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Abstract: Multi-target tracking (MTT) generally needs either a Doppler radar network with spa-
tially separated receivers or a single radar equipped with costly phased array antennas. However,
Doppler radar networks have high computational complexity, attributed to the multiple receivers in
the network. Moreover, array signal processing techniques for phased array radar also increase the
computational burden on the processing unit. To resolve this issue, this paper investigates the prob-
lem of the detection and tracking of multiple targets in a three-dimensional (3D) Cartesian space based
on range and 3D velocity measurements extracted from dual-orthogonal baseline interferometric
radar. The contribution of this paper is twofold. First, a nonlinear 3D velocity measurement function,
defining the relationship between the state of the target and 3D velocity measurements, is derived.
Based on this measurement function, the design of the proposed algorithm includes the global nearest
neighbor (GNN) technique for data association, an interacting multiple model estimator with a
square-root cubature Kalman filter (IMM-SCKF) for state estimation, and a rule-based M/N logic
for track management. Second, Monte Carlo simulation results for different multi-target scenarios are
presented to demonstrate the performance of the algorithm in terms of track accuracy, computational
complexity, and IMM mean model probabilities.

Keywords: MTT; 3D velocity; interferometric radar; GNN; IMM; SCKF; rule-based M/N logic

1. Introduction

Multi-target tracking (MTT) has received increased attention in real-time systems
with a broad spectrum of applications, including aircraft tracking [1], surveillance [2],
remote sensing [3,4], adaptive cruise control [5], robotics [6], biomedical engineering [7],
image processing [8], and oceanography [9]. The main purpose of MTT algorithms is
to identify the number of potential targets in the radar’s field of view (FOV) and to estimate
their kinematic states from noisy radar measurements. Various algorithms to address
the problem of MTT have been proposed in the literature [10–12]. MTT systems generally
need either a Doppler radar network with spatially separated receivers or a single radar
equipped with costly phased array antennas. The Doppler radar has the capability of
determining the Doppler frequency shift of the target in the radar’s FoV, which is directly
related to its radial velocity [13–16]. However, Doppler radar can provide the information
of range and Doppler frequency shift only. Since it is not capable of extracting the direction-
of-arrival (DOA), i.e., azimuth and elevation angles, information of the target, it is not
possible to localize the target in the 3D Cartesian space using the range-Doppler data
from single Doppler radar receiver only [17]. To resolve this issue, a distributed Doppler
radar network with multiple sensors is typically employed, which can monitor the poten-
tial target of interest from different angles spatially. Various algorithms for MTT based
on Doppler radar networks exist in the literature. Multistatic radar networks have become
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very popular in various real-time tracking applications over time [18–20]. An algorithm
for target tracking, by monitoring the Doppler signals at multiple spatial points employ-
ing a network of four Doppler radars, was presented in [20]. The MTT algorithm using
Doppler measurements from multistatic Doppler radar with an unknown probability of
detection was proposed in [21]. A technique for tracking multiple targets by exploiting
the range and Doppler information from multiple radar sensors was introduced in [22].
This technique, however, demands a multitude of iterations, which may cause the system
to halt and generate latency. The MTT techniques presented in [17,23] are also based on
multilateration of range-Doppler data from at least three radar sensors for localizing and
tracking the targets without ambiguity. Multistatic radar systems for MTT by utilizing
bistatic range and range-rate information from multiple radars were described in [24,25],
which send data to a central station for estimating the spatial locations and velocities of
the targets in the FoV. However, the integrated hardware due to multiple radar sensors
in the network requires a high data transfer rate, making it difficult to realize real-time
applications. The detection and tracking system using a single radar sensor demands a
phased array antenna. However, a small-scale array of antennae offers poor angular resolu-
tion. Therefore, a costly large phased array is needed to provide angular information with
better resolution. Furthermore, advanced array signal processing techniques such as the
ESPRIT and MUSIC algorithms essentially increase the computational burden on the data
processing unit caused by the complex matrix operations [26,27]. Furthermore, the MTT
algorithm using a phased array antenna requires the number of receiving elements to be
greater than the number of targets in the sensor’s FoV. To resolve this issue, in our previous
work [28,29], we presented an algorithm for multiple targets’ detection and tracking in the
2D Cartesian space by measuring their range and 2D velocity (radial velocity and angular
velocity) measurements using a dual-frequency frequency-modulated continuous wave
(DF-FMCW) interferometric radar. Now, we propose to extend this concept to MTT in the
3D Cartesian space based on 3D velocity (radial velocity, azimuth angular velocity, and
elevation angular velocity) measurements using a dual-orthogonal baseline DF-FMCW
interferometric radar. The geometry of the dual-orthogonal baseline interferometric radar
with a point source as the target is represented in Figure 1. The reference receiving an-
tenna Rx1 is used to extract the initial ranges and radial velocities of the targets, and two
orthogonal baselines with lengths D12 and D13 are used to measure the azimuth angular
velocities and elevation angular velocities, respectively, of the targets in the radar’s FOV. θ
and ϕ represent the azimuth and elevation angles of the target with the y-axis and xy-plane,
respectively. ρ is the range of the target relative to the observing radar in the 3D Cartesian
space. The contribution of this paper is twofold:

