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Abstract: Electronically enhanced current transformers (EECT) have gained much interest in power
quality assessment. Their magnitude and phase angle error, which mainly relates to the properties
of the ferromagnetic materials used, the impedance of the secondary load, and the inter-turns
capacitance, are thoroughly analyzed. In contrast, the capacitance between the windings, i.e., inter-
winding capacitances and their limiting effects on EECT operation, are rarely analyzed in detail—in
particular, no details on the control design of the assisting electronic unit, its tuning recommendations,
or both are provided. In this paper, the capacitive coupling between indication and compensating
winding of EECT with simplified feedthrough construction is analyzed thoroughly in terms of current
ratio error and stability of the implemented configuration of the trans-conductance amplifier. The
preliminary assumption about the adverse effect of the inter-winding capacitance shunting both
ends of the original amplifier, composed of two series-connected inverting amplifier stages, was
confirmed and resolved within a modified amplifier with the help of a simplified simulation model
and was experimentally proven with measurements on a custom-built EECT prototype. Furthermore,
the analyzed phenomena were linked to trans-conductance amplifier parameters, explicitly with
its compensating networks, and summarized in their design guidelines. Throughout the paper, the
EECT features obtained with original and modified amplifier designs are compared with the plain
composite current transformer to demonstrate the benefits of the modified amplifier, especially its
robustness against inter-winding capacitance variations.

Keywords: current transformer; current ratio; inter-winding capacitance; trans-conductance amplifier;
disturbance rejection

1. Introduction

In recent years, the usage of precise instrument current transformers (CT) [1] is no
longer confined merely to the top laboratory and calibration facilities. Instead, they are
gaining momentum due to the widespread application of grid-tied converters, where
precise metering of power, energy and power quality (PQ) assessment is essential [2].
To comply with accompanying standards, e.g., IEC 60044-1 and IEEE C57.13, the repre-
sentative CT features, such as the nominal accuracy and frequency bandwidth, must be
accomplished across a wide measuring range, frequently ranging between 0.1% and 120%
of the nominal current.

The bandwidth in PQ assessment is usually limited to power grid frequency up to
its 20th harmonic, although it can extend up to 9 kHz [2,3]. In general, the CT accuracy
can be increased either by ferromagnetic core quality improvements or active techniques
that modify the magnetic quantities in a compensating manner (denoted as electronically
enhanced CT (EECT) or electronically assisted CT). An example of the first approach is use
of composite ferromagnetic cores. Combining two cores with different magnetic properties
is beneficial compared to homogenous cores as the high permeability value of the first
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core guarantees high accuracy at low measuring currents. In contrast, the higher flux
density saturation of the second core assures the operation at the upper end of the current
range [4]. Even though the composite CTs can achieve a remarkable accuracy improvement,
their weight and dimensions become a significant disadvantage if higher accuracy, higher
throughput power, or both are required. In this regard, and at the expense of a more
sophisticated design and higher cost, the EECT efficiently outperforms the composite CT.

As reported in [5], the EECT’s ratio errors of less than 10 × 10−6 in both magnitude
and phase can be achieved at power frequencies. In either case, such errors can be attained
only with sandwich-like core assembly, which significantly adds to the manufacturing
costs [6,7]. Another cost driver is a multi-stage structure suggested in [5,8,9]. In either
case, the generalized EECT requires at least two cores. Regardless of the control concept,
the assisting electronics must generate and feed a compensating current to nullify the
current difference between the primary and the secondary current. Thus, the core magneti-
zation should be correspondingly adapted—either by feeding the compensating current
directly through the secondary load [10] or indirectly through the additional compensating
winding [11,12].

The construction-related current errors associated with ferromagnetic parameters, leak-
age inductance, secondary-side impedance requirements, and stray capacitance between
turns are widely known and analyzed in detail [11,13,14]. On the other hand, the stray
inter-winding capacitances and their limiting effects on CT’s operation are rarely analyzed
in detail [15–20]. In particular, no details on the control design of the assisting electronic
unit, its tuning recommendations or both are provided. Furthermore, no assessment of the
dynamical control performance is carried out.

