ; Gjj is an intersection potential to be defined below. The
derivative of ¥;; is defined as

8‘F,»j
30; be(@i) GijH (9j). ()

After initialization of all LSF ¢; based on the results of preliminary segmentation
methods (SVM and valley detection), there is no need for further use of data term E,;, in (2).
Given all the above we introduce the final model as follows

E=E +R,+¥. )

One should observe that solution (4) of minimization problem (1) in terms of (3)
contains the gradient of the function. The solution of (8) contains the gradient as well. It
characterizes the function’s behavior along the direction in which it is increasing most
rapidly. But it is possible to replace the gradient with a directional derivative starting from
(1) and to study a similar problem along a direction. There are many papers analyzing the
influence of directional derivatives on the properties of such functions [94-96].

The solution to (8) is the next

9p; 2 Vo, N
at_”[v oF dzv<|v(m|>}+ﬂ5s(<pz)dlv<| l|> Z S (@) GiH (@j) . (9)

7=1(i#))

The product M;M; in (6) defines the intersection of i-th and j-th segments. We define
the intersection potential G;; as follows

N N
Gij = Z Z P (Mi, M;) , (10)
k=11=1| (k1)

where the function Py, is defined for every intersection M;M; separately. In our case, we
have to consider only three intersection cases: the intersection of crack segmentation with
the segmentation of all other classes. This is because we can have ambiguous segmentation
only of paint crack (which is segmented with a valley detection approach) and other classes:
rust, flacking, and background (which are defined by multiclass SVM and thus do not
intersect). Therefore non-zero are only Y14, Y41, Y24, Y12, ¥34 and Y43. Here values of
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indexes i and j represent respective classes as follows: 1—"rust”, 2—"paint”, 3—"flaking”,
4—"paint crack”. As mentioned previously, the crack defect poses the main problem in
terms of segmentation error based strictly on color features. Thus the main attention was
paid to the design of ¥; for this type of defect, which in turn is fully defined through values
of Py;. For our segmentation goals, we designed the necessary Py in the following way

Py = —s(C; — Co) +2(Cy — Cq),

P41 = S(C1 — Cz) — 2(C4 — C1),

Py =0.33, (17)
Py =5(Cy — C3),

P43 = *S(C4 — C3),

where C; is defined as C; = K * M;, s is a coefficient, K is an averaging kernel, and * defines
convolution operator.

Let us consider the reasoning behind the choice of form of some Py;. Every Py is
multiplied by M;M;. Therefore it contributes to the model’s evolution only in the area
of the intersection of i-th and j-th segments. It is important to construct Py; in a way it
would penalise undesirable segmentation as the goal of minimization of (8) is to minimize
intersections between any segments M; and M; for i # j. For example, consider the shape
of P34 (the intersection of paint flaking and paint crack segments). It depends on values of
C;, which is average area of class i around every point (x,y). Values of Cs inside flaking
area are mostly higher than values of C, thus penalizing the M; in this area. The same
logic is true vice versa for values of Py3. Similar reasoning is applied to construction of
all other Py;. The only exception is Po4 which is assigned a constant value and Py, is equal
to zero. Such values for P,4 and Py, basically mean that in case of intersection MM, of
paint segment and paint crack segment the proposed level-set approach would force this
intersection to be segmented as paint. This is because preliminary segmentation of paint is
more reliable than segmentation of paint crack (it is because of thresholding in the valley
detection approach tends to oversegment the paint crack area).

The penalty term ¥;; imposes restrictions on some geometrical features of i-th class
segment with its neighboring class segments. Those restrictions’ shape depends on the
kernel K’s shape and values Py;. This term depends on current segmentation labels thus, it
is computed at each iteration.

3.3. Evaluation of the Performance of the Developed Method of Defect Segmentation

Performance evaluation of the proposed technique is made quantitatively as well
as qualitatively. Qualitative assessment is given in the discussion part of the paper. A
numerical evaluation of the proposed approach performance is described below and
conducted based on validation data set, samples excluded from the training dataset.

To evaluate the performance of the developed defect segmentation technique we use
the receiver operating characteristics (ROC) curves for all classes with the methodology
of using one class versus the rest (Figure 3). The ROC curve reflects the statistics of true
positive/false positive rates for the binary classifier. In our case, the ROC curve combines
four plots for each of the considered here object classes.

The accuracy of the developed approach was estimated in terms of segmentation error
rates evaluated on ground truth data. Table 1 contains individual error rates for all classes
and the developed approach’s overall segmentation error. Error rates are computed as the
percentage of falsely segmented image pixels compared to ground truth data. The table
also contains AUC (area under the curve) values computed separately for each class.

Table 1. Error rates and segmentation accuracy of the developed approach.

Value Rust Background Paint Flaking Cracking Overall

Error (%) 1.31 3.24 7.82 6.49 9.43
AUC (%) 94.49 97.19 99.70 89.54 -
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Table 2 contains examples of input images (150 x 150 pixels) from the validation set
(column 1), the ground truth segmentation validated by an expert (column 2), and the
results of segmentation by the developed technique (column 3). This paper’s segmentation
maps (ground truth or numerical experiments) are color coded in the following way: red
for the area with rust damage, green for background paint, yellow for flaking, and blue for
paint cracks.

