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Abstract: Pulse waves (PWs) are mechanical waves that propagate from the ventricles through
the whole vascular system as brisk enlargements of the blood vessels’ lumens, caused by sudden
increases in local blood pressure. Photoplethysmography (PPG) is one of the most widespread
techniques employed for PW sensing due to its ability to measure blood oxygen saturation. Other
sensors and techniques have been proposed to record PWs, and include applanation tonometers,
piezoelectric sensors, force sensors of different kinds, and accelerometers. The performances of
these sensors have been analyzed individually, and their results have been found not to be in good
agreement (e.g., in terms of PW morphology and the physiological parameters extracted). Such a
comparison has led to a deeper comprehension of their strengths and weaknesses, and ultimately, to
the consideration that a multimodal approach accomplished via sensor fusion would lead to a more
robust, reliable, and potentially more informative methodology for PW monitoring. However, apart
from various multichannel and multi-site systems proposed in the literature, no true multimodal
sensors for PW recording have been proposed yet that acquire PW signals simultaneously from
the same measurement site. In this study, a true multimodal PW sensor is presented, which was
obtained by integrating a piezoelectric forcecardiography (FCG) sensor and a PPG sensor, thus
enabling simultaneous mechanical–optical measurements of PWs from the same site on the body.
The novel sensor performance was assessed by measuring the finger PWs of five healthy subjects
at rest. The preliminary results of this study showed, for the first time, that a delay exists between
the PWs recorded simultaneously by the PPG and FCG sensors. Despite such a delay, the pulse
waveforms acquired by the PPG and FCG sensors, along with their first and second derivatives, had
very high normalized cross-correlation indices in excess of 0.98. Six well-established morphological
parameters of the PWs were compared via linear regression, correlation, and Bland–Altman analyses,
which showed that some of these parameters were not in good agreement for all subjects. The
preliminary results of this proof-of-concept study must be confirmed in a much larger cohort of
subjects. Further investigation is also necessary to shed light on the physical origin of the observed
delay between optical and mechanical PW signals. This research paves the way for the development
of true multimodal, wearable, integrated sensors and for potential sensor fusion approaches to
improve the performance of PW monitoring at various body sites.

Keywords: arterial pulse wave; finger pulse; photoplethysmography; forcecardiography; piezoelectric
sensor; multimodal sensor; pulse oximetry

1. Introduction

Pulse waves (PW) or sphygmic waves are mechanical waves that propagate from the
ventricles through the whole vascular system as brisk enlargements of the blood vessels’
lumens, caused by sudden increases in local blood pressure [1–3]. Photoplethysmography
(PPG) is one of the most widely used techniques for PW sensing, owing to its ability
to measure blood oxygen saturation when both red and infrared light sources are used
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simultaneously. PPG is commonly used both in clinical and non-clinical settings, and
it has been integrated in a variety of consumer electronics products to enable wearable,
unobtrusive monitoring of heart rate and arrhythmias [1–3].

PPG monitors blood volume variations in a microvascular bed of the skin non-
invasively, by measuring the related changes in the optical absorption, scattering, and
transmission properties of human tissues under a specific light wavelength [4]. In particu-
lar, PPG records the amount of light transmitted or reflected by tissues, which varies over
time according to pulsation, as it causes changes in the optical path and in the amount
of light absorbed by the monitored body part. To this end, PPG sensors irradiate light at
specific wavelengths into the skin, which passes through various skin structures (tissues,
veins, arteries) and is finally measured by a photodetector [1–3]. The measured light inten-
sity depends upon several factors, such as the blood volume at the measurement site, skin
pigmentation and composition, the arterial diameter, and the concentration and direction of
oxygenated and deoxygenated hemoglobin [5–7]. Light sources with various wavelengths
can be used, with the depth of penetration usually increasing with the wavelength [8,9].
As an example, by increasing the wavelength from 470 nm (which allows it to reach the
epidermis with capillaries) to 570 or 660 nm, the irradiated light can penetrate to the dermis
with arterioles, and down to arteries in subcutaneous tissues, respectively [10,11]. As
major blood vessels with solid pulsations are mainly located in the dermis or subcutaneous
tissues, light sources with red (640–660 nm) and infrared (880–940 nm) wavelengths are
commonly used in PPG sensors [1,12].

PPG sensors usually feature one or more light-emitting diodes (LED) and wavelength-
matched photodetectors. According to the positioning of light sources and detectors on the
monitored body part, PPG sensors can be divided into the transmissive type and reflective
type. Transmissive PPG sensors have the source and detector placed at opposite sides of
the monitored body part and measure the intensity of the transmitted light, while reflective
PPG sensors have the source and detector placed next to each other on the same side of the
monitored body part and measure the intensity of the reflected light [1]. Reflective PPG
sensors show less stable performance than transmissive ones [1,13]. On the other hand,
reflective PPG sensors are not restricted to distal, thinner body parts, but can also monitor
blood volume changes in other body districts where light transmission is difficult [1].
Indeed, PPG is usually acquired for peripheral body districts, especially extremities such
as the fingers, toes, and earlobes, because their shallow vascular beds ensure high-quality
measurements of blood volume changes [14–16]. This is particularly true for transmissive
PPG sensors, as body districts with small widths ensure reasonable transmitted light
intensities, while thicker body districts absorb too much light, thus resulting in unsuitable
signal-to-noise ratios. However, reflective PPG sensors can also be applied on the forehead,
face, nose, and esophagus [17–20], as well as on shallow arteries of thicker body parts, such
as carotid arteries in the neck, radial and ulnar arteries in the wrist, brachial arteries in the
arms, and femoral arteries in the thighs [21–23].