This paper discusses the abovementioned issues regarding the calibration require-
ments for direct connected poly-phase energy meters with current and voltage circuits
permanently closed in each phase, i.e., with no means to open the link between voltage and
current circuits. The specific application requires that each kWh meter’s current branch be
isolated from a common calibration source. In order to reduce human-related errors, the
CT’s transformation should be done with the fixed turn ratio (1:1) over the entire measuring
range (Table 1).

Table 1. Technical requirements, adapted according to [21].

Technical Parameters Requirements

Current range 10 mA up to 120 A
Nominal frequency 45 Hz up to 65 Hz

Ratio 1:1
Power rating Max. 60 VA at 120 A, max. load voltage 0.5 V over whole current range

Current range Ratio error (%) Phase angle error (min)

Accuracy

1 mA ≤ I ≤ 10 mA 1 50
10 mA ≤ I ≤ 25 mA 0.5 20
25 mA ≤ I ≤ 150 mA 0.2 10
150 mA ≤ I ≤ 120 A 0.05 3

In general, the demanded accuracy surpasses the capacity of traditional and composite
current transformers. Thus, the usage of electronically enhanced current transformers
(EECT) is mandatory. However, except for a small nominal frequency range (45 Hz up to
65 Hz), all other requirements surpass those of PQ. In particular, the 60 VA nominal power
is, by a rule, up to two decades higher than the power rating of EECTs used in precise
metering equipment ranging below 5 VA. Nevertheless, the most challenging constraint is
that even under 150 mA the specified error must be below the minimum limit of 0.05% to
be commercially competitive.

This paper aims to provide an in-depth analysis of the EECT sensitivity to the stray
inter-winding capacitances and to evaluate their impacts on current ratio error and control
instability. In particular, the original amplifier consisting of two inverting amplifier stages
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is found to be much more prone to instabilities caused by unintentional positive feedback
formed by the parasitic inter-winding capacitance. As a result, the overall frequency re-
sponse of the amplifier could become underdamped, generating high-frequency oscillations
superimposed to the nominal frequency component (45 Hz up to 65 Hz) on the secondary
side of the EECT. In order to minimize the impact of parasitic capacitance, this paper pro-
poses a modified amplifier, with the first stage being changed to a non-inverting one. Apart
from swapping the ends of the compensating winding, no further change is required. The
effects of these modifications and robustness against inter-winding capacitance variations
are thoroughly compared for both variants of the EECT and for demonstration purposes
also with a composite current transformer to highlight the advantages of the amplifiers and
identify their potential weaknesses.

2. Construction and Modelling of the EECT

The magnetizing current (I0) of the transformer causes a difference between the pri-
mary (Ip) and the secondary current (Is). They differ in magnitude and phase, both being
frequency dependent. Considering a 1:1 turn ratio, the same applies to the current ratio
defined as

H I =
Ip

Is
= |H I( f )|·ejδI( f ). (1)

A design with inherent isolation between the assisting electronic and the primary and
secondary winding enables a so-called feedthrough transformer construction. Regardless
of the control concept, the assisting electronics should generate and feed a compensating
current (icomp) to nullify the current difference. At least two cores are needed, as is evident
from the generalized concept of EECT shown in Figure 1.
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Figure 1. The EECT’s conceptual scheme.

In the custom-built prototype, both cores of toroidal shape have equal inner and outer
diameters (60 mm× 100 mm) and height (35 mm). The cross-section view in Figure 2 shows
that the cores are positioned side by side to achieve optimal feedthrough construction. The
compensation core (J1) is made of nanocrystal material with Ncomp = 50, while the indication
core (J2) is made of Ni-Fe alloy and is wound with Nind = 400. Both cores are manufactured
by OMEM S.p.A, Italy. Before placing the primary and secondary winding (Np = Ns = 6),
cores are stacked and are uniformly wound with an additional “short-circuit” winding
(NSC = 500). Its purpose is to protect the employed amplifiers against overvoltage if the
secondary load impedance is above the nominal or when the secondary circuit becomes
open-circuited during the operation. Subsequently, the primary and secondary windings
are bifilarly and uniformly wound around the entire diameter, assuring a magnetic coupling
between J1 and J2.
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Figure 2. Cross-section view of cores with indicated windings.

