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Abstract: This article presents a method for transparent watermarking of high-capacity watermarked
video under H.265/HEVC (High-Efficiency Video Coding) compression conditions while maintaining
high-quality encoded image. The aim of this paper is to present a method for watermark embedding
using neural networks under conditions of subjecting video to lossy compression of the HEVC codec
using the YUV420p color model chrominance channel for watermarking. This paper presents a
method for training a deep neural network to embed a watermark when a compression channel is
present. The discussed method is characterized by high accuracy of the video with an embedded
watermark compared to the original. The PSNR (peak signal-to-noise ratio) values obtained are over
44 dB. The watermark capacity is 96 bits for an image with a resolution of 128 × 128. The method
enables the complete recovery of a watermark from a single video frame compressed by the HEVC
codec within the range of compression values defined by the CRF (constant rate factor) up to 22.

Keywords: neural network; watermark; deep learning; property verification; copyright protection;
video; HEVC; H.265; YUV420; YUV420p

1. Introduction

Nowadays, the issue of securing ownership rights to materials in digital form is one
that requires further development. There are various ways of securing digital materials,
such as DRM (Digital Rights Management), to protect against copying or illegal processing.
A popular method of securing the copyright of video materials is to embed a watermark
in them. The embedded watermark may or may not be visible. In the first case, a visible
watermark is added to the video, often in the form of the logo of the TV station. The
visible watermark has a high degree of ease of implementation and recognition, but it
also obscures a portion of the video, altering the viewer’s visual experience [1,2]. In the
case of transparent watermark embedding, no additional graphic element is introduced in
the form of a visible watermark and, what is more, the person reproducing the material
in question may not know that it is protected in this way due to its invisibility [3,4].
Watermarking methods have also evolved with the development of their detection and
removal [5–8]. These methods address the detection and removal of visible as well as
transparent watermarks.

The implementation of embedding a visible watermark involves permanently adding
a visible logo to the video, identifying the owner of the copyright to the video in question.
On the other hand, the implementation of a transparent watermark is a more complex
issue requiring consideration of fundamental issues related to the subject, such as capacity,
visibility, resistance to changes of the carrier, and reversibility of changes made to the image.

This publication will present a system for protecting ownership of video materials
based on embedding a transparent watermark in the video. In the case of transparent image
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watermarking, there are descriptions in the literature of more elementary methods, such
as the use of the least significant bit [9], based on frequency analysis, such as the wavelet
transform [10], as well as more complex methods [11] that are a specific combination of
basic methods or even dedicated to particular video codecs and use their characteristics for
their operation. With the popularization of artificial neural networks (ANNs), watermark
embedding methods using them have also emerged [12–17].

Classical methods, as well as those based on ANNs, have strengths and weaknesses
due to the characteristics of their operation. Both classical and ANNs-based methods have
the potential for further development to improve the performance of existing methods or
adapt them to new issues, such as new video codecs. The method presented in this article
is based on the use of deep neural networks (DNNs) because with the right choice of DNN
architecture and proper design of the training set, trained DNN should have the ability to
find properties of the problem being analyzed that may not be included or predicted in a
manually written algorithm.

The aim of this article is to present an improved method compared to the previously
published method for embedding a watermark in a high-quality video based on DNN
under High-Efficiency Video Coding (HEVC) [18–21] codec compression conditions [22].
The main research problem was to ensure the resistance of the watermark under higher
HEVC compression levels than in a previous paper [22] and in comparison to other methods.
Additionally higher capacity size for the watermark was achieved while providing higher
values of carrier PSNR. The presented method of embedding the watermark takes into
account the subsampling of the YUV420p chrominance in a way that ensures its recovery
while providing high accuracy of the video with the embedded watermark in relation to the
original video. The method is based on the use of a DNN autoencoder (using a real HEVC
compression channel and mimicked by a trained coder in the training process) and on the
use of an adjustable subsquares properties algorithm (ASPA) [22] method for watermark
generation in chrominance channels.

The structure of this manuscript is as follows: A discussion of the literature is presented
after the introduction. Next, the proposed method will be presented and discussed, taking
into consideration the training of the encoder together with the decoder and the training
of the coder mimicking the HEVC compression channel. After the presentation of the
proposed method, the results of the method will be presented with a discussion. At the
end of the manuscript, there are conclusions summarizing the outcome of the study.

2. Literature Review

In reviewing the literature on watermark embedding, a distinction was made between
classic methods and methods using ANNs.

Classic methods can include methods, such as those based on the least significant
bit [23–25] or methods based on frequency domain manipulation (discrete wavelet trans-
form, discrete Fourier transform, discrete sine, and cosine transform) [10,26–31]. There
are many modifications of these methods, such as a combination of the least significant
bit method and those based on manipulation of the frequency domain, which includes
publications concerning hybrid domains [23,32–34].

When discussing the embedding of a watermark in an image, a distinction should be
made between embedding a watermark in a static image [23,34–37] and in a video [14–17].
The methods used for static images find their application and development in methods
for video purposes. An elementary example of an information hiding method is the
modification of the least significant bit, which is effective in its simplicity but sensitive
to any kind of operation performed on a dynamic image, such as a video image. More
resistant are methods based on frequency domain manipulation, where the watermark is
embedded in such a frequency band of the image as to produce a watermarked image with
the least degradation in quality compared to the original. Images are modified as a whole
or in certain areas of interest, which may be parts of the image where it is easier to hide
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information or, due to the operation of the method for which no overall modification of the
image is necessary to hide the information.

Embedding a watermark in a video is a more complex issue than that of a static image.
The main problem is to keep the watermark highly resistant while maintaining good video
quality. The difficulty itself stems from the fact that the video image, when encoded into a
particular format (depending on the DVB-T receiver, Internet TV), is usually compressed
to reduce its size several times. This compression is usually multifaceted [38,39] and is
carried out not only in the binary symbol domain but is also achieved by downsampling
of channels in a given color model, introducing changes in the frequency domain and
introducing a motion vector, where such a cascade of source image translations ultimately
hinders the possibility of watermark reconstruction.

Multifaceted variations in the source image make it difficult to manually select the
appropriate method for watermarking a transparent video image. This has led researchers
towards using adaptive methods, such as DNN, for this purpose. Incorporating DNN into
the issues of stenography and video watermarking allow a high probability of recovering
the watermark and keeping the quality of the watermarked image in high quality [38–40]
by being able to select optimal image composition and decomposition methods as a result
of the training process [41–47].

Depending on the approach adopted, the watermark can be recovered from a single
video frame or from a specific number of frames.

For video watermarking, both classic and ANN-based methods are used [14–17,48–51].
Among these are methods dedicated to specific video codecs, including the H.265/HEVC
(High-Efficiency Video Coding) codec for which the method presented in this article has
been developed [16,17,50,51].