The low cost and unobtrusiveness of PPG sensors has promoted their use in a broad
spectrum of applications, the most popular ones undoubtedly being pulse oximetry, i.e.,
measurement of saturation of peripheral oxygen (SpO2) with the combined use of red and in-
frared wavelengths and heart rate monitoring [1–3]. Other clinical applications of PPG sen-
sors include: blood pressure estimation [24–33]; the assessment of vascular aging [34–39]
and peripheral vascular disease [40–43]; the monitoring of respiratory-induced changes
in peripheral blood flow and the correlation between intrathoracic pressure and cardiac
function in patients with heart failure or respiratory distress [44,45]; sleep monitoring for
the detection of apnea and hypopnea conditions [46–49]; the estimation of stroke volume
and cardiac output [50–53]; and the detection of atrial fibrillation [54].

The typical pulse waveform recorded via PPG sensors is obtained by inverting the
light intensity signal acquired by the photodetector, and is commonly divided into pulsatile
and non-pulsatile components [1,3,55]. The pulsatile component is correlated with the
cardiac cycle and influenced by vasodilation, vasomotor, and vascular tones, as well as
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respiration and autonomic nervous system activity [56–64]. The non-pulsatile component
is influenced by ambient light [65], biological characteristics such as tissue composition
and basic blood volume of the measurement site, and various physiological phenomena
such as respiration, vasomotor activity, and thermoregulation [66–69]. Skin color, blood
vessel distribution, vascular stiffness, oxygen-carrying capacity, bone size, and cardiac
output are also known to affect the amplitude of PPG signals [70,71]. For these reasons, the
analysis of PPG waveforms is still an important subject of scientific research. In addition,
the physiological relevance of first and second derivatives of PPG signals (also known as
velocity and acceleration PPG, respectively) has been recognized since the 1970s [1]. As an
example, it has been shown that indices extracted from peaks and valleys of the second
derivative of a PPG signal have significant correlations with aging [39]. In addition, PPG
derivative signals support the robust recognition of specific fiducial markers (e.g., peaks
and valleys, inflection points, and points of maximal slope), which can be difficult to locate
in the original PPG waveform [1].

Applanation tonometry (AT) is another well-established technique for PW record-
ing [72]; however, it is not suitable for wearable applications, being based on a hand-held
device. AT is usually adopted in PW velocity (PWV) measurements (i.e., the measure of PW
propagation velocity along a blood vessel), which is a surrogate measurement of arterial
stiffness and provides important information about cardiovascular disease outcomes [73].
Tonometry can also be used to measure the blood pressure waveform in superficial arteries,
which must be maintained in an applanated state over time via a controlled force. However,
this condition is very difficult to obtain in practice, and calls for frequent calibrations [74].

Unlike applanation tonometry, piezoelectric sensors capture PW signals without the
need for arteries to be flattened, thus being suitable for wearable, long-term monitoring of
PWs [74]. Several approaches based on piezoelectric sensors have been described featuring
different materials, geometry, and numbers of required sensing elements to be placed on
subjects’ bodies [75–89]. Wang et al. described a rigid piezoelectric sensor applied on the
wrist to measure PW signals and estimate blood pressure via PW analysis [76]. Obeid et al.
used a commercial PWV measurement system, also based on rigid piezoelectric sensors, to
estimate blood pressure from radial–digital PWV measurements, obtained by computing
the pulse transit time (PTT) between PW signals acquired on the radial artery in the wrist
and digital arteries in the fingers [76]. Taranchuk and Pidchenko proposed a particular
piezoelectric PW sensor based on a quartz resonator [77]. The sensor is equipped with
a funnel that realizes air-coupling between the human body, a membrane electrode and
a quartz resonator with a second electrode placed at a certain gap distance. The whole
structure is integrated in a Colpitts oscillator circuit, so that when the applied pressure
bends the membrane and modulates the gap distance from the electrodes, the frequency
of the oscillator circuit varies over time accordingly. Other studies have focused on flexi-
ble piezoelectric PW sensors. Kang et al. presented a poly (vinylidene fluoride) (PVDF)
piezoelectric sensor with an ad hoc design support structure that closely fits the human
wrist to ensure the stable and effective collection of PW signals under continuously varying
pressure [78]. The overall device featured a circuit for sensor conditioning, signal acquisi-
tion, and real-time processing or Bluetooth data transmission to smartphones or computers.
Park et al. designed an earbud-like device featuring a flexible piezoelectric film sensor for
in-ear PW signal acquisition and processing, aimed at real-time heart rate monitoring [79].
Dagdeviren et al. proposed a multichannel PW sensor based on an 8 × 8 matrix of lead
zirconate titanate (PZT) sensors mounted on a thin, flexible substrate of silicone rubber [80].
Lozano Montero et al. designed a fully printed, biocompatible, ultrathin piezoelectric sen-
sor, made of poly(vinylidene fluoride-trifluoro-ethylene) (PVDF-TrFE), capable of acquiring
PW signals from the radial artery in the wrist for accurate blood pressure estimation as
compared to a commercial finger-cuff medical BP monitor [81]. Guo et al. presented a
high-sensitivity piezoelectric PW sensor with a specific mechanical design, which proved
capable of capturing the changes in hemodynamic parameters that occur during premature
atrial and/or ventricular contractions, and also for accurate blood pressure monitoring in
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patients with arrhythmias [82]. Laurila et al. proposed a PVDF-TrFE sensor and charge
amplifier, both fully printed on an ultra-thin parylene substrate, for on-skin acquisition
of PW signals from radial artery [83]. McLaughlin et al. described the use of two PVDF
piezoelectric sensors to simultaneously acquire PW signals from brachial and radial ar-
teries, to eventually obtain brachial–radial PWV measurements [84]. Ghosh and Mandal
presented a very interesting design of a bio-assembled piezoelectric sensor made from
waste by-product prawn shells, for wearable monitoring of PW signals from the wrist [85].
Bongrain et al. proposed a CMOS-compatible design of a AlN piezoelectric sensor realized
on a biocompatible, conformable, extremely thin parylene layer, which proved capable
of acquiring PW signals from carotid and radial arteries [86]. Hou et al. described PVDF
piezoelectric sensors to simultaneously monitor respiration from the chest and PW signals
from the wrist, so as to analyze respiratory-induced variations in PW signals [87]. Polley
et al. proposed a piezoelectric sensor cast in a silicone rubber enclosure for simultaneous
respiratory and heart rate monitoring from the radial artery, the chest, and the suprasternal
notch. The sensor was equipped with Bluetooth communication capabilities and proposed
as a wearable sensor for smart triage [88].