ROC Curves
1 . . f
0.9 f’ b
0.8 ’ 7
07 7
L o6 i
&
o
=3
‘m 0.5 b
[=]
(=%
o
2
04 7
0.3 A
02§ b
Rust
01} Paint |
Flaking
Crack
o I L L I L
o 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

Figure 3. ROC curves generated for all classes: red for rust damage, green for paint, yellow for
flaking, and blue for paint cracks.

Examples of segmentation results of authentic images of damage to painted steel
surfaces are presented in Table 3. Developed in this paper method for combined rust
and coating damage segmentation was tested on a set of authentic images that contained
considered defects alone and their combinations.

Results in Table 3 were produced by model (9) with the following parameter values:
u = 0.02, v = 0.065, kernel K is the uniform disk shaped averaging kernel with radius
r = 11 pixels. Table 3 contains input images of differently coated steel surfaces with visible
damage of different types. The last column shows the color-coded segmentation results of
multiple types of defects.

Table 4 presents examples of segmentation by valley detection technique used in this
work. It shows the input image, its valley detection filter response (described in [94]), and
the results of applying different global threshold values for valley segmentation. As one
can see, by changing the threshold value (as well as filter parameters), we can alter the
method’s sensitivity. Thus we can choose how small or vague crack we want to detect. As
we can conclude, the chosen type of valley detection method is quite sensitive and can be
effectively used in this work. However, it should be noted that the developed approach
can incorporate any other crack detection method suitable for the task.

Table 5 illustrates the segmentation results of the input image at different stages of
the algorithm functionality. As mentioned earlier, preliminary coarse segmentation of the
input image is performed in the first stage. In our case, the input image is segmented
by the valley detection method (second image) and multiclass SVM (third image). These
two segmentation results then serve as an initialization for the level-set method with a
developed penalty term ¥ (9) for a more accurate final segmentation (fourth image). The
ground truth is given as the fifth image for comparison.
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Table 2. Examples of ground truth data of rust segmentation.

Type of Paint Coating
Damage on Steel

Segmentation by the

Input Images Ground Truth Segmentation Proposed Approach

Cracking of paint coating

Rust

Flacking of paint coating,
cracking, and rust

Cracking of paint coating

Cracking of paint coating and
rust
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Table 3. Results of paint damage and rust segmentation.

Segmentation Results by the
Proposed Model

Type of Paint Coating

Damage on Steel Input Images

Cracking of paint coating
and rust

Rust damage

Cracking of paint coating
and rust

Cracking of paint coating
and rust

Flacking and cracking of
paint coating

Valley detection and SVM methods are widely exploited in image processing. They
are used as proper classifiers for the types of defects considered in the paper. Applying
deep learning methods in this scope would require a significantly larger training set with
ground truth data which is laborious to produce. Thus those two methods are used to
classify the types of defects that they are best suited for, and a level set is used to aggregate
their outcomes and produce a final segmentation map.

SVM is used to separate objects based only on color features. So its segmentation
results are reliable only for paint, rust, and flaking objects. The paint crack can be “colored”
in underlying metal color (Table 2, input image in the first row), or it can be “colored”
in rust color (Table 2, input image in the fourth row), making color feature-based SVM
unreliable as it segments crack region only when it has color features of rust damage.
Therefore for fine crack segmentation, a valley detection method was used separately. The
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proposed level-set method combines the output of these two approaches to produce refined
segmentation of all three types of damages.

Table 6 illustrates the influence of the kernel K shape on final segmentation results. In
all the above experiments, the uniform disk-shaped averaging kernel was used. This simple
type of kernel was chosen to simplify the understanding and interpretability of penalty
term Y behavior. For practical application, the shape of the kernel K can be arbitrarily
chosen depending on the segmentation objectives. In particular, Table 6 demonstrates the
changes in the final segmentation map depending on the radius r of the kernel K.

Obtained results confirm the effectiveness of penalty term ¥ for the proper segmenta-
tion of defect type that is not distinguishable by color features only.

Table 4. Examples of valley detection for different threshold values T.

Input Image Valley Filter Response T =128 T =155
\ : .
{
/
Table 5. Input image segmentation stages.
Valley SVM Segmentation Result
Input Image Detection Result Segmentation Result by the Ground Truth
& Proposed Method
\
/
/

Table 6. Input image (Table 5) segmentation results for different radiuses of the kernel K.

4. Discussion

Complex inspection of steel surfaces with protective coating requires the detection of
several possible defect types (they can be metal or coating related, and also both simultane-
ously). Such inspection can be fulfilled automatically using image segmentation techniques.
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Thus in the case of multiple defect types, one should consider using multiclass image
segmentation approaches. When dealing with the segmentation of multiple defects within
one framework, it is possible to encounter the need to construct a more complex feature
space than in the case of dealing with one single defect type. In this paper, we consider the
segmentation of three defect types. The task’s difficulty is that using only color features
causes some defects to overlap in feature space, thus leading to wrong segmentation. One
way to overcome this problem is to increase the number of features that allow correct
segmentation. In this paper, we proposed an approach that uses different methods of
segmentation that are best suited for respective classes and combines their outputs for final
refined segmentation.