A noteworthy issue is the description of the coefficients describing the degree of
accuracy of the watermarked video to the original [52]. The PSNR (peak signal-to-noise
ratio) and MSE (mean-squared-error) are popular coefficients and used in this publication.
There are also other coefficients that address the determination of the degree of accuracy
between images, such as: NMSE (normalized-mean-squared-error), RMSE (root-mean-
square-error), or SSIM (structural-similarity-index-measure). At this point, it is important
to emphasize that, although the above-mentioned coefficients work well in a general
comparison of quality, they are not a definitive guarantee of its quality. It is possible that
there will be a small but clearly visible graphic artifact in a large image that does not
significantly affect the overall image accuracy value determined mathematically.

3. Proposed Method
3.1. Presentation of the Concept of the Proposed Method

The presented method is a continuation of the method presented in a previous publi-
cation aimed at embedding a watermark in the compression conditions of the HEVC codec
using DNN and ASPA (Adjustable Subsquares Properties Algorithm). In the watermarking
system concept presented further in this article (Figure 1), the additional factor of YUV420p
chrominance subsampling used in video codecs as one of the compression stages allowing
an additional reduction in memory requirements at the expense of degrading the quality of
the chrominance channels is included.

The system consists of two main components of a watermarking encoder and a
watermark reconstruction decoder. Embedding a watermark in an image consists of
two stages. In the first stage, the binary character string is transformed via the ASPA
algorithm into an image that is optimal for encoding in chrominance channels. In the next
step, the watermarked image thus obtained is fed to the DNN encoder input together with
the image that will carry the watermark. At the encoder output, an image of the carrier
with a transparently embedded watermark is obtained. From the image thus obtained,
the watermark can be recovered by feeding it to the input of the decoder and obtaining a
reconstructed watermark at its output.
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Figure 1. Conceptual diagram of the system.

The encoder and decoder subsystems use ASPA for efficient encoding of information
in the image, which was discussed in detail in a previous publication [22], however the
main idea of the algorithm will be briefly explained here as well.

The area of the square with dimensions n × n is divided in such a way as to form a
fixed number of subsquares with dimensions m ×m that fit into the square in such a way
as to fill all its available space of n × n. Translating this for the case used in this article, the
square of 128× 128 was divided into 16 subsquares of 32× 32. Each subsquare for a hidden
watermark copies the original luminance value (Y-channel) to increase the similarity of the
encoded image with the original image and has chrominance values (U and V channels),
which are the actual carrier of the hidden information and represent digits of the selected
number system, which is the octal in this case. Thus, U and V may take values in the range
of digits 〈0; 7〉. The value in the V channel should be interpreted as a less significant bit
and U channel represents the most significant bit.

Each digit is assigned a fixed value during the watermark embedding process. For the
decoding process, a fixed range of values is assigned to each of the interpreted digits. The
ranges of values used in this method for the decoding process are shown in Table 1.

Table 1. Value ranges for encoding and decoding digits.

Digit Value Range RGB Value Range

0 〈0; 0.125〉 〈0; 31.875〉
1 (0.125; 0.25〉 (31.875; 63.75〉
2 (0.25; 0.375〉 (63.7; 95.625〉
3 (0.375; 0.5〉 (95.625; 127.5〉
4 (0.5; 0.625〉 (127.5; 159.375〉
5 (0.625; 0.75〉 (159.375; 191.25〉
6 (0.75; 0.875〉 (191.25; 223.125〉
7 (0.875; 1〉 (223.125; 255〉

Two numbers in the octal number system contain 64 combinations of values. This
property was used to assign an appropriate ASCII character to a given value. In this
way, the letters of the alphabet, as well as numbers and some special characters, were
assigned. Characters representing watermark are read from the text file and converted
into the appropriate assigned value in the range 〈0; 64〉 for the encoding needs. Thus, each
subsquare in ASPA represents a single character.
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The sizes of the main square, as well as the subsquares used, have remained unchanged
and are 128 × 128 and 32 × 32, respectively. The numeral system used was changed from
senary to octal, increasing the capacity of the watermark from 80 bits to 96 bits. The ANNs
used in the article perform calculations over a normalized range of values 〈0; 1〉 and the
encoder and decoder subsystems operate on such values. Table 1 shows the ranges of
values for which the individual digits of the octal numeral system are interpreted along
with their values when converted to the values of the standard RGB color model.

A watermark is encoded in the U and V chrominance channels, where the digits that
correspond to the encoded value are encoded, while the Y luminance channel is copied
from the original image carrying the watermark.

Despite the use of YUV420p chrominance subsampling for video purposes, the coding
algorithm used works well because it features a flexible selection of the size of the sub-
squares in which the bit strings are placed. Figure 2 shows a graphical comparison of YUV
color model for the YUV444 and YUV420p variants.
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3.2. HEVC Compression Learning Process
In order to increase the accuracy of the embedded watermarked image compared to

the original image and to increase the tolerance range of HEVC compression, an additional
training element was introduced in the training process of the encoder and decoder that
mimics HEVC compression, hereafter referred to as the DNN coder. In this subsection, the
training process for the aforementioned element will be presented, while the training of
the encoder embedding the watermark, as well as the decoder performing the watermark
reconstruction, will be presented in the next subsection. In order to carry out the training
process of the DNN coder mimicking HEVC compression, the following objective function
relationships were used:

MSEOrgCodImg = MSE
(

ImageOriginal , ImageCoded

)
(1)

MSEHevcCodImg = MSE
(
ImageHevc(CRF), ImageCoded

)
(2)

EpochChange(i) = i · 0.001 (3)

LCodLoss(i) =
((
(1.01− EpochChange(i)) ·MSEOrgCodImg

)
+

(
(0.50 + EpochChange(i)) ·MSEHevcCodImg

))
i ε(0; 300〉 (4)

∇LCod(i) =
∂LCodLoss(i)
∂VarCod(i)

(5)

where MSE(Image1, Image2) =
1

Nj
∑

Nj

i=0

(
Imagej

1[i]− Imagej
2[i]

)2
is the mean square error at axis j

(with size Nj) of images described as tensors, ImageOriginal is the original image, ImageCoded is the
image produced by the trained ANN mimicking the image after HEVC compression, ImageHevc is the
image obtained after HEVC compression, CRF (constant-rate-factor) is the coefficient determining the
degree of HEVC compression, MSEOrgCodImg is the mean square error of the image produced by the
coder relative to the original image, MSEHevcCodImg is the mean square error of the image produced
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by the DNN coder in relation to the image obtained after HEVC compression, i is the training epoch
number, EpochChange(i) is the modification value of the error function calculated on the basis of the
epoch number, LCodLoss(i) is the encoder error, VarCod(i) is the tensor of the encoder model weights,
LCod(i) is the gradient of the coder objective function.

The training process used the Adam Optimizer algorithm [53]. The optimal number to achieve
convergence for DNN was to run 300 epochs of the training algorithm. For the first 200 epochs
of training, the learning rate had a fixed value of 10−4, and for the next 100 epochs the coefficient
was changed to 10−5, as it was found during the experiments that a reduction in the rate after the
200th epoch yielded the best training results.