Other sensors and techniques have also been proposed to record PWs, which include
strain and piezoresistive pressure sensors [89–95], piezocapacitive pressure sensors [96,97],
ferroelectric sensors [98], triboelectric sensors [99], optical force sensors [100–102], laser
doppler vibrometers [103], accelerometers [3,104], and microwave sensors [105,106].

The performances of PW sensors have been analyzed individually, and, when com-
pared, their results have been found not to be in good agreement, e.g., in terms of the PW
morphology and physiological parameters extracted, as reported in [3]. Such a comparison
has led to a deeper comprehension of their strengths and weaknesses, and ultimately,
to the consideration that a multimodal approach accomplished via sensor fusion would
lead to a more robust, reliable, and potentially more informative methodology for PW
monitoring. However, apart from various multichannel or multi-site systems proposed in
the literature [11,107,108] and the comparison/integration of different sensors applied on
different body parts [81,100,109], no true multimodal sensors for PW recording have been
proposed yet that acquire PW signals simultaneously from the same body site.

In this study, a true multimodal PW sensor is presented, which was obtained by
integrating a piezoelectric forcecardiography (FCG) sensor [110–115] and a PPG sensor,
thus enabling simultaneous mechanical–optical measurements of PWs from the same site
on the body. The novel sensor performance was assessed by measuring finger PWs from
five healthy subjects at rest. FCG and PPG sensor performances were compared via both
normalized cross-correlation analysis of PW signals and statistical analyses of six well-
established morphological parameters of PW. This preliminary study unveiled the existence
of a time delay between PW signals acquired by piezoelectric and reflectance-mode optical
sensors, which has not previously been described in the literature. It also determined, for
the first time, that PW signals acquired simultaneously from the same site via FCG and PPG
sensors, as well as their first and second derivatives, share very similar morphologies, as
they exhibited very high correlations. Nonetheless, some of their morphological parameters
were found not to be in good agreement for all subjects.

2. Materials and Methods
2.1. Forcecardiography Sensors

Forcecardiography is a novel technique based on specific wearable force sensors that
measure the local forces induced on the chest wall by the mechanical activity of the heart
and lungs [110–115]. FCG signals were first acquired by means of sensors based on force-
sensing resistors (FSR), which have already proved suitable for muscle contraction moni-
toring [116], gesture recognition [117], and the control of biosignal-based human–machine
interfaces [118], such as the “Federica Hand” prosthesis [119–122] and an upper-limb
exoskeleton [123]. The use of such FSR-based sensors has also been demonstrated for
continuous respiratory monitoring [114]. Lately, piezoelectric FCG sensors and related con-
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ditioning circuits have been presented, and have proved capable of capturing respiration,
infrasonic cardiac vibrations, and heart sounds, simultaneously, from a single contact point
on the chest [110].

2.2. Multimodal PW Sensor

The multimodal PW sensor was realized by integrating a PPG and a piezoelectric FCG
sensor. In particular, the FCG sensor described in [110,112,113] and a PPG sensor board
equipped with a MAX30102 chip (Maxim Integrated Products, INC., 160 Rio Robles, San
Jose, CA 95134, USA, 408-601-1000) were firmly attached together, in order to make them
integral. FCG sensors are usually equipped with dome-shaped mechanical couplers, as
they ensure optimal transduction of force from tissues to the sensor. However, in this case,
the PPG sensor had to be in direct contact with the finger, so the FCG sensor could not
be directly interfaced with the skin via a dome-shaped coupler. To this end, a small, flat
cylinder with a diameter of 5 mm was firmly attached both to the back of the PPG sensor
board and to the active area of the FCG sensor. In fact, the overall PPG sensor and flat
cylinder compound acted as a mechanical coupler for the FCG sensor, thus ensuring a
reasonable transduction of force from the finger to the sensor. Figure 1 depicts the structure
of the proposed multimodal PW sensor.
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Figure 1. Schematic representation showing the components of the multimodal PW sensor placed
on a subject’s finger, namely MAX30102 PPG sensor, piezoelectric FCG sensor, and a flat cylinder
acting as a mechanical coupler to ensure reasonable force transduction from the PPG sensor to the
FCG sensor.