Figure 1. Geometry of the dual-orthogonal baseline interferometric radar with a point source in the
3D Cartesian space.
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1. First, we present a mathematical model of the 3D velocity of multiple moving point
sources and derive the nonlinear 3D velocity measurement function, which defines
the relationship between the state of the target in terms of the 3D Cartesian space and
the 3D velocity measurements extracted from the interferometric radar. Based on this
measurement function, the design and implementation of the tracking algorithm are
presented, which include (i) the GNN technique combined with the auction algorithm
for data association, (ii) the IMM-SCKF estimator for state estimation, and (iii) the
rule-based M/N logic for track management.

2. Second, Monte Carlo simulation results with different multiple target scenarios are
presented to validate the performance of the proposed algorithm in terms of track
accuracy, computational complexity, and IMM mean model probabilities.

The layout of this paper is as follows. The mathematical formulation of the proposed
MTT algorithm is presented in Section 2. Section 3 introduces the detailed design of
the proposed MTT algorithm. The three main stages of the MTT algorithm including the
GNN for data association, the IMM-SCKF estimator for state estimation, and the rule-based
M/N logic for track management are described in Sections 4–7. Section 8 presents the
performance evaluation simulations. Finally, Section 9 provides the concluding remarks.

2. Mathematical Formulation of the Problem

The linear velocity of an arbitrary moving point source is a vector quantity.
To completely localize a moving target in the 3D Cartesian space, it is necessary to mea-
sure the instantaneous 3D velocity vector vi of the target, which is composed of radial
velocity vr3D , azimuth cross-radial velocity vcrθ

, and elevation cross-radial velocity, i.e.,
vcrϕ , vi = 〈vr3D , vcrθ

, vcrϕ〉. The relationship between angular velocity and cross-radial
velocity is defined as ω = vcr/ρ.

2.1. The 3D Velocity of Point Sources

Assume an FMCW radar signal with carrier frequency fc, bandwidth B, and sweep
time T. The transmitted signal can be written as

ST(t) = exp{−j2π[ fcts +
K
2

t2
s ]} (1)

where ts = t− nT represents the time at the start of the nth sweep period and K = B/T is
the chirp rate. For an object initially present at a range of ρ0 and moving with radial velocity
vr3D relative to the radar in the 3D Cartesian space, the signal reflected off of the object
is the same as the transmitted signal, but delayed with a round trip time τ3D. Therefore,
the received signal at antenna Rx1 for the FMCW radar can be written as

SR1(t) = exp{−j2π[ fc(ts − τ3D) +
K
2
(ts − τ3D)

2]} (2)

where τ3D = 2ρ(t)/c. The velocity of the object is considered to be slow enough that,
during each pulse repetition interval, the object is generally expected to reside in the same
range bin. Hence, the relative range of the target can be defined as

ρ(t) ≈ ρ(nt) = ρ0 + vr3D nT (3)

According to the FMCW radar operating principle, the transmitted and received
signals are mixed to obtain the beat frequency signal, which can be expressed as

SB1(t) = ST(t)S∗R1
(t)