The training set consisted of 4000 images randomly downloaded from the Internet, which were
changed to a 128 × 128 resolution compatible with the input size of the coder and the other ANNs
discussed further. The images, when loaded for training, were converted to the YUV420p color model,
which means that from the standard RGB color model, which has dimensions of 128 × 128 × 3 (where
the first two numbers indicate height and width and the last digit indicates the number of channels),
the images were converted accordingly with the YUV420p color model to a size of 192 × 128 × 1,
which is the image size at the input and output of the network.

The test set consisted of video frames that had been converted to the H.265 codec format with a
compression coefficient of CRF = 7. The testing process compared the individual frames read from
the video and then calculated MSEHevcCodImg.

The images ImageHevc(CRF), being images after passing through the HEVC compression
channel, were coded with a coefficient of CRF = 24. The operation of the HEVC channel was
implemented by sending ImageOriginal to the HEVC codec, which converted the video to H.265 format
and saved it to a single-frame video file. To speed up the process of writing and reading encoded
frames in the DNN training process, writing files to RAM via RamDisk was used.

The structure of all ANNs occurring in this manuscript is unified, which means that the encoder
has the same structure as the decoder. The only deviation from this statement is the encoder structure,
which takes as its input two arguments in the form of images that are respectively the carrier and
the watermark, in the remaining part, the encoder structure is the same. Tables 2–4 show the DNN
parameters of the encoder and decoder, as well as the coder.

Table 2. Basic Layer (BL) processing model.

Layer Number Layer Type

1 Convolution 2D layer
2 Batch Normalization
3 Convolution 2D layer
4 Batch Normalization
5 Convolution 2D layer
6 Batch Normalization

Table 3. Preliminary, convolutional neural network model.

Layer Number Layer Type Parameters

1 BL
activation function: LeakyReLU

kernel size: 3 × 3
filter number: 63

2 BL
activation function: LeakyReLU

kernel size: 5 × 5
filter number: 63

3 Concatenate ((1, 2), axis = 3) -

4 BL
activation function: LeakyReLU

kernel size: 5 × 5
filter number: 63

5 BL
activation function: LeakyReLU

kernel size: 3 × 3
filter number: 63

6 Concatenate ((4, 5), axis = 3) -
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Table 4. A model of the convolutional neural network: Coding, encoding, and decoding.

Layer Number Layer Type Parameters

1 BL
activation function: LeakyReLU

kernel size: 3 × 3
filter number: 63

2 BL
activation function: LeakyReLU

kernel size: 5 × 5
filter number: 63

3 BL
activation function: LeakyReLU

kernel size: 7 × 7
filter number: 63

4 Concatenate ((1, 2, 3), axis = 3) -
5 Batch Normalization (4)

6 BL
activation function: LeakyReLU

kernel size: 3 × 3
filter number: 63

7 BL
activation function: LeakyReLU

kernel size: 7 × 7
filter number: 63

8 Concatenate ((6, 7), axis = 3) -
9 Batch Normalization (8)

10 BL
activation function: LeakyReLU

kernel size: 7 × 7
filter number: 63

11 BL
activation function: LeakyReLU

kernel size: 5 × 5
filter number: 63

12 BL
activation function: LeakyReLU

kernel size: 3 × 3
filter number: 63

13 Concatenate ((10, 11,
12), axis = 3) -

Batch Normalization (13)

14 Convolution 2D layer activation function: LeakyReLU
kernel size: 1

With reference to the previous article, it should be emphasized that the Basic Layer, the model
of which is shown in Table 2, has remained unchanged, while the structures of the preliminary
network (Table 3) and of the encoder and decoder (Table 4) have been altered through downsizing
and unification.

The network structure consists of the following layers: Convolution 2D, Concatenate and Batch
Normalization. For convolutional layers, the LeakyReLU activation function having a negative slope
coefficient of 10−2 is used.

All the system elements that are DNNs, together with the coder that is the training element,
have a preliminary network that prepares the image for the input of the actual system element before
the actual calculations are made. In each system component, the preliminary network has the same
structure but is dedicated to image preparation for a specific system component. At this point, it is
worth emphasizing that in the encoder structure, the preliminary network is present only for the
watermarked image, while the image being the watermark is fed without preprocessing through the
preliminary network directly to the encoder input.

Parameters relating to the coder are shown in Table 5.

Table 5. Parameters of the coder.

Type Input Tensor Size Number of Weights Size on Disk Processing Time for a
Single Tensor [ms] GPU Processor

Coder (192, 128, 1) 5771494 69.00 MB 61.551 GeForce 1080Ti
GTX 11GB
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3.3. Watermarking Learning Process
The process of training watermark embedding by the encoder and its extraction by the decoder

is implemented through the use of an error feedback mechanism consisting of a reciprocal effect on
the training process of decoder-to-encoder and encoder-to-decoder, similar to what happens when
training GAN type DNNs. A more detailed description of the components of the training process
follows from the objective function used:

MSEEncCoder = MSE
(

ImageOriginalHevc, ImageEncodedCoder

)
(6)

MSEEncHevc = MSE
(

ImageOriginalHevc, ImageEncodedHevc

)
(7)

MSEEncOriginal = MSE
(

ImageOriginal , ImageEncoded

)
(8)

MSEDecCoder = MSE
(
ImageToHideHevc, ImageDecodedCoder

)
(9)

MSEDecHevc = MSE(ImageToHideHevc, ImageDecodedHevc) (10)

MSEDecOriginal = MSE(ImageToHide, ImageDecoded) (11)

EpochChange(i) = i · 0.001 (12)

LEncLoss(i) =
((
(1.01− EpochChange(i)) · MSEEncOriginal

)
+ ((0.50 + EpochChange(i)) ·MSEEncHevc) + (0.50 ·MSEEncCoder)

)
i ε(0; 250〉 (13)

LEncLoss(i) =
((
(1.01− EpochChange(i)) ·MSEEncOriginal

)
+ ((0.50 + EpochChange(i)) ·MSEEncHevc) + (0.50 ·MSEEncCoder)

)
i ε(251; 500〉 (14)

LDecLoss(i) =
((
(0.75 · EpochChange(i)) ·MSEDecOriginal

)
+ ((0.50 + EpochChange(i)) ·MSEDecHevc) + (0.50 ·MSEDecCoder)

)
i ε(0; 250〉 (15)

LDecLoss(i) =
((
(0.75 · EpochChange(i)) ·MSEDecOriginal

)
+ ((0.50 + EpochChange(i)) ·MSEDecHevc) + (0.50 ·MSEDecCoder)

)
i ε(251; 500〉 (16)

LEncFinalLoss(i) = (LEncLoss(i) + (0.56 · LDecLoss(i))) (17)

LDecFinalLoss(i) = (LDecLoss(i) + (0.56 · LEncLoss(i))) (18)

∇LEnc(i) =
∂LEncFinalLoss(i)

∂VarEnc(i)
(19)

∇LDec(i) =
∂LDecFinalLoss(i)