The multimodal PW sensor thus realized was applied on subjects’ fingers by means
of medical adhesive tape. Since static contact force is known to affect the performance of
PW sensors [1,3], and piezoelectric sensors cannot be used for static force measurement,
an additional FSR (FSR 402 short, Interlink Electronics, Inc., 1 Jenner Suite 200, Irvine, CA
92618, USA) was attached onto the active area of the piezoelectric FCG sensor, beneath
the flat cylinder, to monitor the actual contact force applied by the multimodal PW sensor
when mounted on subjects’ fingers. The FSR had an active area with a diameter of 12.7 mm;
therefore, a flat cylinder diameter of 5 mm was appropriate. Static calibration of the
FSR was performed as in [111,116] to obtain actual force measurements from the FSR
sensor readings.

2.3. Experimental Measurement Setup and Protocol

Simultaneous recordings of finger PWs and ECG lead-I were obtained, respectively,
from the multimodal PW sensor and an ECG board (SparkFun Electronics, Inc., 6333 Dry
Creek Parkway, Niwot, CO 80503, USA) based on the AD8232 single-lead heart rate monitor
front end (Analog Devices, Inc., 1 Analog Way, Wilmington, MA 01887, USA).

Five healthy subjects (4 males, 1 female; age: 26 ± 2.5 years; height: 177 ± 5.87 cm;
weight: 86.0 ± 27.2 kg; BMI: 27.3± 7.60) were enrolled for the experiments. Information
on the subjects’ gender, age, height, weight, and BMI are reported in Table 1. The subjects
were required to comfortably lie on a medical couch in supine position. The multimodal
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PW sensor was mounted on the index finger of the right hand with a reasonable contact
force, so as to ensure good contact with the finger tissues, without providing excessive
stress. Indeed, as reported in the literature [3], if contact force is either too low or too
high, the quality of PW signals is substantially impaired. Afterward, ECG electrodes were
placed on subjects’ limbs to acquire an ECG lead I. Non-invasive blood pressure (NIBP)
measurements were also acquired to ensure that the subjects were not in an altered state.
To this end, an NIBP cuff was firmly placed around the left arm and NIBP measurements
were acquired via a multiparameter patient monitor (Dynascope DS-7000, Fukuda Denshi,
Co., Ltd., 2-35-8 Hongo, Bunkyo-ku, Tokyo, 113-8420, Japan).

Table 1. Subjects’ demographics.

Subject Gender Age (Years) Height (cm) Weight (kg) BMI

1 Male 23 181 75 22.89
2 Female 27 175 63 20.57
3 Male 30 168 82 29.05
4 Male 26 183 133 39.71
5 Male 26 178 77 24.30

Signals from the multimodal PW sensor and the ECG lead were simultaneously
acquired at 200 Hz via an STM32F401RE microcontroller board (STMicroelectronics, Inc.,
39 Chemin du Champ des Filles Plan-Les-Ouates, 1228, Switzerland). To this end, the
sampling frequency of the MAX30102 digital PPG sensor was set at 200 Hz and the FCG and
ECG sensors readings performed by the analog-to-digital converter of the microcontroller
(12 bits) were synchronized with the interrupt signal provided by the PPG sensor. This
approach did not ensure a perfectly synchronous sampling of all signals (maximum delay
lower than 0.5 ms); however, this was not strictly required for this study. An alternative
solution to multichannel synchronous sampling is described in [124].

2.4. Signal Processing and Analysis

All processing and analyses were carried out in MATLAB® R2017b (MathWorks, Inc.,
1 Apple Hill Drive, Natick, MA 01760, USA).

2.4.1. Pre-Processing

PW signals provided by the piezoelectric FCG sensor, the PPG sensor, i.e., red (PPG-R)
and infrared (PPG-IR) signals, as well as the ECG lead I, were first resampled at 1 kHz,
and then, pre-processed to remove high-frequency noise and baseline oscillations. All PW
signals were first low-pass filtered via an 8th-order zero-lag Butterworth filter (4th-order
filter applied sequentially in forward and backward directions) with the cut-off frequency
set at 20 Hz. Then, a 3rd-order Savitzky–Golay filter [125], with a frame length correspond-
ing to about a 1.5 s interval, was applied to extract baseline oscillations, which were then
removed from the signals that had previously been obtained after low-pass filtering. The
PW signals provided by the PPG sensor were reversed in amplitude to obtain positive
systolic peaks. Finally, the ECG signal was band-pass filtered in the 0.5–40 Hz frequency
band via an 8th-order zero-lag Butterworth filter.