≈ exp{−j4π[
K(ρ0 + vr3D nT)ts

c
+

ρ0

λ
+

vr3D

λ
nT]}

(4)
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In the case of M number of point sources moving in the radar’s FOV, the beat frequency
signal SB1(t) can be expressed as

SB1(t) =
M

∑
m=1

exp(−j4π[
K(ρ0m + vrm3D nT)ts

c
+

ρ0m

λ
+

vrm3D

λ
nT]) (5)

where τm3D = 2ρm/c for m = 1, 2, · · · , M. The relative radial motion of the object induces
a Doppler frequency shift in the radar’s received signal. The radial velocity in terms of the
Doppler frequency shift can be defined as

vrm3D = [
fdm3D λ

2
=

c fdm3D

2 fc
, m = 1, 2, · · · , M] (6)

The first baseline, constituting the receiving antennas Rx1 and Rx2 along the x-
axis, is used to measure the azimuth angular velocity of the targets in the radar’s FOV.
Considering the signal received by antenna Rx1 as the reference, the signal received by
antenna Rx2, placed at a geometrical distance of D12, can be represented as

SR2(t) = exp{−j2π[ fc(ts − τ3D − τ0θ
) +

K
2
(ts − τ3D − τ0θ

)2]} (7)

where τ0θ
= D12 sin θ/c. The second beat frequency signal SB2(t) at receiving antenna Rx2

can be written as

SB2(t) = ST(t)S∗R2
(t)

≈ exp{−j2π[
2K(ρ0 + vr3D nT)ts

c
+

2vr3D nT
λ

+
2ρ0

λ
+ ( fc + Kts)

D12 sin θ

c
]}

(8)

Following the interferometric radar principle, the beat frequency signals SB1(t) and
SB2 at the two receiving antennas are correlated to generate the interferometric output [30]:

yc1(t) = SB1(t)S
∗
B2
(t)

= exp{j2π( fc + Kts)
D12 sin θ

c
}

(9)

In the case of M number of moving point sources, the interferometric output yc1(t)
represented by Equation (9) can be re-written as

yc1(t) =
M

∑
m,b=1

exp(−j4π[
K(ρ0m + vrm3D nT)ts

c
+

ρ0m

λ
+

vrm3D nT
λ

])

exp(j2π[
2K(ρ0b + vrb3D nT)ts

c
+

2vrb3D nT
λ

+
2ρ0b

λ
+ ( fc + Kts)

D12 sin θb
c

])

=
M

∑
m=1

exp(j2π[ fc + Kts]
D12 sin θm

c
)

M

∑
m=1

M

∑
b=1,m 6=b

exp(−j4π[
(ρ0m + vrm3D nT)− (ρ0b + vrb3D nT)

c
Kts

+
(vrm3D nT − vrb3D nT)

λ
+

(ρ0m − ρ0b)

λ
− ( fc + Kts)

D12 sin θb
2c

])

(10)

As can be seen from Equation (10), the interferometric output is composed of two parts.
The first part consists of M intra-correlation terms, generated by the angular velocities
of moving objects, whereas the second part consists of M(M− 1) nuisance inter-correlation
terms in which the radial and angular velocities of different moving objects are coupled
together. In order to extract the angular velocities of the objects, these intermodulation



Sensors 2022, 22, 7549 5 of 25

terms need to be suppressed. Once these intermodulation terms are suppressed, azimuth
angular velocity ωθ in terms of azimuth interferometric frequency shift fθ is defined as

ωθm =
tialθm

tialt
= [

fθmλts

D12
, m = 1, 2, · · · , M] (11)

The second orthogonal baseline, constituting the receiving antennas Rx1 and Rx3
along the z-axis separated by geometrical distance D13, is used to measure the elevation
angular velocity of the targets in the radar’s FOV. Now, considering the signal received by
the first receiving antenna Rx1 as the reference, the signal received by receiving antenna
Rx3 can be written as

SR3(t) = exp{−j2π[ fc(ts − τ3D − τ0ϕ) +
K
2
(ts − τ3D − τ0ϕ)

2]} (12)

where time delay τ0ϕ = D13 sin ϕ/c. The transmitted and received signals represented by
Equations (1) and (12), respectively, are mixed to generate the beat frequency signal. That is,

SB3(t) = ST(t)S∗R3
(t)