As proposed in this work, multiclass level-set technique allowed us to build an efficient
segmentation method for the simultaneous segmentation of three types of defects. The
developed technique can be used to monitor infrastructure objects for complex rust damage
detection and protective coating damage detection. The latter can be helpful as it allows
the detection of areas with protective coating breakdown that can lead to further metal
corrosion.

The developed technique combines two preliminary segmentation approaches best
suited for detecting defects of certain types. SVM is used as an optimal classifier to
distinguish between rust damage, paint flaking, and “healthy” regions of protective coating
based solely on RGB pixel values of the input image. The valley detection approach
was used solely for the paint crack detection. The segmentation output of those two
algorithmically different classifiers was combined through the multiclass level-set approach
with the specially designed penalty term ¥. Such architecture made it possible to build an
effective segmentation technique based on a simple feature set.

The final model contains a specific set of adjustable parameters and thus can be suited
for different tasks. It also allows the use of different preliminary classifiers and penalty
terms to be used for different image segmentation tasks.

Numerical experiments demonstrated good segmentation accuracy validated on
ground truth data provided by the expert. It can be concluded from experimental re-
sults that the majority of segmentation errors are due to oversegmentation of defects.
Mostly proposed approach suffers from oversegmentation of paint cracks and rust dam-
ages. In some cases, the proposed penalty term contributes to the overall error, as seen
from the segmentation results in Table 2, rows 3 and 5. In segmentation results (row 3),
in comparison to ground truth data, rust damage is completely absent; this is because the
proposed term ¥ in the current setup tends to suppress rust damages under a certain size
in favor of the present paint crack. A similar situation is in segmentation results in row
5, where the term ¥ “turned” part of the supposed crack defect into paint flaking. Those
two errors are not to be considered major. The damaged area was segmented as such, only
marked with a different type of defect. Unfortunately, the lack of research dedicated to
the simultaneous segmentation of defects of multiple types makes it hard to conduct an
extensive comparison against similar methods.

By choosing kernel shape K and functions Py; for different configurations of defect
intersection, one can influence the final shape of the final segmentation maps and thus
adjust the model to the desired behavior.

In general, the designed shape of term ¥ successfully overcame ambiguity introduced
by preliminary classifiers and led to overall satisfactory results. The flexibility of the model
(9) allows further development and improvement. It should also be noted that term ¥ is a
label penalty term, thus, it is computed at each iteration which adds to the computational
load of the method.

The advantage of the proposed technique is that it requires a considerably smaller
training set for constructing efficient image segmentation methods in contrast to the heavily
used nowadays deep learning approaches [97]. It is particularly useful in cases where the
acquisition of large training data is complicated. Basically, neural networks, such as ResNet,
UNet VGG, and LeNet need training data that include input data and corresponding
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output ground truth data. If it is required to modify the desired output, even the slight
one, the training procedure should be repeated (or continued) with modified training data.
Our approach and its mathematical foundation have several model parameters that can
be adjusted manually in the desired direction (for example, Table 6) without the need to
modify the training set and retrain the model. Of course, such parameter adjustment has
its bounds and not always can replace retraining of the model with new data. Moreover
proposed approach can incorporate the output of the neural networks in the manner it uses
the output of SVM.

Nevertheless, with the proper training set, one can train suitable for the task CNN
architecture to outperform the accuracy presented in this paper’s results. However, the
proposed model is preferable in terms of flexibility and readjustment of the model for
different types of defects and background.

The proposed method of image processing should also be used to diagnose chromium
cathode coatings applied to a steel base in an electrolyte by the galvanic method since
corrosion products are formed in their pores [98,99].

5. Conclusions

This article describes a developed multiclass level-set-based image segmentation
approach for detecting multiple paint and steel-related defects. The developed approach
uses the proposed label penalty term in level-set method to properly combine segmentation
results of different types of preliminary classifiers (that also use different features) for a
proper final segmentation map. Level-set with proposed penalty term can be used for
different types of preliminary classifiers and object classes. Given the nature of segmented
objects, the proposed approach showed high segmentation accuracy.

The disadvantage of the method is that the absence of data terms in model (9) con-
tributes to the resulting error mainly through the over-segmentation of damages. The
introduced penalty term ¥ in some spatial configurations of defects shifts the border
between some defects in favor of one over another, thus, increasing the overall error.

Experimental results showed the approach’s viability for real-world application for
automation of infrastructure object inspection for rust and protective coating damages.

Further development of the model can include incorporating data terms into the
model (9). It supposedly should increase the accuracy of the final segmentation map. Also,
further investigation can be applied to penalty term ¥ behavior for different parameter
settings and adaptable kernel K shape and size.

It is also planned to apply the proposed method to study the corrosion destruction of
chrome-plated steel.
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