2.4.2. Detection of Fiducial Points

R-peaks were first located in the ECG signal via the well-known Pan and Thompkins
algorithm, implemented in the “BioSigKit” MATLAB® toolbox [126]. Then, the following
well-established fiducial points [3] were located in the PW signals provided by the PPG
and FCG sensors (see also Figure 2):

• The foot of the systolic rise (referred to as “foot”);
• Systolic peak;
• Dicrotic notch;
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• Diastolic peak.

Since the assessment of robustness to motion artifacts was out of the scope of this
preliminary study, all signal segments containing motion artifacts in at least one of the PW
signals provided by the multimodal PW sensor were excluded from the analyses.

2.4.3. Extraction of PW Morphological Parameters

After the PW fiducial markers had been located, the following parameters were
computed, which are commonly used to characterize the morphology of PW signals [3]:

• tup: time distance between the foot and the systolic peak;
• ti: time distance between the foot and the dicrotic notch;
• T: time distance between two consecutive feet;
• tup/T: ratio of foot time distances from the systolic peak and from subsequent foot;
• h1: systolic peak height with respect to the foot;
• h2: dicrotic notch height with respect to the foot;
• h3: diastolic peak height with respect to the foot;
• h2/h1: ratio of the dicrotic notch to the systolic peak heights;
• h3/h1: ratio of the diastolic to systolic peaks heights.

h1, h2, and h3 related to PPG and FCG sensors signals were not compared, because
they are related to different physical quantities. Instead, the h2/h1 and h3/h1 ratios are
dimensionless quantities that actually characterize the morphology of PW signals, and
were considered for the comparison, along with tup, ti, T, and tup/T.
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Figure 2. Graphical example of PW fiducial points and morphological parameters.

2.4.4. Normalized Cross-Correlation

The morphological similarity between the PW signals provided by the PPG and
FCG sensors was quantitatively assessed by evaluating their normalized cross-correlation
(NCC) [110–115]. In particular, NCC was computed both between single corresponding
heart beats and between whole signal segments. While the former gives information about
beat-by-beat morphological variations in PW signal similarity regardless of amplitude
variations, the latter also takes into account the amplitude modulations that are usually
observed over time in PW signals [1–3].
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Single heart beats were segmented in each PW signal by considering the time intervals
between two consecutive feet. Then, the normalized cross-correlation function (NCCF) of
PW signals provided by FCG and PPG sensors was computed between segments corre-
sponding to the same heart beats. Afterwards, the NCC was obtained as the maximum of
the NCCF. For whole signal segments, the NCCF was first computed; then, the maximum
of the NCCF was located. Its value corresponded to the NCC, while its position gave
information on the average time lag between the analyzed signals.

2.4.5. Statistical Analyses

Regression, correlation and Bland–Altman analyses were carried out via the MATLAB®

function “bland-altman-and-correlation-plot” [127] to compare the morphological parameters
extracted from PW signals acquired by the FCG sensor and the PPG sensor. These statistical
analyses were performed either on the dataset of parameters acquired from each single
subject or on a combined dataset obtained by joining the parameters of all subjects.

3. Results
3.1. Time Delays between Fiducial Markers

Figure 3 shows an example of ECG and PW signals acquired from subjects #1 and
#3. Figure 3a,b show 30-s segments where it can be clearly observed that piezoelectric
PWs (blue line) and optical PWs (red and black lines) are very similar, the latter being
consistently delayed with respect to the former. A detail on PW morphology is depicted
in Figure 3c,d, which show 5-second PW signal segments, along with localized fiducial
markers. A delay between corresponding markers can also be observed.
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Figure 3. Example of PW signals acquired by the PPG sensor (red and infrared) and the piezoelectric
FCG sensor, along with the concurrently acquired ECG lead I. ECG R-peaks and the four fiducial
markers located in PW signals are also depicted. A delay between the PPG and FCG sensor signals
can be clearly observed. (a) Signals acquired in subject #1; (b) signals acquired in subject #3; (c) detail
on four heart beats from the signal shown in panel (a) with the localized fiducial markers; (d) detail
on four heart beats from the signal shown in panel (b) with the localized fiducial markers.
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The pulse arrival time (PAT), considered as the time interval between PW systolic peaks
and ECG R-peaks, across all subjects was 483 ± 20.2 ms for PPG-R (red light), 485 ± 19.4 ms
for PPG-IR (infrared light), and 315 ± 22.0 ms for the piezoelectric FCG sensor. The average
PATs of the PPG signals were found to be in agreement with those reported in [128], while
the PATs of the piezoelectric PW signals turned out to be consistently lower, which further
highlights the existence of a time delay between optical and piezoelectric PW signals. This
delay was estimated by considering the time intervals between corresponding fiducial
markers of piezoelectric and PPG signals, which are outlined in Table 2.

Table 2. Mean and SD of time delays (in milliseconds) between PW fiducial markers of FCG and PPG.