In addition to magnetic coupling provided by primary and secondary winding, the
cores are coupled with the electronic unit through windings Nind and Ncomp. Neverthe-
less, since the amplifier (Figure 1) has infinite input impedance, the J2 magnetization is
assumed to depend exclusively on primary and secondary currents. In order to make them
equal, the electronic unit needs to magnetize the main core (J1) with Icomp = I0 (assuming
Ncomp = Np = Ns).

The studied EECT core and winding structures are reasonably simplified compared
to known sandwich core structures [6,7] due to priority cost optimization, as one EECT
per phase must be provided in the calibration plant for each kWh meter being tested, and
the count of which may extend up to 40. Consequently, any shielding derived from the
sandwich core structure or additional added layer is omitted from the design. Nevertheless,
from the control perspective, the prototype is generally equivalent to the solutions reported
in [10].

EECT Current Error Derivation

Assisting electronics can be analyzed more thoroughly by applying the standard
transformer equivalent circuit (Figure 3). The non-linear magnetizing impedances of cores
are denoted as Zmag1 and Zmag2.
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For simplicity, the leakage impedances of primary and secondary winding split among
both cores are assumed to be equal to Zp and Zs, respectively. A total impedance of the
secondary side (Zs,tot) corresponds to the sum of a nominal load impedance (Zload) and
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the value of Zs. Parameters and quantities of compensation and indication circuits are
transposed to the primary side and annotated with (‘). The assisting electronics behave as a
voltage-dependent current source, i.e., trans-conductance (TC) amplifier with a frequency
response Y. A disturbance voltage source (Vdist) is included in the secondary circuit to
derive a generalized analysis. The Ceq, equivalent capacitance, is discussed in detail in the
subsequent chapters.

Referring to EECT’s equivalent circuit, the current error

Ip − Is = εI = I0 − I′comp (2)

Can only be nullified when I’comp perfectly matches the magnetizing current as already
stated. In order to support the secondary current, the sum of induced voltages in both cores
should be in equilibrium with the total voltage drop in the secondary circuit

I0(Zmag1 + Zmag2)− I′compZmag2 = IsZs,tot −Vdist. (3)

The compensation current (I’comp) fed by the TC amplifier is proportional to its fre-
quency response and to the voltage detected across the indication winding

I′comp = Y(I0 − I′comp)Zmag2. (4)

Applying (3) and (4) to (2), the current error can be derived

εI,EECT =
IsZs,tot −Vdist

Zmag1 + Zmag2 + Zs,tot + Y·Zmag1Zmag2
. (5)

Assuming Vdist = 0 V and Y = 0, i.e., an omitted TC amplifier, the (5) describes the
error of a composite current transformer, stating that the error can only be small when the
total secondary impedance is negligible. In contrast, the magnetizing impedances should
be as high as possible. Due to the presence of the secondary load with its nominal non-zero
value, the selection of high-permeability magnetic materials has, in this circumstance, a
substantial impact on the attained current error of composite CT.

The benefit of the TC amplifier is evidently revealed by comparing the error of the
composite CT with (5) considering Y 6= 0.

εI,EECT

εI,composite

∣∣∣∣∣
Vdist=0

=
Zmag1 + Zmag2 + Zs,tot

Zmag1 + Zmag2 + Zs,tot + Y·Zmag1Zmag2
=

1

1 + Y· Zmag1Zmag2
Zmag1+Zmag2+Zs,tot

. (6)

The (6) reveals that the EECT’s error can be substantially decreased if condition Y ·
Zmag1 · Zmag2 >> Zmag1+ Zmag2 + Zs,tot is fulfilled. In order to comply with the condition,
both magnetic impedances must possess high impedance, i.e., high permeability. However,
as the decrease of Zmag,x can be compensated for by increasing the gain (Y), i.e., the number
of suitable magnetic materials expands. Nevertheless, a clear distinction between both
cores exists. Namely, when the condition I’comp = I0 is satisfied, the power to the secondary
side is transmitted ideally only through the main (J1) core since the induced voltages
across auxiliary core windings tend to be infinitely small. That could lead to the false
conclusion that J2 quality is irrelevant to achieving EECT’s target accuracy. In contrast, by
rearranging (4)

I′comp = I0
Y·Zmag2

1 + Y·Zmag2
, (7)

It becomes evident (7) that for a given Y, the error can be cancelled out (I’comp = I0)
only if |Zmag2| approaches infinity. As a result, the magnetic properties and dimensions of
EECT’s cores, e.g., height, usually differ as |Zmag2| > |Zmag1| is preferred.