∂VarDec(i)
(20)

where ImageOriginalHevc is the original image after HEVC channel compression, ImageEncoded is
the image with an embedded watermark, ImageEncodedHevc is the image with an embedded watermark
after HEVC channel compression, ImageEncodedCoder is the image with an embedded watermark after
coder DNN compression, ImageToHide is the hidden image constituting a watermark, ImageToHideHevc
is the hidden image constituting a watermark after HEVC channel compression, ImageDecoded is the
image recovered with a hidden watermark, ImageDecodedHevc is the image recovered with a hidden
watermark after HEVC channel compression, ImageDecodedCoder is the image recovered with the
hidden watermark after compression by the coder DNN, MSEEncCoder is the mean square error of the
image with the embedded watermark after compression of the HEVC channel, and the image with
the embedded watermark after compression by the coder DNN, MSEEncHevc is the mean square error
of the original image after compression of the HEVC channel, and the image with the embedded
watermark after compression of the HEVC channel, MSEEncOriginal is the mean square error of the
original image, and the image with the embedded watermark, MSEDecCoder is the mean square error
of the image with the hidden watermark after compression of the HEVC channel, and the image
recovered with the hidden watermark after compression by the coder, MSEDecHevc is the mean square
error of the image with a hidden watermark after compression of the HEVC channel, and the image
recovered with the hidden watermark after compression of the HEVC channel, MSEDecOriginal is
the mean squared error of the image with a hidden watermark, and the image recovered with the
hidden watermark, i is the training epoch number, EpochChange(i) is the value modifying the error
function calculated in dependence of epoch number, LEncLoss(i) is the encoding error (embedding
the watermark while maintaining transparency), LDecLoss(i) is the decoding error (of recovering
the watermark), LEncFinalLoss(i) is the proportionally summed encoder error including the decoder
error, LDecFinalLoss(i) is the proportionally summed encoder error taking into account the encoder
error, VarEnc(i) is the tensor representing the weights of the encoder model, VarDec(i) is the tensor
representing the weights of the decoder model,∇LEnc(i) is the gradient of the encoder error function,
∇LDec(i) is the gradient of the decoder error function.

For the purposes of the training process, the same training set and test set were adopted as for
the DNN coder, with the difference that on successive frames from the video constituting the test
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set MSEEncHevc and MSEDecHevc were calculated. Watermarks ImageToHide were generated by ASPA
from randomly generating binary strings. For the HEVC compression channel, the same coefficient
value as in the coder DNN training process was assumed equal to CRF = 24. The training process
also used the Adam Optimizer training method with a fixed learning rate of 10−4.

Parameters relating to the encoder and decoder are shown in Table 6.

Table 6. Parameters of the encoder and decoder.

Type Input Tensor Size Number of Weights Size on Disk Processing Time for
a Single Tensor [ms] GPU Processor

Encoder (2, 192, 128, 1) 5776723 69.10 MB 62.234 GeForce 1080Ti GTX
11GBDecoder (192, 128, 1) 5771494 69.00 MB 61.424

3.4. Edge Effect
When embedding a watermark in an image larger than the 128 × 128 resolution of the encoder

input image, it is necessary to divide the input image into fragments that match the encoder input.
During the watermark embedding process, an edge effect may occur (Figure 3), consisting of a
perimeter marking of the encoded image section, which is noticeable upon zooming in.
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Figure 3. Preview of the edge effect: Left for a poorly trained network, right for a better
trained network.

This effect can be present with a well-trained ANN (correctly working over most of the image
area with a negligible edge effect up to a few pixels in width) and can be transparent and therefore
not present in practice for a correctly trained ANN that has a very high level of image reproduction
relative to the original image as in the case of the network trained for the purposes of the research
presented in this article.

The edge effect can be easily eliminated by re-encoding the parts of the image where it is visible.
This increases the time needed to embed the watermark, however, it ensures high image quality
without any visible distortion in the form of an edge effect.

4. Results
This section will present the results of the studies successively for: The DNN coder mimicking

HEVC compression, the encoder, and the decoder. The results of the studies are presented graphically
in the form of graphs and video frames preview and alongside tables consisting of the results of
the individual experiments. The research was conducted on a Linux operating system using the
TensorFlow version 2.9.1 machine learning library and the FFmpeg version 4.4.2 video handling
library. The source codes were written in Python version 3.10.4.

4.1. HEVC Compression Research Results
The results of the DNN coder mimicking HEVC coding are presented as a comparison of the

image obtained at the output of the DNN coder to the image obtained at the output of the HEVC
codec (Table 7) for selected CRF values from the full compression range 〈0; 51〉. A preview of the
frames from the test video used for the research presentation is shown in Figure 4. The flow of the
coder training process is shown in Figures 5 and 6.
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Table 7. Encoder operation results for a 1920 × 1080 video fragment compressed with a 128 × 128 encoder trained for CRF = 24 compared to the original image and
to a video fragment compressed by HEVC compression for MSE and PSNR changes in CRF.

Frame # Original CRF 0 CRF 7 CRF 16 CRF 23 CRF 24 CRF 28 CRF 31 CRF 41 CRF 51

1
PSNR 1: 52.18 PSNR: 52.18 PSNR: 52.18 PSNR: 52.17 PSNR: 52.10 PSNR: 52.08 PSNR: 51.97 PSNR: 51.78 PSNR: 50.82 PSNR: 44.27

MSE 2: 4.29 × 10−7 MSE: 4.36 × 10−7 MSE: 4.36 × 10−7 MSE: 4.77 × 10−7 MSE: 6.33 × 10−7 MSE: 6.69 × 10−7 MSE: 8.83 × 10−7 MSE: 1.19 × 10−6 MSE: 2.70 × 10−6 MSE: 1.95 × 10−5

5
PSNR: 51.73 PSNR: 51.72 PSNR: 51.72 PSNR: 51.51 PSNR: 51.03 PSNR: 50.94 PSNR: 50.35 PSNR: 49.72 PSNR: 47.11 PSNR: 44.32

MSE: 5.00 × 10−7 MSE: 5.23 × 10−7 MSE: 5.23 × 10−7 MSE: 1.04 × 10−6 MSE: 2.27 × 10−6 MSE: 2.51 × 10−6 MSE: 4.07 × 10−6 MSE: 5.58 × 10−6 MSE: 1.46 × 10−5 MSE: 3.40 × 10−5

10
PSNR: 53.44 PSNR: 53.42 PSNR: 53.42 PSNR: 52.75 PSNR: 51.38 PSNR: 51.11 PSNR: 49.65 PSNR: 48.44 PSNR: 44.25 PSNR: 40.68

MSE: 6.42 × 10−7 MSE: 6.71 × 10−7 MSE: 6.70 × 10−7 MSE: 1.57 × 10−6 MSE: 3.93 × 10−6 MSE: 4.52 × 10−6 MSE: 8.13 × 10−6 MSE: 1.18 × 10−5 MSE: 3.56 × 10−5 MSE: 8.35 × 10−5

15
PSNR: 52.33 PSNR: 52.31 PSNR: 52.31 PSNR: 51.60 PSNR: 50.19 PSNR: 49.89 PSNR: 48.37 PSNR: 47.02 PSNR: 42.27 PSNR: 38.52