Subject Foot Systolic Peak Dicrotic Notch Diastolic Peak

PPG-R PPG-IR PPG-R PPG-IR PPG-R PPG-IR PPG-R PPG-IR
1 163 ± 1.12 165 ± 1.15 168 ± 4.39 170 ± 4.77 166 ± 1.52 168 ± 1.33 164 ± 3.66 166 ± 3.94
2 162 ± 2.58 164 ± 2.18 162 ± 8.77 166 ± 11.3 167 ± 6.27 171 ± 6.36 167 ± 6.27 171 ± 6.36
3 163 ± 4.44 165 ± 4.53 174 ± 5.38 177 ± 6.17 178 ± 26.3 183 ± 26.3 166 ± 8.77 168 ± 8.61
4 165 ± 11.3 166 ± 15.7 170 ± 5.92 171 ± 5.72 169 ± 3.20 171 ± 2.91 167 ± 4.30 170 ± 4.03
5 164 ± 2.35 165 ± 2.42 165 ± 6.67 165 ± 5.79 163 ± 4.94 166 ± 4.99 162 ± 6.30 163 ± 6.47

Figure 4 shows 5-s segments of the original PW signals acquired from subjects #1 and
#3, along with the first and second derivatives.

1 
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(c) (d) 

  
(e) (f) 

 

Figure 4. Cont.
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Figure 4. Comparison of PW signals and related first and second derivatives, acquired by the
PPG sensor (red and infrared photodetectors) and the piezoelectric FCG sensor, along with the
concurrently acquired ECG lead I. Signals acquired in subjects #1 and #3 are depicted in the first and
second columns, respectively. The original PW signal, first derivative, and second derivative of both
subjects are depicted in the first (a),(b), second (c),(d), and third (e),(f) rows, respectively.
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Figure 4. Comparison of PW signals and related first and second derivatives, acquired by the
PPG sensor (red and infrared photodetectors) and the piezoelectric FCG sensor, along with the
concurrently acquired ECG lead I. Signals acquired in subjects #1 and #3 are depicted in the first and
second columns, respectively. The original PW signal, first derivative, and second derivative of both
subjects are depicted in the first (a,b), second (c,d), and third (e,f) rows, respectively.

3.2. Normalized Cross-Correlation

The NCC between piezoelectric PW signals and optical PW signals was first com-
puted for each single heartbeat. The means and SDs of the computed beat-by-beat NCC
are reported in Table 3. Table 4 instead reports the NCC computed between the whole
piezoelectric and optical PW signals, along with the related time lags. As expected, the
NCC time lags were in very good agreement with those computed between corresponding
PW fiducial markers (see Table 2).

Table 3. Mean and SD of beat-by-beat normalized cross-correlations between PW signals acquired by
FCG and PPG-R sensors.

Subject Original PW First Derivative of PW Second Derivative of PW

1 0.991 ± 0.004 0.995 ± 0.003 0.995 ± 0.005
2 0.996 ± 0.005 0.994 ± 0.004 0.990 ± 0.007
3 0.983 ± 0.009 0.987 ± 0.007 0.991 ± 0.004
4 0.991 ± 0.007 0.988 ± 0.009 0.981 ± 0.012
5 0.989 ± 0.008 0.990 ± 0.007 0.984 ± 0.011

Table 4. Normalized cross-correlations and time lags between whole PW signals acquired by FCG
and PPG-R sensors.

Subject Original PW First Derivative of PW Second Derivative of PW

NCC Lag (ms) NCC Lag (ms) NCC Lag (ms)
1 0.991 167 0.991 163 0.991 161
2 0.990 163 0.990 161 0.986 161
3 0.981 168 0.981 162 0.984 160
4 0.975 165 0.974 165 0.970 166
5 0.981 165 0.980 161 0.975 160

3.3. Morphological Parameters of PW

The means and SDs of the morphological parameters extracted from the optical and
piezoelectric PW signals are reported, for each subject, in Table 5. Table 6 outlines, for
each subject, the results of the regression, correlation, and Bland–Altman analyses that
were carried out to compare the morphological parameters extracted from piezoelectric PW
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signals against those extracted from optical PW signals. Table 7 shows the results achieved
by performing the same statistical analyses on the combined-parameters dataset (obtained
by joining the data of all subjects).

Table 5. Morphological parameters extracted from PW signals acquired by FCG and PPG sensors.

Subject tup (ms) ti (ms) T (ms) tup/T h2/h1 h3/h1

1
PPG-R 136 ± 4.88 366 ± 7.47 965 ± 106 0.143 ± 0.0167 0.393 ± 0.0594 0.600 ± 0.0482
PPG-IR 137 ± 5.11 367 ± 7.46 965 ± 106 0.143 ± 0.0168 0.390 ± 0.0577 0.589 ± 0.0447
PIEZO 131 ± 6.18 363 ± 7.48 965 ± 106 0.138 ± 0.0172 0.302 ± 0.0545 0.525 ± 0.0461

2
PPG-R 122 ± 6.66 374 ± 7.35 995 ± 121 0.125 ± 0.0165 0.631 ± 0.0583 0.739 ± 0.0733
PPG-IR 125 ± 9.05 376 ± 7.59 995 ± 122 0.128 ± 0.0175 0.650 ± 0.0592 0.751 ± 0.0743
PIEZO 123 ± 8.30 373 ± 9.09 995 ± 121 0.126 ± 0.0175 0.593 ± 0.0684 0.694 ± 0.0787

3
PPG-R 127 ± 3.34 359 ± 8.45 894 ± 70.8 0.143 ± 0.0099 0.671 ± 0.0515 0.699 ± 0.0545
PPG-IR 129 ± 3.26 362 ± 8.17 894 ± 70.8 0.145 ± 0.0100 0.666 ± 0.0486 0.688 ± 0.0509
PIEZO 119 ± 3.79 353 ± 9.17 894 ± 71.0 0.134 ± 0.0109 0.546 ± 0.0412 0.589 ± 0.0426