≈ exp{−j2π[
2K(ρ0 + vr3D nT)ts

c
+

2vr3D nT
λ

+
2ρ0

λ
+ ( fc + Kts)

D13 sin ϕ

c
]}

(13)

The interferometric output, yc2(t), of the second baseline along the z-axis is

yc2(t) = SB1(t)S
∗
B3
(t)

= exp{j2π( fc + Kts)
D13 sin ϕ

c
}

(14)

In the case of M number of point sources moving in the radar’s FOV, the interferometric
output yc2(t) takes the following form.

yc2(t) =
M

∑
m,b=1

exp(−j4π[
K(ρ0m + vrm3D nT)ts

c
+

ρ0m

λ
+

vrm3D nT
λ

])

exp(j2π[
2K(ρ0b + vrb3D nT)ts

c
+

2vrb3D nT
λ

+
2ρ0b

λ
+ ( fc + Kts)

D13 sin ϕb
c

])

=
M

∑
m=1

exp(j2π[ fc + Kts]
D13 sin ϕm

c
)

M

∑
m=1

M

∑
b=1,m 6=b

exp(−j4π[
(ρ0m + vrm3D nT)− (ρ0b + vrb3D nT)

c
Kts

+
(vrm3D nT − vrb3D nT)

λ
+

(ρ0m − ρ0b)

λ
− ( fc + Kts)

D13 sin ϕb
2c

])

(15)

Similar to the case of azimuth angular velocity measurement, the interferometric
output yc2(t) also consists of two parts, including M intra-correlation terms and M(M− 1)
inter-correlation terms. The inter-correlation terms interfere with the extraction of the
elevation angular velocities of the objects. The elevation angular velocity ωϕ, in terms of
elevation interferometric frequency shift fϕ, is defined as

ωϕm =
tialϕm

tialt
= [

fϕmλts

D13
, m = 1, 2, · · · , M] (16)

2.2. Process Model

The process model describes the state transition between two consecutive time instants.
Consider modeling the motion of the target by one of the i hypothesis models. These models
can be represented by a set as Mr := {1, 2, · · · , r}. Mj

k−1 represents the event of model j
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being effective during time period (tk−1, tk]. In this case, the target dynamic/motion for
the jth hypothesis model can be described as

xk = Fj
k−1xk−1 + vj

k−1 (17)

where Fj
k−1 represents the state transition matrix for motion model j being effective at time

k− 1, xk represents the target’s state vector at time k, and vj
k−1 represents the process noise

for the jth dynamic model, which is assumed to be independent and identically distributed
(i.i.d.) zero-mean Gaussian noise with covariance Qj

k−1, such that vj
k−1 ∼ N (0, Qj

k−1).
The target motion in the 3D Cartesian space is modeled with the nearly constant velocity
(NCV) and nearly coordinated turn (NCT) process models. For uniform motion, the discrete-
time NCV state dynamics combined with the DWNA model are represented by

xk = FNCV
k−1 xk−1 + Γ1v1k−1 (18)

The state vector of the target with nx = 6 is defined as

xk = [xk, vxk , yk, vyk , zk, vzk ]
> (19)

where xk, yk, zk and vxk , vyk , vzk denote the Cartesian coordinates and velocities of the object,
respectively, at time instant k. nx represents the state vector dimension. The state transition
matrix FNCV for the NCV model is

FNCV
k−1 =



1 ∆T 0 0 0 0
0 1 0 0 0 0
0 0 1 ∆T 0 0
0 0 0 1 0 0
0 0 0 0 1 ∆T
0 0 0 0 0 1

 (20)

The noise gain Γ1 can be written as

Γ1 =



∆T2

2 0 0
∆T 0 0
0 ∆T2

2 0
0 ∆T 0
0 0 ∆T2

2
0 0 ∆T


(21)

The covariance of the process noise multiplied by gain Γ1 is

Q1k−1
=



∆T4

4
∆T3

2 0 0 0 0
∆T3

2 ∆T2 0 0 0 0
0 0 ∆T4

4
∆T3

2 0 0
0 0 ∆T3

2 ∆T2 0 0
0 0 0 0 ∆T4

4
∆T3

2
0 0 0 0 ∆T3

2 ∆T2


σ2

v1
(22)

where σ2
v1

represents the variance of process noise v1. Here, v1 is a zero-mean Gaussian
white noise used to model small accelerations, with an appropriate covariance Q1k−1