MSE: 7.63 × 10−7 MSE: 7.97 × 10−7 MSE: 7.97 × 10−7 MSE: 2.03 × 10−6 MSE: 5.07 × 10−6 MSE: 5.85 × 10−6 MSE: 1.06 × 10−5 MSE: 1.61 × 10−5 MSE: 5.64 × 10−5 MSE: 1.38 × 10−4

20
PSNR: 52.54 PSNR: 52.52 PSNR: 52.52 PSNR: 51.66 PSNR: 49.98 PSNR: 49.63 PSNR: 47.81 PSNR: 46.22 PSNR: 40.82 PSNR: 36.69

MSE: 8.48 × 10−7 MSE: 8.82 × 10−7 MSE: 8.83 × 10−7 MSE: 2.38 × 10−6 MSE: 6.13 × 10−6 MSE: 7.10 × 10−6 MSE: 1.34 × 10−5 MSE: 2.09 × 10−5 MSE: 8.07 × 10−5 MSE: 2.12 × 10−4

25
PSNR: 51.92 PSNR: 51.91 PSNR: 51.91 PSNR: 51.04 PSNR: 49.37 PSNR: 49.01 PSNR: 47.17 PSNR: 45.49 PSNR: 39.78 PSNR: 35.34

MSE: 1.02 × 10−6 MSE: 1.06 × 10−6 MSE: 1.06 × 10−6 MSE: 2.86 × 10−6 MSE: 7.12 × 10−6 MSE: 8.22 × 10−6 MSE: 1.53 × 10−5 MSE: 2.46 × 10−5 MSE: 1.03 × 10−4 MSE: 2.90 × 10−4

30
PSNR: 52.02 PSNR: 52.00 PSNR: 51.99 PSNR: 51.00 PSNR: 49.13 PSNR: 48.73 PSNR: 46.79 PSNR: 45.03 PSNR: 39.08 PSNR: 34.51

MSE: 1.26 × 10−6 MSE: 1.30 × 10−6 MSE: 1.30 × 10−6 MSE: 3.34 × 10−6 MSE: 8.18 × 10−6 MSE: 9.45 × 10−6 MSE: 1.75 × 10−5 MSE: 2.81 × 10−5 MSE: 1.21 × 10−4 MSE: 3.52 × 10−4

1 Peak signal-to-noise ratio, 2 Mean squared error normalized over a range of values 〈0; 1〉.
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The test set is made up of the individual initial frames of the test video, which are dimmed at
the start and gradually brightened while movement occurs in the image [54]. This choice of a test set
ensures that the proposed method is tested under more demanding conditions, as the compression
coefficient for more dynamic motion scenes may increase, while for more static scenes, it may be
reduced when using CRF. Unlike the QP (quantization parameter), which sets a fixed compression
value for the entire video, the CRF allows the compression to be changed to a higher or lower value.
In practical application, it is popularized to determine the degree of video compression using the
CRF, so the results presented in this article will be using this parameter.
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An additional factor influencing the selection of the test video is the presence of darkened and
completely dark frames in the video, which is important as potential graphic artifacts can easily be
seen in dark background. Because it is easier to hide a watermark (another image in the image) in a
brightened image, there is a tendency to brighten images. In order to test the encoder’s performance
in this aspect as well, it was decided to also use darkened video frames in the test sample.

Analyzing the results in the table above, it is noticeable that the DNN coder tends to reproduce
the darkened images more accurately. In the range of values 〈0; 16〉 for CRF, the quality of the PNSR
reproduction is above 50 dB, which is due to the fact that in this range of values, the compression is
not expansive, which is further confirmed in the column with the results of the comparison with the
original uncompressed image.

One of the factors affecting the accuracy of the DNN coder’s representation of an image relative
to an image encoded by H.265 is not only to consider the similarity of the coder’s output image to the
HEVC codec’s output image but also to consider the similarity to the original image. For the CRF
value with which the coder was trained, the PSNR value oscillates closer to the order of 50 dB than
40 dB, as is the case for compression coefficient values above 30.

The graphs from the training process up to epoch 200 show an upward trend in the PSNR
coefficient. In subsequent epochs, there is a reduction in oscillations resulting from a reduction in the
learning factor, as described in the section on coder training.

4.2. Watermarking Research Results

The results of the proposed watermarking method will be discussed in this subsection. Firstly,
the impact of watermarking will be discussed in terms of the accuracy of the reproduction of the
watermarked carrier to its original form (Table 8). Next, the importance of changing the compression
value and image resolution in the context of watermark survival will be discussed (Tables 9–11 and
Figure 7). Characteristics showing the training process are included at the end (Figures 8–10).
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Figure 7. Preview of the results of watermark embedding and extraction under CRF = 20 compression
conditions for: 1, 15, and 30 frame of test video for a 480 × 640 video fragment encoded with a
128× 128 encoder (viewed from the left, the columns represent consecutive video frames, viewed from
the top, the consecutive rows represent the original image, the watermark image, the watermarked
image, and the recovered watermark).
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Table 8. Algorithm performance results for a 480 × 640 video fragment encoded with a 128 × 128 encoder trained for CRF = 24 for changes in CRF coefficient
compared to a video fragment compressed by HEVC compression in the form of MSE and PSNR.

Frame # CRF 0 CRF 7 CRF 12 CRF 16 CRF 20 CRF 22 CRF 23 CRF 24 CRF 25

1
PSNR 1: 49.61 PSNR: 49.61 PSNR: 49.57 PSNR: 49.61 PSNR: 49.98 PSNR: 50.22 PSNR: 50.40 PSNR: 50.57 PSNR: 51.01

MSE 2: 1.09 × 10−5 MSE: 1.10 × 10−5 MSE: 1.10 × 10−5 MSE: 1.09 × 10−5 MSE: 1.00 × 10−5 MSE: 9.52 × 10−6 MSE: 9.13 × 10−6 MSE: 8.76 × 10−6 MSE: 7.93 × 10−6

5
PSNR: 50.13 PSNR: 50.13 PSNR: 49.94 PSNR: 49.65 PSNR: 49.73 PSNR: 49.82 PSNR: 49.89 PSNR: 50.08 PSNR: 50.27

MSE: 9.70 × 10−6 MSE: 9.70 × 10−6 MSE: 1.01 × 10−5 MSE: 1.08 × 10−5 MSE: 1.06 × 10−5 MSE: 1.04 × 10−5 MSE: 1.03 × 10−5 MSE: 9.82 × 10−6 MSE: 9.41 × 10−6

10
PSNR: 47.99 PSNR: 47.98 PSNR: 47.79 PSNR: 47.48 PSNR: 47.38 PSNR: 47.32 PSNR: 47.24 PSNR: 47.35 PSNR: 47.34

MSE: 1.59 × 10−5 MSE: 1.59 × 10−5 MSE: 1.67 × 10−5 MSE: 1.79 × 10−5 MSE: 1.83 × 10−5 MSE: 1.86 × 10−5 MSE: 1.89 × 10−5 MSE: 1.84 × 10−5 MSE: 1.85 × 10−5