The control aspects of the EECT can be better understood by examining its functional
diagram (Figure 4a) drawn in accordance with (2), (3), and (4). The Vs denotes the total
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voltage induced to sustain voltage drops in the secondary circuit. An even more obvious
distinction between composite CT and EECT functions is demonstrated in the rearranged
diagram of Figure 4b.
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3. Description of the Electronic Unit

The electronic unit, behaving as a voltage-dependent current source, helps to minimize
the order of the system as the Z’comp can be neglected, i.e., considered as part of the high-
impedance current source. Since a dedicated current source feeds the primary current, the
Zp can also be neglected.

Referring to (4), the Y is of complex quantity with high magnitude, i.e., gain. As a result,
a two-stage amplifier is proposed, allowing more freedom to customize its compensation
networks. Both stages are developed as inverting topologies utilizing generic operational
amplifiers (Figure 5). However, the preferred high gain is dominantly attained by the
second stage—designed as a composite amplifier with inherent current feedback, provided
by compensation network Comp2. In the output section of the composite amplifier, a
subordinate power amplifier (PA) with higher current capability is implemented to provide
compensation current up to 200 mA.
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Figure 5. The conceptual scheme for assisting electronics.

In a steady-state operation, the DC component of compensation current should be
maintained at a negligibly small value to prevent core saturation. Thus, small offset voltages
in the amplifying chain should only experience a small DC gain provided by compensation
network Comp2. Conversely, the same network must provide a high gain in the frequency
range from 45 Hz to 65 Hz—keeping in mind to prevent setting the roll-off frequency of
the Y frequency response too close to 45 Hz, as this may cause the phase angle to become
frequency dependent. As a compromise, the Comp2 should provide a large magnitude
(gain) and preferably a flat frequency response (Y) starting from DC up.
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Due to the non-linear behavior of PA load, consisting of compensating winding
inductance and the Rn, as a rule, higher harmonics exist in compensating current, which
requires the bandwidth of the amplifier chain to exceed the nominal frequency range of
45 Hz to 65 Hz. Subsequently, a larger PA output voltage is preferred—and thus, a higher
gain is needed in the closed-loop chain to feed the current’s higher harmonics through a
predominantly inductive impedance. In order to avoid PA’s saturation, stability issues, and
other compromises linked to high gain, another compensating network (Comp1) is placed
in parallel with the indication winding and the input of the first stage amplifier—thus
virtually shunting the Zmag2. The choice of Zmag2 placement can be better understood by
referring to (7). Namely, the zero phase error between Ip and Is, i.e., I’comp = I0, can be
merely obtained if the phase shift introduced by the Y and the inductive character of Zmag2
in Im{Y · Zmag2} is compensated to obtain

]
(

ϕY + φ∗mag2
)
= 0. (8)

where φ*
mag2 stands for compensated phase shift.

3.1. Stray Inter-Winding Capacitances

As emphasized in the introduction, the importance of stray inter-winding capacitances
is regularly addressed superficially, providing no details on the controller design. The
capacitance Cps between primary and secondary winding is commonly assumed to be
uncritical. In contrast, the stray capacitances (Cpi, Csi, Cci) of primary, secondary, and
compensating winding, coupled with the indication winding, cannot be neglected from the
analysis despite their small values (some tens pF). In this paper, their effects are combined
and represented with an equivalent Ceq. This simplification is valid since voltage drops
on leakage impedances are negligible. Namely, in contrast to the Cps, the Ceq is coupled to
the node of high impedance, i.e., the A1 input. In terms of control theory, the Ceq virtually
shunts the input and output of the TC amplifier, thus introducing an additional feedback
path. This can change its feedback response (Y), consequently causing its instability due
to a decreased magnitude and phase safety margin [22]. The EECT’s stability is generally
defined by the product of all subunits transfer functions that compose a control loop
(Figure 6), i.e., by open-loop gain.