4
PPG-R 121 ± 8.54 339 ± 11.4 863 ± 81.3 0.142 ± 0.0159 0.190 ± 0.0787 0.490 ± 0.110
PPG-IR 121 ± 7.96 340 ± 11.1 863 ± 81.2 0.142 ± 0.0158 0.185 ± 0.0754 0.488 ± 0.104
PIEZO 125 ± 10.9 335 ± 12.5 863 ± 80.7 0.146 ± 0.0198 0.137 ± 0.0809 0.505 ± 0.0549

5
PPG-R 131 ± 6.60 334 ± 8.09 903 ± 92.9 0.147 ± 0.0165 0.531 ± 0.0842 0.685 ± 0.0530
PPG-IR 130 ± 5.28 335 ± 7.94 903 ± 93.0 0.145 ± 0.0156 0.510 ± 0.0762 0.659 ± 0.0502
PIEZO 130 ± 4.39 334 ± 8.35 903 ± 92.8 0.145 ± 0.0153 0.434 ± 0.0659 0.583 ± 0.0472

Table 6. Results of the regression, correlation, and Bland–Altman analyses that were carried out to
compare the morphological parameters of PW signals provided by FCG and PPG sensors for each
subject. Intercept, bias, and LoAs for tup, ti, and T are expressed in milliseconds. Non-significant bias
is indicated as “NS”.

Subject Parameter tup ti T tup/T h2/h1 h3/h1
R IR R IR R IR R IR R IR R IR

1

Slope 0.910 0.820 0.975 0.980 1.000 1.000 0.996 0.980 0.868 0.879 0.905 0.945
Intercept 7.13 19.2 6.21 3.7 −0.377 −0.632 −0.005 −0.003 −0.039 −0.041 −0.018 −0.031
R2 0.516 0.46 0.949 0.955 1.000 1.000 0.928 0.916 0.893 0.866 0.894 0.839
Bias −5.18 −5.39 −2.90 −3.63 NS NS −0.005 −0.006 −0.091 −0.088 −0.075 −0.064
p-value c c c c 0.885 0.890 c c c c c c

LoAs ±8.47 ±9.08 ±3.34 ±3.13 ±2.92 ±3.05 ±0.009 ±0.01 ±0.04 ±0.04 ±0.03 ±0.04

2

Slope 0.260 0.0765 1.01 0.966 0.993 0.995 0.886 0.769 0.913 0.869 0.751 0.739
Intercept 91.3 113 −4.78 10.4 6.80 4.90 0.015 0.027 0.017 0.029 0.139 0.139
R2 0.044 0.007 0.671 0.651 1.000 1.000 0.695 0.590 0.606 0.564 0.489 0.487
Bias 0.774 −2.24 −0.415 −2.45 NS NS 0.001 −0.002 −0.037 −0.056 −0.045 −0.057
p-value a c a c 0.955 0.964 a c c c c c

LoAs 18.6 23.1 10.2 10.5 4.44 4.19 0.019 0.023 0.085 0.090 0.116 0.117

3

Slope 0.632 0.501 0.956 0.982 1.00 1.00 1.04 1.01 0.644 0.689 0.689 0.738
Intercept 38.6 54.2 9.88 −2.67 −2.3 −2.51 −0.015 −0.013 0.114 0.088 0.108 0.082
R2 0.31 0.186 0.778 0.767 1.000 1.000 0.897 0.867 0.65 0.661 0.78 0.779
Bias −8.25 −10.1 −5.86 −9.15 NS NS −0.009 −0.011 −0.125 −0.12 −0.109 −0.099
p-value c c c c 0.957 0.953 c c c c c c

LoAs 6.62 7.42 8.5 8.68 2.62 2.44 0.007 0.008 0.060 0.056 0.051 0.047

4

Slope 0.98 1.1 1.02 1.07 0.993 0.993 1.15 1.17 0.949 1 0.465 0.493
Intercept 5.9 −7.94 −12.6 −27.2 6.25 5.89 −0.017 −0.020 −0.043 −0.048 0.277 0.264
R2 0.589 0.639 0.873 0.896 0.999 0.999 0.852 0.877 0.852 0.872 0.877 0.877
Bias 3.48 3.61 −4.38 −4.95 0.0523 0.0392 0.004 0.005 −0.053 −0.048 0.014 0.016
p-value c c c c 0.808 0.860 c c c c c c

LoAs 13.7 12.9 8.75 8.05 5.22 5.38 0.016 0.015 0.062 0.057 0.122 0.110

5

Slope 0.248 0.302 0.835 0.845 0.998 0.997 0.836 0.905 0.74 0.815 0.794 0.822
Intercept 97.3 90.7 55.5 51.3 1.93 2.53 0.0225 0.0142 0.0411 0.0186 0.0387 0.041
R2 0.14 0.132 0.655 0.646 0.999 0.999 0.812 0.847 0.893 0.887 0.794 0.766
Bias −1.28 NS NS −0.768 NS NS −0.001 0.0004 −0.097 −0.076 −0.103 −0.076
p-value a 0.247 0.190 a 0.940 0.956 b 0.278 c c c c

LoAs 12.6 10.8 9.96 10 6.26 6.45 0.014 0.012 0.060 0.051 0.047 0.048

a p < 0.05; b p < 0.001; c p < 0.0001
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Table 7. Results of the regression, correlation, and Bland–Altman analyses that were carried out to
compare the morphological parameters of PW signals provided by FCG and PPG sensors for all
subjects. Intercept, bias, and LoAs for tup, ti, and T are expressed in milliseconds. Non-significant
bias is indicated as “NS”.