, which
is a design parameter. For modeling the target maneuver, the discrete-time NCT state
dynamics combined with the DWNA model in the 3D Cartesian coordinate system are
represented by

xk = FNCT
k−1 xk−1 + Γ2v2k−1 (23)
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The state vector of the target augmented by turn rate Ω, i.e., nx = 7, is defined as

xk = [xk, vxk , yk, vyk , zk, vzk , Ωk]
> (24)

The state transition matrix FNCT for the NCT model is

FNCT
k−1 =



1 sin(Ωk−1∆T)
Ωk−1

0 cos(Ωk−1∆T)−1
Ωk−1

0 0 0
0 cos(Ωk−1∆T) 0 − sin(Ωk−1∆T) 0 0 0
0 1−cos(Ωk∆T)

Ωk−1
1 sin(Ωk−1∆T)

Ωk−1
0 0 0

0 sin(Ωk−1∆T) 0 cos(Ωk−1∆T) 0 0 0
0 0 1 0 0 ∆T 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


(25)

The noise gain Γ2 for the DWNA model is defined as

Γ1 =



∆T2

2 0 0 0
∆T 0 0 0
0 ∆T2

2 0 0
0 ∆T 0 0
0 0 ∆T2

2 0
0 0 ∆T 0
0 0 0 ∆T


(26)

The covariance of the process noise multiplied by gain Γ2 is

Q2k−1
=



∆T4

4
∆T3

2 0 0 0 0 0
∆T3

2 ∆T2 0 0 0 0 0
0 0 ∆T4

4
T3

2 0 0 0
0 0 ∆T3

2 ∆T2 0 0 0
0 0 0 0 ∆T4

4
∆T3

2 0
0 0 0 0 ∆T3

2 ∆T2 0
0 0 0 0 0 0 ∆T2


σ2

v2
(27)

where σ2
v2

represents the variance of process noise v2.

2.3. Nonlinear Measurement Model

The nonlinear measurement model defining the relationship between the 3D veloc-
ity measurements received from the interferometric radar and the state of the target is
defined as

zk = h(xk) + wk (28)

where h(xk) is the nonlinear 3D velocity measurement function and zk = [vr3D,k , ωθk , ωϕk ]
>

with nz = 3. Here, nz denotes the dimension of the measurement vector. wk is assumed
to be an i.i.d. zero-mean Gaussian measurement noise with covariance Rk, i.e., wk ∼
N (0, Rk) and E{vkwT

k } = 0.

Derivation of 3D Velocity Measurement Function

The range of the target relative to the observing radar in the 3D Cartesian space is
expressed as

ρk =

√
(xk − xs)

2 + (yk − ys)
2 + (zk − zs)

2 (29)
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By taking the time derivative of Equation (29), the radial velocity of the target in the
3D Cartesian space can be determined. That is,

ρ̇k =
dρ

dt
=

(xk − xs)ẋk + (yk − ys)ẏk + (zk − zs)żk√
(xk − xs)

2 + (yk − ys)
2 + (zk − zs)

2
(30)

As we know that vr3D,k = ρ̇k, vxk = ẋk, vyk = ẏk, and vzk = żk, the expression for the
radial velocity can be written as

vr3D,k = ρ̇k =
(xk − xs)vxk + (yk − ys)vyk + (zk − zs)vzk√

(xk − xs)
2 + (yk − ys)

2 + (zk − zs)
2

(31)

According to [29], the azimuth angular velocity is determined by

ωθk = θ̇k =
[ (yk − ys)vxk − (xk − xs)vyk

(xk − xs)
2 + (yk − ys)

2

]
(32)

The elevation angle ϕk relative to the observing radar is defined as

ϕ = tan−1 (zk − zs)

Rk
(33)

Now, by re-arranging and taking the time derivative of Equation (33),

(sec2 ϕk)ϕ̇ =
Rk żk − (zk − zs)Ṙk

Rk
2 (34)