In the following text, a simplified LTspice model (Figure 6) of the EECT with the origi-
nal TC is implemented to intuitively study the adverse effects of the parasitic capacitance
Ceq, which is design-based and not part of the dedicated feedback loop of the second stage
of the TC amplifier. The A1 amplifier is modelled as a voltage-dependent voltage source,
whereas the PA’s output stage is approximated with a dependent current source. Their re-
sponses are simplified with a first-order transfer function. In practice, the Comp2 feedback
structure comprises a series resistor-capacitor circuit connected in parallel with another
resistor. Contrary to TC’s first-order simplification, the applied circuit above 100 kHz
introduces an extra zero in the TC transfer function to compensate for phase lags attributed
to other unexpected parasitic effects within the PCB design and imperfect shielding. In
addition, the compensation network Comp1 is purely resistive. Extra impedances inserted
in the primary and secondary circuits represent inductances and resistances caused by the
cabling harness.

With Ceq neglected, the Nyquist stability criterion is fulfilled by tuning the feedback
network Comp2, which dominantly defines the PA’s transfer function—and consequently
the EECT’s response (HI, Hdist) in frequency and time domain. However, since the ca-
pacitance Ceq bypasses both inverting amplifier stages, it forms an extra, unintentional
feedback loop. Through it, any voltage change at the output of the second stage reflects at
its inverting input with the opposite sign, forming positive feedback. Because its operation
is reversed to second-stage negative feedback, the magnitude and phase limits are reduced,
resulting in an under-damped response due to increased open-loop gain of the TC amplifier
in a narrow frequency range (specified in literature as bump or response peaking). Its



Sensors 2022, 22, 7565 8 of 16

intensity and frequency range change with both complex feedbacks. In addition to negative
feedback, the intensity of the positive is defined by a frequency depended on relation-
ship quantified by the impedance Ceq and resistance (mainly defined by compensating
network Comp1) seen at the input of the first stage of the amplifier, where they form a
capacitive-resistive voltage divider.
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Their result is seen in Figure 7, which highlights the change in the current ratio’s
magnitude (solid line) and phase (dotted line) at different simulated values of Ceq.
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Its smallest value (5 pF) is attributed to the estimated parasitic capacitance between
connecting wires of both windings. The 1 nF is a more realistically estimated capacitance
and relates both to the printed circuit design of the TC amplifier and, above all, to the
relative position of both respective windings. In practice, this capacitance depends on
the distance between the cores and their height-to-width ratio. In order to assess the Ceq
effects on EECT performance and to test robustness against parameter variations, 50 nF
was chosen as the upper value. Although the maximum peaking in Figure 7 occurs at
Ceq = 1 nF it should be noted that this does not necessarily represent the global peak.

Practically up to 1 kHz the magnitude ratio |HI| is close to 1 and phase error in
10−3 range. (Figure 7). As the capacitance increases, the magnitude ratio modifies moder-
ately in the range where the fundamental component of compensating current is expected
(detail in Figure 7). On the contrary, at higher frequencies, we observe a distinct frequency
band with a significant increase in the magnitude ratio, which passes to lower frequencies
as the capacitance increases. Notably, the maximum peak does not occur at the maximum
or the minimum capacitance, but rather at its in-between value. This behavior is inherent
to positive feedback intensity, i.e., its complex gain explained above relative to the cut-off
frequency of the TC amplifier (1/T0 in Figure 6)—which is mainly defined by compensating
network Comp2. The Y frequency response shows the same behavior, where its peaking
occurs at Ceq = 1 nF rather than at 5 pF or 50 nF (Figure 8a).
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Figure 8. Simulated frequency response Y (magnitude-solid line, phase—dotted line) with original
and modified amplifier for varying Ceq: (a) original amplifier; (b) modified amplifier.

The above-discussed positive feedback origin can be straightforwardly verified by
modifying the input stage (Figure 6) to a non-inverting one. Nevertheless, the closed-loop
phase relationship must be preserved; that is why the direction of compensating current
needs to be altered, e.g., by swapping the ends of the compensating winding. The obtained
results in Figure 9 show that the modified topology predominantly changes the high-
frequency behavior of the current ratio. In particular, compared to the original amplifier
topology (Figure 7), the high-frequency peak is reduced by more than 42 times for the
Ceq = 1 nF, except in the case of the smallest value of Ceq, where the reduction is less than
30%. In contrast to the original circuit, the most significant observation is that current ratio
peaks are limited as soon the Ceq is high enough.