Parameter tup ti T tup/T h2/h1 h3/h1
R IR R IR R IR R IR R IR R IR

Slope 0.472 0.304 1.010 0.989 0.996 0.997 0.887 0.868 0.999 0.969 0.788 0.784
Intercept 65.5 86.1 −5.78 0.762 4.10 3.06 0.014 0.015 −0.062 −0.051 0.087 0.090
R2 0.210 0.098 0.921 0.915 1.000 1.000 0.775 0.711 0.905 0.927 0.680 0.736
Bias −0.915 −2.52 −1.48 −3.24 NS NS −0.001 −0.003 −0.063 −0.069 −0.059 −0.059
p-value c c c c 0.919 0.934 c c c c c c

LoAs ±16.8 ±19.5 ±10.2 ±10.5 ±4.55 ±4.48 ±0.018 ±0.020 ±0.096 ±0.085 ±0.117 ±0.109

a p < 0.05; b p < 0.001; c p < 0.0001

4. Discussion

To the best of our knowledge, this study addressed, for the first time in the literature,
the simultaneous measurement of finger-pulse waveforms via a true multimodal sensor,
realized by integrating a reflectance-mode PPG and a piezoelectric FCG sensor, which
acquire PW signals from the same site. The preliminary results of this study unveiled the
existence of a time delay between the PW signals recorded by a reflectance-mode optical
sensor and a piezoelectric sensor, which has also not been previously described in the
literature. Therefore, these preliminary results suggest that the changes in blood vessels’
lumens and in the optical reflectance of tissues, due to local changes in blood pressure in
the finger, have different time dynamics. However, the actual mechanisms behind this
phenomenon are still unclear, and undoubtedly deserve deeper investigation, which was
outside of the scope of this study.

The results also showed, for the first time, that PW signals acquired by a PPG sensor
and a piezoelectric FCG sensor from the same site share very similar morphology, as they
had very high normalized cross-correlation scores. Indeed, the beat-by-beat NCCs turned
out to be 0.990 ± 0.005, and always in excess of 0.98 for all subjects, thus indicating very
high and stable morphological similarity between PWs provided by FCG and PPG sensors.
The NCCs computed between whole signals turned out to be 0.984 ± 0.007, and always
in excess of 0.98, except for subject #4 (NCC > 0.97), thus showing that the amplitude
modulations exhibited by PW signals acquired via different sensors were also very similar.

Reasonable agreement was generally found between the PW parameters extracted
from FCG and PPG sensors signals, apart from the time interval between the feet and
the systolic peaks (tup parameter), for which the greatest disagreement was observed. In
particular, a statistically significant bias (p < 0.0001) was found for the diastolic-to-systolic
peak ratio (h3/h1) and the dicrotic notch-to-systolic peak ratio (h2/h1), which turned out to
be consistently lower in PW signals acquired by the piezoelectric FCG sensor with respect
to signals acquired by the PPG sensor. This suggests that the relative height of the systolic
peak was higher in piezoelectric PW signals, which could also be qualitatively assessed via
visual inspection of the signals in Figure 3.

As a preliminary investigation, this study has some limitations, which will be the
subject of future studies. Only a small cohort of healthy volunteers was considered for this
study, and its preliminary results need to be confirmed on a larger cohort, also including
actual patients; this would enable us to verify if hemodynamic changes, both physiological
and pathological, produce the same effects on the morphology of PW signals acquired
by PPG and piezoelectric FCG sensors. In addition, only PW acquired from the finger
were analyzed. The performance assessment of the proposed multimodal PW sensor
could also be extended to PWs acquired from radial, brachial, carotid, iliac, and femoral
arteries. The unexpected delay observed between the PW signals acquired by PPG and
FCG sensors must be further investigated by using different PPG sensors (reflective and
transmissive types) and identifying potential physical mechanisms that can explain the
experimental data. The acquisition of PW signals was limited to subjects at rest, so as
to analyze the multimodal PW sensor performances in the best experimental conditions.
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Sensor performances should also be assessed in subjects undergoing stress testing, such
as the cold pressor test [129], mental arithmetic test [130], Valsalva maneuver [131], and
various physical exercises, which are commonly adopted to elicit various hemodynamic
changes. Finally, extending the analysis to subjects performing various physical exercises
is also important to assess the robustness to motion artifacts of PPG and piezoelectric
FCG sensors integrated in the proposed multimodal PW sensor. All these analyses could
also lead to deeper comprehension of the strengths and weaknesses of these sensors and
highlight opportunities for the development of sensor fusion strategies; these would be
aimed at exploiting the multimodal nature of the proposed sensor to overcome the current
limitations of existing PW sensing technologies and achieve superior accuracy, reliability,
and reproducibility.
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