15
PSNR: 47.62 PSNR: 47.62 PSNR: 47.63 PSNR: 47.03 PSNR: 46.91 PSNR: 46.78 PSNR: 46.74 PSNR: 46.75 PSNR: 46.73

MSE: 1.73 × 10−5 MSE: 1.73 × 10−5 MSE: 1.83 × 10−5 MSE: 1.98 × 10−5 MSE: 2.04 × 10−5 MSE: 2.10 × 10−5 MSE: 2.12 × 10−5 MSE: 2.11 × 10−5 MSE: 2.12 × 10−5

20
PSNR: 46.74 PSNR: 46.74 PSNR: 46.49 PSNR: 46.17 PSNR: 45.96 PSNR: 45.84 PSNR: 45.84 PSNR: 45.79 PSNR: 45.69

MSE: 2.12 × 10−5 MSE: 2.12 × 10−5 MSE: 2.24 × 10−5 MSE: 2.42 × 10−5 MSE: 2.54 × 10−5 MSE: 2.61 × 10−5 MSE: 2.61 × 10−5 MSE: 2.63 × 10−5 MSE: 2.70 × 10−5

25
PSNR: 46.35 PSNR: 46.35 PSNR: 46.07 PSNR: 45.75 PSNR: 45.52 PSNR: 45.36 PSNR: 45.34 PSNR: 45.26 PSNR: 45.13

MSE: 2.32 × 10−5 MSE: 2.32 × 10−5 MSE: 2.47 × 10−5 MSE: 2.66 × 10−5 MSE: 2.81 × 10−5 MSE: 2.91 × 10−5 MSE: 2.93 × 10−5 MSE: 2.98 × 10−5 MSE: 3.07 × 10−5

30
PSNR: 46.03 PSNR: 46.03 PSNR: 45.75 PSNR: 45.41 PSNR: 45.12 PSNR: 45.00 PSNR: 44.94 PSNR: 44.84 PSNR: 44.73

MSE: 2.50 × 10−5 MSE: 2.50 × 10−5 MSE: 2.66 × 10−5 MSE: 2.88 × 10−5 MSE: 3.08 × 10−5 MSE: 3.17 × 10−5 MSE: 3.21 × 10−5 MSE: 3.28 × 10−5 MSE: 3.36 × 10−5

1 Peak signal-to-noise ratio, 2 Mean squared error normalized over a range of values 〈0; 1〉.
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Table 9. Algorithm performance results for a 480 × 640 video fragment encoded with a
128 × 128 encoder trained for CRF = 24 for changes in CRF coefficient in the form of a BER de-
pending on the watermark reading variant.

Frame # CRF 0 CRF 7 CRF 12 CRF 16 CRF 20 CRF 22 CRF 23 CRF 24 CRF 25

1
AVG 1: 0 AVG: 0 AVG: 0 AVG: 0 AVG: 0 AVG: 0 AVG: 0 AVG: 0.0536 AVG: 0.1518
COM 2: 0 COM: 0 COM: 0 COM: 0 COM: 0 COM: 0.0804 COM: 0.0714 COM: 0.2143 COM: 0.3571
MED 3: 0 MED: 0 MED: 0 MED: 0 MED: 0 MED: 0 MED: 0 MED: 0.0179 MED: 0.0625

5
AVG: 0 AVG: 0 AVG: 0 AVG: 0 AVG: 0 AVG: 0 AVG: 0.0089 AVG: 0.0089 AVG: 0.1071
COM: 0 COM: 0 COM: 0 COM: 0 COM: 0.0357 COM: 0.0447 COM: 0.0893 COM: 0.25 COM: 0.2589
MED: 0 MED: 0 MED: 0 MED: 0 MED: 0 MED: 0 MED: 0.0089 MED: 0.0089 MED: 0.0536

10
AVG: 0 AVG: 0 AVG: 0 AVG: 0 AVG: 0 AVG: 0.0089 AVG: 0.0089 AVG: 0.0089 AVG: 0.1161
COM: 0 COM: 0 COM: 0 COM: 0 COM: 0.0179 COM: 0.0357 COM: 0.1429 COM: 0.2679 COM: 0.4821
MED: 0 MED: 0 MED: 0 MED: 0 MED: 0 MED: 0 MED: 0 MED: 0 MED: 0.0446

15
AVG: 0 AVG: 0 AVG: 0 AVG: 0 AVG: 0 AVG: 0.0089 AVG: 0.0089 AVG: 0.0625 AVG: 0.1875
COM: 0 COM: 0 COM: 0 COM: 0 COM: 0.0179 COM: 0.0804 COM: 0.2768 COM: 0.3482 COM: 0.4464
MED: 0 MED: 0 MED: 0 MED: 0 MED: 0 MED: 0 MED: 0.0089 MED: 0.0089 MED: 0.0714

20
AVG: 0 AVG: 0 AVG: 0 AVG: 0 AVG: 0 AVG: 0.0089 AVG: 0.0089 AVG: 0.0714 AVG: 0.2143
COM: 0 COM: 0 COM: 0 COM: 0 COM: 0.0714 COM: 0.1429 COM: 0.25 COM: 0.4375 COM: 0.5
MED: 0 MED: 0 MED: 0 MED: 0 MED: 0 MED: 0 MED: 0.0089 MED: 0.0089 MED: 0.1071

25
AVG: 0 AVG: 0 AVG: 0 AVG: 0 AVG: 0 AVG: 0 AVG: 0.0179 AVG: 0.0357 AVG: 0.2321
COM: 0 COM: 0 COM: 0 COM: 0 COM: 0.0179 COM: 0.1161 COM: 0.3839 COM: 0.3839 COM: 0.3571
MED: 0 MED: 0 MED: 0 MED: 0 MED: 0 MED: 0 MED: 0.0089 MED: 0.0089 MED: 0.0893

30
AVG: 0 AVG: 0 AVG: 0 AVG: 0 AVG: 0 AVG: 0 AVG: 0.0179 AVG: 0.0714 AVG: 0.1607
COM: 0 COM: 0 COM: 0 COM: 0.0179 COM: 0.0179 COM: 0.1339 COM: 0.0179 COM: 0.3839 COM: 0.4911
MED: 0 MED: 0 MED: 0 MED: 0 MED: 0 MED: 0 MED: 0.0089 MED: 0.0179 MED: 0.0536

1 Bit error rate of the mean, 2 Bit error rate of the most frequently occurring element (value), 3 Bit error rate of
the median.

Table 10. Algorithm performance results for a 480 × 640 video fragment encoded with a
128 × 128 encoder trained for CRF = 24 for changes in CRF coefficient in the form of a number
of correctly decoded characters.