Nevertheless, no significant improvement nor deterioration is gained in the low-
frequency range, where |HI| moves away from 1 in both cases as Ceq increases. At this
point, it is worth noting that the reported HI summarizes the small-signal AC responses
implemented on a linearized and simplified circuit. Thus, the demonstrated behavior
is expected to deviate in practical circumstances due to the non-linearity and saturation
introduced by PA and the B-H magnetizing curve. Regardless of these simplifications, and
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without further analysis, the significantly smaller current ratio gain (Figure 9) obtained at
higher Ceq reduces the presence of high frequency and high-amplitude secondary currents
(compared to Ceq = 5 pF and particularly to the original amplifier in Figure 7). Thus, in the
modified amplifier, Ceq forms an additional negative feedback loop, which in turn does
not cause the subsequent instability of the TC amplifier, but even helps in its frequency
compensation, which is typical for multipath (negative) feedback loops [23,24]. As a result,
no additional TC amplifier damping via any of its compensating networks is required.
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3.2. Disturbance Rejection Capability

Whenever the length of the secondary side harness connecting the EECT with the load
is oversized, the intermittence of the nearby circuits can disrupt the current relationship
in the EECT. Therefore, any unintended voltage or current source must be considered to
warrant the desired accuracy. In this paper, the secondary side disturbance source Vdist
emulates the impact of induced voltage caused by the alternating magnetic fields that
couple to a possibly oversized secondary harness. Its impact can be assessed in the form of
a rejection ratio derived from (5)

|Hdist| =
∣∣∣∣ Is
Vdist

∣∣∣∣ =
∣∣∣∣∣ 1
Zmag1 + Zmag2 + Zs,tot + Y·Zmag1Zmag2

∣∣∣∣∣. (9)

Note that the primary current is independent of secondary side disturbance since an
ideal current source is placed in the primary winding

Compared to the composite CT (Figure 10), the electronic unit improves the rejection
ratio almost across the whole frequency range, as can be expected (9). Especially for the
original circuit (Figure 10a), one can observe similarities with |HI| frequency response in
respect of more or less narrower frequency bands where the rejection becomes insufficient,
or even smaller than what is achieved with a composite CT. Nevertheless, the rejection
within the nominal frequency range is sufficiently large and generally decreases with
increasing frequency as long as Ceq is not too large. This behavior again underlines the
importance of Ceq during the design process-even when an electronic unit with a modified
configuration is used (Figure 10b).
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Figure 10. Disturbance rejection capability |Hdist|composite CT (blue line) vs |Hdist|EECT (red lines) for
varying Ceq = {5 pF, 1 nF, 50 nF}: (a) original amplifier; (b) modified amplifier.

3.3. Compensating Networks Guidelines

As can be seen from the qualitative analysis of the EECT, the influence of the Ceq
regarding the deviation of the current ratio and the attenuation capability Vdist is noticeably
favorable in the modified configuration of the two-stage amplifier circuit. In addition, both
compensation circuits have been identified as crucial components that significantly affect
both frequency responses and must respectively meet the following qualitative conditions:

• In frequency bandwidth extending up to the 20th harmonic of the maximum value of
nominal frequency (65 Hz), the TC amplifier gain (Y) must be considerably large with
a negligible phase shift—both quantities are primarily subjected to Comp2;

• To substantially decrease the EECT’s magnitude error (6), the following Y · Zmag1 ·
Zmag2 >> Zmag1+ Zmag2 + Zs,tot must be fulfilled;

• To attain negligible phase error, the imaginary part of Y· Zmag2 must be zero. As Zmag2
is inductive, the Comp1 is mandatory to compensate for its phase shift;

• Due to differences in throughput power, the Zmag2 > Zmag1 is preferred.

4. Experimental Results

The EECT prototype seen in Figure 11 was used to verify the findings. Note that
if not explicitly emphasized, all measurements in the following are taken on optimized
compensation networks guaranteeing that the current error is within specification limits.
The measurements of a custom-built EECT used for testing direct connected poly-phase
meters were performed with dedicated energy-based measuring equipment to verify the
findings. In particular, two precise electronic kWh-meters employing the time-division
multiplier (TDM) approach with nominal 0.01% accuracy were used. Their voltage channels
were connected to the same voltage generator.