ωϕk =
[R2

kvzk − (zk − zs){(xk − xs)vxk + (yk − ys)vyk}
R3

k

]
(cos2 ϕk) (35)

where ωϕk = ϕ̇k. Since we know that

cos ϕk =
Rk
ρk

(36)

Equation (35) can be re-written as

ωϕk = ϕ̇k =
[R2

kvzk − (zk − zs){(xk − xs)vxk + (yk − ys)vyk}
R3

k

][R2

ρ2
k

]
(37)

ωϕk =
[R2

kvzk − (xk − xs)(zk − zs)vxk − (yk − ys)(zk − zs)vyk

ρ2
k Rk

]
(38)

Proceeding from Equations (31), (32) and (38), the nonlinear 3D velocity measurement
function can be defined as

h(xk) =



(xk−xs)vxk+(yk−ys)vyk+(zk−zs)vzk√
(xk−xs)

2+(yk−ys)
2+(zk−zs)

2

(yk−ys)vxk−(xk−xs)vyk
(xk−xs)

2+(yk−ys)
2

R2
k vzk−(xk−xs)(zk−zs)vxk−(yk−ys)(zk−zs)vyk

ρ2
k Rk


(39)
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Hence, the nonlinear measurement model defined by Equation (28) takes on the fol-
lowing form.

zk =



(xk−xs)vxk+(yk−ys)vyk+(zk−zs)vzk√
(xk−xs)

2+(yk−ys)
2+(zk−zs)

2

(yk−ys)vxk−(xk−xs)vyk
(xk−xs)

2+(yk−ys)
2

R2
k vzk−(xk−xs)(zk−zs)vxk−(yk−ys)(zk−zs)vyk

ρ2
k Rk


+ wk (40)

The objective of the proposed MTT algorithm is to estimate the state x̂k|k = E{xk|zk}
and error covariance Pk|k = E{[xk − x̂k|k][xk − x̂k|k]

>|zk} of each target in the radar’s FOV
by exploiting the derived 3D velocity measurement function.

3. Design of the Proposed 3D MTT Algorithm

The detailed design of the proposed MTT algorithm based on 3D velocity measure-
ments is delineated in Figure 2. The dual-orthogonal baseline DF-FMCW interferometric
radar used to measure the 3D velocities of multiple moving objects has the capability
to transmit FMCW signals with two different carrier frequencies, such that fc1 = 6 GHz
and fc2 = 24 GHz. It consists of one transmitting antenna Tx and three receiving antennas
Rx1, Rx2, and Rx3. The transmitting antenna Tx and receiving antenna Rx1 can switch
between two operating frequencies fc1 and fc2 via RF switches, depending on the mode of
operation. Based on the carrier frequency fc1 , the lengths of the two orthogonal baselines
were set as D12 = D13 = 60λc1 = 3 m. The detection and extraction of radial velocity
measurements were performed at a higher carrier frequency fc2 , whereas the azimuth and
elevation angular velocity measurements were obtained at a lower carrier frequency fc1 ,
thereby suppressing the intermodulation terms in the interferometric response. The inter-
ferometric frequencies’ information was preserved by increasing the baseline lengths D12
and D13 simultaneously [28]. First of all, the radar observes the region of interest (ROI)
operating at carrier frequency fc2 and performs 2D-FFT on the received data for the detec-
tion of the potential targets by obtaining the range–radial velocity map. Once the targets
are identified, STFT is applied to the received data, which provides the time-varying
Doppler spectrogram of the targets in the FOV. Following Equation (6), the radial velocities
of the targets are extracted from the Doppler spectrogram [29]. Then, for the azimuth
and elevation angular velocity measurements at carrier frequency fc1 , STFT is performed
on the two interferometric outputs yc1(t) and yc2(t), respectively. The time-varying azimuth
and elevation interferometric spectrograms thus obtained are used to calculate the azimuth and
elevation angular velocities of the targets following Equations (11) and (16), respectively. In
order to combine the 3D velocity measurements of each object, 2D FFT is performed on the three
beat frequency signals at antennas Rx1, Rx2, and Rx3 in the interferometric mode corresponding
to the carrier frequency fc1 . The following relationships hold true in the interferometric mode.
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Figure 2. Illustration of the proposed MTT algorithm based on 3D velocity measurements obtained
from the dual-frequency dual-orthogonal baseline interferometric radar.