Frame # CRF 0 CRF 7 CRF 12 CRF 16 CRF 20 CRF 22 CRF 23 CRF 24 CRF 25

1 CHAR 1: 16 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 15 CHAR: 13
5 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 15 CHAR: 15 CHAR: 14
10 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 14
15 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 15 CHAR: 15 CHAR: 12
20 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 15 CHAR: 15 CHAR: 12
25 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 15 CHAR: 15 CHAR: 13
30 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 16 CHAR: 15 CHAR: 14 CHAR: 13

1 Number of correctly decoded characters.

Table 11. Algorithm performance results for an encoded video fragment with a 128 × 128 encoder
compressed with CRF = 16 when changing the video resolution: 96 bits decoding representation in
the form of BER.

Frame # From 512 × 512
to 128 × 128

From 512 × 512
to 256 × 256

From 512 × 512
to 480 × 640

From 512 × 512
to 1024 × 1024

From 768 × 512
to 384 × 256

From 1024 × 1024
to 256 × 256

1 BER 1: 0.531250 BER: 0 BER: 0.468750 BER: 0 BER: 0.510417 BER: 0.510417
5 BER: 0.479167 BER: 0 BER: 0.500000 BER: 0 BER: 0.489583 BER: 0.479167
10 BER: 0.395833 BER: 0 BER: 0.489583 BER: 0 BER: 0.437500 BER: 0.437500
15 BER: 0.427083 BER: 0 BER: 0.427083 BER: 0 BER: 0.468750 BER: 0.427083
20 BER: 0.437500 BER: 0 BER: 0.406250 BER: 0 BER: 0.468750 BER: 0.416667
25 BER: 0.447917 BER: 0 BER: 0.406250 BER: 0 BER: 0.416667 BER: 0.375000
30 BER: 0.416667 BER: 0 BER: 0.406250 BER: 0 BER: 0.427083 BER: 0.364583

1 Bit error rate of the median.
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Comparing the results in Tables 7 and 8, there is an obvious reduction in image accuracy for the
different HEVC compression values related to changes in the image created during the embedding
process of the watermark. The change in carrier reproduction quality is more pronounced for low
compression values and decreases as compression increases. This is due to the fact that DNN encoder
was trained to embed the watermark under higher compression conditions.

Besides calculating MSE and PSNR coefficients, the quality of embedded video image frames in
comparison to original frames was additionally assessed visually by an independent test group. The
objective of the test was to compare embedded images (video frames) with their original counterpart.
The tested person did not know which image was embedded and which was original. Every tested
person was given 7 pairs of images. The objective of the tested person was to point out which image
is original or asses pair as the same images. The formula to calculate the quality of the algorithm is
given below:

Q =
L
N
· 100% (21)

where Q is the subjective assessment of the quality of the encoded image, L is the number of pairs of
pictures identified as being the same or misclassified, N is the number of image pairs.
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The obtained average result on the test group consisting of 15 tested persons was Q = 62%. The
obtained average result should be interpreted as a high similarity of the image with the embedded
watermark to the original image, taking into account the results described below.

During the research, it turned out that in the test group, there were also people who were able
to find subtle subjective differences after zooming in on the image, but were unable to indicate which
image was original and which was modified, which meets the assumptions of the method, because the
watermark is invisible to the human eye (the test person, who noticed the differences after zooming
in on the image fragments, were not able to indicate which image from the pair was modified). This
result proves the effectiveness of the method in practical application and is supported by the objective
results obtained mathematically in the form of the values of the MSE and PSNR coefficients.

The change in compression coefficient expressed as CRF has a significant impact on the survival
of the watermark under HEVC coding conditions. The changes in the image caused by the lower
compression are not very invasive, which manifests itself in zero BER values. Based on the results in
Table 9, it is noticeable that there is a tendency to correctly recover the watermark from all frames of
the video test footage for a range of CRF values of 〈0; 22〉. It is also possible to completely recover
the watermark from individual video frames for CRF values not exceeding 24, however, it is more
probable that for decoded watermark, BER would not be 0.

The previous publication [22] presented only the most efficient way of extracting values from
the subsquares in the form of the median used in the ASPA operation. Watermark extraction results
using the mean and the most frequent element (value) are also included in the results discussed. By
placing the results of the quality of the decoded watermark in the form of a BER using these methods,
the following conclusions can be drawn, as presented in the next paragraph.

The increase in compression, the invasiveness which causes increasingly significant changes,
is well illustrated by the BER for information extraction using the most frequent element. In a
32 × 32 subsquare according to ASPA, the same values are embedded for each pixel. As the pixel
values in the subsquare change due to compression, the number of pixels representing the embedded
value is reduced. It is for this reason that, despite the appearance of non-zero BER values for the most
frequently occurring element, recovery of the embedded value by the mean and median is possible.
The median compared to the mean is a better way of extracting information, as it uses the mean
results in larger BER values. This is due to the principle of the median, whose operation, unlike that
of the mean, is not affected by changes in the extreme values in the set.

Table 10 shows the results of a recovered watermark in the context of a correctly recovered
number of characters that correspond to the results obtained in Table 9.

The coded watermark by ASPA was a 16-character message with the following text „*WATER-
MARK_WAT22”.

Algorithm performance results when changing encoded image resolutions are shown in Table 11.
Changing the resolution of the encoded image significantly affects the quality of the recovered

watermark. When the image resolution is changed in the form of a multiple reduction or increase of
the encoded image, the watermark is kept according to the results in Table 11. However, if the image
resolution reduces the subsquares for ASPA interpretation to 16 × 16, the watermark will degrade.
This is due to the properties of the HEVC codec, which performs operations on subsquares in this
resolution, which causes significant changes in the values for individual pixels and directly translates
into the loss of the possibility of correct recovery of the watermark.

A possible solution to improve the possibility of complete recovery of the watermark is the use
of error-correcting codes (ECC). ECC involve the addition of sufficient redundant data to the main
information, therefore, the use of such a solution reduces the capacity of the watermark.

In the case of the proposed method using ASPA, the use of ECC methods like Turbocodes [55,56]
or Polar codes [57,58] would significantly increase the potential recovery of the watermark even when
BER values are not equal to 0. The acceptable value of BER (when BER > 0) for which the watermark
could be retrieved will be depended on the used ECC method and the size of the correction code.
However, it will reduce the capacity of the watermark because subsquares that could be used for
main information will be occupied by error correction codes.

The introduction of ECC schemes for ASPA purposes will increase the probability of full
watermark recovery even when BER > 0 after the decoding process with higher compression levels of
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HEVC. It is also worth underlining that adding a neural network to the learning process compression
channel to retrieve embedded watermark creates own ECC mechanisms, which are based on learnt
filters. By improving the architecture of DNN encoder and decoder, the probability of full watermark
recovery will be increased.

A preview of the encoder and decoder results is shown in Figure 7.
The following characteristics (Figures 8–10) show the encoder and decoder training process.

These elements were trained on an autoencoder basis for 500 training epochs.

4.3. Comparison with Other Methods

In order to check the performance of the proposed method, a comparison was made with other
state-of-the-art (SOTA) methods, which are listed in the literature review. In order to compare the
methods, the HEVC compression value was assumed to be 16 and the resolution of the test video
to be 416 × 240. The results of the comparison of watermark embedding methods under HEVC
compression conditions are shown in Table 12.