In contrast, the current channel of the first kWh-meter was connected to the primary
circuit in series with the current generator. The second one was installed in the secondary
circuit of the tested EECT. Both generators are part of a calibration power supply that can
independently adjust their magnitude and phase displacement. As the applied concept
of the kWh-meters cannot distinguish between magnitude and phase error, the latter was
qualitatively checked by performing measurements at power factor (PF) equal to 1 and at
±0.5, i.e., at ±60 degrees displacement between voltage and current generator.

Before each measurement, both current channels were exposed to identical conditions
to obtain the calibration table in the entire current range and at different power factors. That
was necessary to take into account the differences inherent to kWh-meters. Subsequently,
the measurement, with current channels attached as mentioned above, was repeated at the
same measuring points. The results obtained by considering the calibration data are shown
in Figure 12.
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4.1. The Y Frequency Response Measurement

The frequency response Y is generally measured by the voltage injection method with-
out opening the control loop [25]. However, its results are valid as long as the impedance
Middlebrook’s criteria is obeyed—stating that the impedance seen by the injection genera-
tor needs to be zero at one and infinite at the other connecting point. At first glance, the
point between the output of A1 and the coupling resistor Rint seems the most suitable if
only the output impedance of A1 was not comparable in magnitude to Rint and dependent
on frequency. Another reason for discarding this type of measurement is that during the
frequency sweep, the non-linearity involved in the closed loop affects the measurements as
the amplitude of the input signal is not under control.

Instead, the frequency response was measured in an open loop configuration with
compensating winding detached from the TC amplifier. Its load, i.e., secondary side
impedance, was substituted with its transposed value, i.e., with a 277 mΩ resistor. To
preserve the magnetic properties in J2 similar to operating ones, the magnitude of the
injected signal, attached to the A1 input, was kept reasonably small. The measurement was
performed by the Vector Network Analyzer—Bode100 [26]. In addition to Vind, the Icomp
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was captured as a voltage drop across Rn and consequently applied to input channels of
the Bode100.

The frequency characteristics measured on both amplifier configurations with opti-
mized compensation networks can be seen in Figure 13a. The responses in Figure 13a
demonstrate the impact of purposely increased capacitance Ceq on both amplifier configu-
rations. The modified amplifier’s resonant peak is reduced compared to the measurement
taken at the default Ceq value. In contrast, it is exceeded in the original amplifier configura-
tion. The default value Ceq,def = 125 pF, defined by design, was assessed with RLC meter
HP4274A by measuring the capacitance between indicating and compensation winding
with their ends short-circuited.
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(a) optimized Comp2; (b) non-optimized Comp2.

A similar comparison was then made with the adapted compensation circuit Comp2
so that the amplitude and phase margin of the TC was reduced. Consequently, the original
amplifier’s response (blue line in Figure 13b) demonstrates a relatively higher peak, as
the low-frequency gain is smaller than in Figure 13a. With this change, the increased
capacitance Ceq has an entirely different impact on both amplifier configurations. The
operation of the modified amplifier remains stable, whereas the original one becomes
severely unstable at higher frequencies. It shows a significant gain increase (Figure 13b)
around and above the resonant peak. This measurement should nevertheless be taken only
as informative since, as during the frequency sweep, the periodic oscillations emerged at
the output of the amplifier circuit and consequently overloaded the Bode100 input channels.
This, however, did not occur in the case of the modified circuit.
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The overloading issue with the measuring equipment is also why measurements were
not performed with Ceq = 1 nF, which among a set of simulated values, shows the highest
response peaking, but instead with 3.3 nF resulting in less severe overloading.

4.2. Disturbance Rejection Measurement

The rejection capability was also measured using the Bode100. In order to emulate
a secondary voltage disturbance, its generator was attached via an additional coupling
transformer in the secondary circuit. The secondary voltage and current were then captured
by a voltage and current probe (TA189 PICO) and fed into the Bode100 input channels.
During the measurement, the primary winding was opened to provide a constant primary
current, thus emulating the primary current source and assuring the resemblances with the
theoretical backgrounds in Section 3.2.