Table 12. Method comparison.

Type Average PSNR (dB) Capacity (Bits/Frame Size)
(Embedding Time/Extraction
Time) (ms) for Test Frame
with 416 × 240 Resolution

Hardware

Method 1
Zhou et al. [16] 47.519 100 bits/416 × 240 32.478/5.622 3.30 GHz CPU,

4 GB RAM
Method 2

Gaj et al. [17] 46.415 100 bits/416 × 240 36.855/5.048 3.30 GHz CPU,
4 GB RAM

Method 3
Liu et al. [51] 45.462 100 bits/416 × 240 34.058/5.997 3.30 GHz CPU,

4 GB RAM
Previously proposed

method [22] 42.617 80 bits/128 × 128 34,457.92/3759.72 Geforce 1080Ti GTX
11 GB, 32 GB RAM

Proposed method 47.299 96 bits/128 × 128 81,132.13 1/82,223.74 1

735.101 2/725.861 2
Geforce 1080Ti GTX
11 GB, 32 GB RAM

1 Time calculated for an implementation that does not include parallelized calculations, 2 Time of calculations
performed sequentially on beforehand prepared image fragments with a resolution corresponding to the size of
the encoder and decoder inputs.

The methods presented in Table 12 represent different approaches to embedding a watermark
in video under HEVC compression conditions. In the first method, the watermark is embedded as
intra-prediction residual pixels of 4 × 4 luminance transform blocks in the spatial domain [16]. In
the second method compared, the prediction modes of selected 4 × 4 intra-prediction blocks are
changed [17]. In the next method, the watermark is embedded as the multi-coefficients of the selected
4 × 4 luminance discrete sine transform blocks [51].

The previously proposed method differs from the one presented in this article in efficiency.
The watermark capacity has been increased along with its resistance to HEVC compression while
increasing the PSNR value. The architecture of the DNNs used, and the way they are trained has
been changed, however, the way the watermark is embedded and restored has remained based on
the operation of the ASPA.

The average PSNR for the proposed method is dependent on the compression coefficient,
however, it is greater than 44 dB in the HEVC compression range, allowing it to be recovered. The
PSNR for the proposed method has a higher value than for the previously proposed method and is
close to the method having the highest value of the compared SOTA methods.

The calculation time for the proposed method is noticeably different from the other methods
compared. The reason for this state is the non-optimized structure of the ANN for real-time processing.
However, the lack of optimization of the ANN structure is not the main reason for the long calculation
time, it is caused by the suboptimal division of the image into fragments corresponding to the
resolution matching the ANN input. The main factor that extends the watermark embedding process
is the support for the YUV420p color model and the associated image storage.

An optimization involving the parallelization of the processes of obtaining and overwriting
image fragments would significantly speed up computation. The time calculated for the imple-
mentation that does not include the parallelized calculations for watermark embedding is 81.13 s.
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The calculation time for the sequential calculation on previously prepared image fragments of the
YUV420p color model with a resolution corresponding to the size of the encoder input is 0.74 s. By
paralleling the calculations performed by the ANN, this time can theoretically be reduced below 0.1 s.

The resolution of the test image to unify the comparison was 416 × 240, for which the compared
methods have a watermark capacity of 100 bits. The encoder of the proposed method operates
natively at a resolution of 128 × 128, so it needs to perform eight encode operations to embed
the watermark. The native image resolution at which the encoder operates, which is 128 × 128,
embeds 96 watermark bits. For comparison purposes, the same watermark was embedded over
the entire area of the 416 × 240 video frames. However, other bit strings can be encoded in each
of the 128 × 128 image areas, which together will make up the larger watermark. For example,
by embedding a watermark on a similar resolution of 256 × 256, a watermark of 384 bits can be
embedded. The proposed method has a higher capacity than the compared methods and has the
potential to increase it further.

5. Conclusions

Embedding a watermark in a video, taking into account maximizing the accuracy of the
watermarked image in relation to the original image under the compression conditions introduced by
the video codec, is a complex issue. For solutions using DNNs, it is worth considering the required
hardware resources for DNN training and their subsequent use. The solution presented in this
publication allows the DNN to operate natively for a 128 × 128 image to be freely scaled to larger
images through the use of a sliding window, which also allows for a potential increase in watermark
capacity within a single video frame.

Compression introduced by HEVC above a CRF of 16 is more challenging for the encoder and
decoder training process for the purposes of watermark embedding and recovery. This state of affairs
is due to the complex HEVC compression characteristics. Appropriate implementation of the training
process by introducing an additional training element, the DNN coder, which mimics the HEVC
compression channel, accelerates convergence at the training of HEVC compression characteristics,
which enables the encoder and decoder to operate at higher compression values.

The presented method takes into account not only HEVC compression but also the image
compression introduced through the application of YUV420p. The use of the YUV color model in the
YUV420p variant further affects the compression of the image and therefore reduces the size of the
output video file, however, it is also an additional issue to consider when embedding the watermark.
The issue presented in the previous sentence is solved through ASPA, which allows the size of the
image fragment used to store the watermark bit string to be selected. By applying synergies in the
application of ASPA and HEVC compression together with YUV420p in the form of the appropriate
use of the subsquares present in these components of the method under discussion, it is possible to
correctly embed and recover the watermark despite a fourfold reduction in capacity for chrominance
through the application of YUV420p.

The analysis of the results of the conducted tests of the proposed method confirms the possibility
of completely recovering the watermark from a single frame in terms of changes in the value 〈0; 22〉
of the compression coefficient determined by the CRF. It is also possible to completely recover the
watermark from individual video frames for CRF values not exceeding 24, however, it is more
probable that for decoded watermark, BER would not be 0.

Further research is needed into the possibility of more accurate reproduction of an image
with embedded watermarked compared to the original. The issues of increasing the capacity of
the watermark itself and increasing its resistance to changes in its carrier while reducing the time
required for embedding would also require further exploration.

In order to improve the coefficients describing the accuracy of the reproduction of the embedded
watermarked image to the original image, the error function used during the training process should
be further modified alongside the performance improvement of mimicking the HEVC compression
by the DNN coder, which is the training element of the H.265 codec characteristics for encoder and
decoder. Further increases in watermark capacity can be achieved by modifying the ASPA parameters.
The application of an additional element, in the form of a variable decoder extension dedicated to
different types of interference, will improve the correctness of watermark recovery from a carrier
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subjected to various watermark distorting operations. The introduction of ECC schemes for ASPA
purposes will increase the probability of full watermark recovery.

Another possibility to improve the performance of the decoder subsystem is to use the video
frame sequence with a histogram calculation to map most of the repeated values between frames
at the output of the DNN decoder, enhancing the watermark recovery. Moreover, creating a frame-
pack-based system for watermark augmentation and enhancement via ECC will increase the overall
system performance.

Further reduction of DNN structures and implementation of the optimization of the paralleliza-
tion of the watermark embedding, and extraction algorithms will contribute to the reduction of the
computational time.
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