The composite transformer’s attenuation (Figure 14) was measured as a starting
point to distinguish the impacts caused by core construction from those resulting from
the electronic unit. A continuous increase in attenuation is noticeable for both amplifier
configurations up to 1 kHz when it starts to decrease again. The obtained attenuation im-
provement is approximately 40 dB over the nominal frequency range regardless of whether
the default value of Ceq is increased or not. Above 100 Hz, the effect of increasing Ceq is
more evident in the form of a reduction in the attenuation of both amplifier configurations
compared to Ceq = Ceq,def.
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4.3. The Experimental Summary

Experimental results (Figures 13 and 14) show a high degree of similarity with the
simulation results, despite being obtained on a simplified model of the TC amplifier and the
electrical and magnetic properties of the two magnetic components (J1 and J2). Due to the
lack of exact parameters and primarily due to the neglected non-linearity of the magnetic
circuit, the results do not match perfectly. In addition, the applied calibration source does
not represent an ideal primary current source, as assumed in analysis, and its parameters
are neither frequency independent. As a result, the most extensive disagreement is evident
at high frequencies of Hdist where the response of amplifiers significantly deviates from the
composite amplifier, unlike in the simulations, where their attenuations match.

In addition, the non-linearities, as mentioned above, increase the inaccuracy of the
simulation prediction and the complexity of the optimization process beyond the default
small-signal analysis. That is why the control loop has been, as a result, optimized solely
based on experimental knowledge. A potential upgrade of the simulation model would
improve the agreement of the results, but it would be beyond the scope and aim of this paper.
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Nevertheless, we estimate that the accuracy of the simplified simulation is satisfactory,
which is also confirmed by the experimental results.

5. Discussion

In this paper, the capacitive coupling between indication and compensating winding
of electronically enhanced current transformer with simplified feedthrough construction
is analyzed thoroughly in terms of current ratio error and stability of the implemented
TC amplifier. In this regard and compared to other publications, the paper highlights the
importance of the implemented amplifier configuration. The preliminary assumption about
the adverse effect of the inter-winding capacitance shunting both ends of the amplifier
composed of two series-connected inverting amplifier stages was confirmed with the help
of a simplified simulation model and was experimentally proven by measurements on a
custom-built EECT prototype. Furthermore, the analyzed phenomena were linked to TC
amplifier parameters, explicitly with its compensating networks, and summarized in their
design guidelines.

Despite the greatly simplified simulation model of the EECT, the simulation predic-
tions agree with practical measurements to a large extent. Noticeable deviations, especially
those above the nominal frequency range, are mainly attributed to ferromagnetic core
modelling that neglects their non-linearity and the first-order approximation of A1 and
PA frequency responses. The results reveal that modified amplifier configuration with
the non-inverting input stage is far more superior regarding Ceq variation. This is evident
from Y response measurement (Figure 13), demonstrating how much more the original
configuration is prone to instability in particular when non-optimized compensating net-
work Comp2, which gives rise to the roll-off frequency of the Y, is implemented. Note
that the amplifier reconfiguration does not require any other costly modifications except
straightforward swapping of either indication or the compensation winding ends.

In contrast to Y, which has a proven impact on the stability of EECT, the significance
of the Hdist measurement at frequencies that are a decade or two higher than the nominal
frequency requires additional comment. In both cases, the broad measuring range is far
from being irrelevant. Namely, in a specific application, a dedicated switch-type calibration
source imposes current through the primary winding, composed of the fundamental,
e.g., 50 Hz and high-frequency components, usually in the kilohertz region. Despite their
small level, they should be sufficiently attenuated on the secondary side. The secondary
side of the EECT likewise is subjected to the presence of high-frequency currents. In this
case, their generation can be associated with likely unstable operation of EECTs being part
of the implemented precise electronic kWh-meters attached in the primary and secondary
circuits. Thus, the disturbance rejection capability is vital to prevent instability from
spreading from one system to another.

Although we avoided using dedicated shielding layers to protect the indicating and
compensating windings against the dV/dt effects in the primary and secondary circuit,
the shielding effect was secured by a tightly wound short-circuit winding grounded with
one end to the reference potential of the electronic unit. Of course, the shield’s capability is
not perfect due to the non-negligible impedance at higher frequencies, but it’s better than
nothing—especially since no particular winding machine or even manual work is required.
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