ρ2 − ρ1 = D12 sin θ (41)

ρ3 − ρ1 = D13 sin ϕ (42)

where ρ1, ρ2, and ρ3 represent the ranges of the object relative to antennas Rx1, Rx2, and
Rx3, respectively. By taking the time derivative of Equations (41) and (42), the relationship
between the radial and angular velocities of the object can be written as

vr3D,2 − vr3D,1 = D12ωθ cos θ (43)

vr3D,3 − vr3D,1 = D13ωϕ cos ϕ (44)

where vr3D,1 , vr3D,2 , and vr3D,2 represent the radial velocity of the object at antennas Rx1,
Rx2, and Rx3, respectively. The initial range measurements obtained by performing 2D
FFT on the beat frequency signals are used to calculate the initial azimuth and elevation
angles of the objects following Equations (41) and (42). Then, based on Equations (43) and
(44), the initial values of the radial velocities along with the azimuth and elevation angle
measurements are used to combine the 3D velocities of each target distinctly. Measurement-
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to-track data association and target state estimation are the two fundamental elements of
the MTT algorithm. Moreover, the track management is also a crucial element of the MTT
algorithm, which maintains the two major data structures, namely tentative and confirmed
track lists. The track management unit handles the initiation of new target tracks, the confir-
mation of tentative tracks, and the deletion of tentative and confirmed tracks based on some
predefined criteria. After the formation of the tentative and confirmed track lists from previ-
ous scans of the data, the new 3D velocity measurements received from the interferometric
radar are assessed for association with existing target tracks or for initializing new tentative
tracks. Based on the 3D velocity measurement function defined by Equation (39), the
global nearest neighbor (GNN) method combined with the auction algorithm is used for
measurement-to-track data association. The unassociated measurements are then tested
for association with already existing tentative tracks. The measurements still unassociated
with any existing tracks are then used to initiate new tracks. The 3D velocity measure-
ments associated with the existing tracks are utilized in the filter measurement update step
for the target’s state estimation. Since Equation (39) clearly demonstrates the nonlinear
relation between the state of the target and the radar measurements, the proposed MTT
algorithm utilizes the nonlinear IMM-SCKF estimator. Based on the 3D velocity measure-
ment function, IMM-SCKF estimator is used to estimate the states of non-maneuvering and
maneuvering targets. Different blocks of the MTT algorithm are thoroughly discussed in
the following sections for better understanding of the algorithm.

4. Global Nearest Neighbor Data Association Method

Various data association techniques exist in the literature for the MTT algorithms,
which include the NN, GNN, JPDA, and MHT algorithms. However, the GNN is the most
commonly used optimal and robust technique for practical tracking systems. The GNN
algorithm propagates a single global hypothesis and addresses the measurement-to-track
association in the form of an optimal assignment problem [29,31,32]. Based on the 3D
velocity measurement function expressed by Equation (39), the data association process
follows three steps:

1. Ellipsoid gating;
2. GNN-algorithm-based assignment matrix formation;
3. Auction algorithm for the optimal solution of the assignment matrix.

Gating is a technique for eliminating unlikely observation-to-track pairings. For a measure-
ment to satisfy the ellipsoid gating relationship of a track, the norm of the measurement
residual vector d2

k must fulfill the following criterion:

d2
k = ṽ>k S−1

Z,kṽk ≤ G (45)

where ṽ is the measurement residual vector, SZ,k is the measurement residual covariance
matrix at time instant k, and G represents the gate size. Based on the 3D velocity measure-
ment function, the measurement residual vector can be expressed as

ṽk = zk −



(xk−xs)vxk+(yk−ys)vyk+(zk−zs)vzk√
(xk−xs)

2+(yk−ys)
2+(zk−zs)

2

(yk−ys)vxk−(xk−xs)vyk
(xk−xs)

2+(yk−ys)
2

R2
k vzk−(xk−xs)(zk−zs)vxk−(yk−ys)(zk−zs)vyk

ρ2
k Rk


x̂k|k−1 (46)

Generally, d2 is assumed to have a chi distribution (χ2
nz ) for correct measurement-to-

track association, where nz represents the dimension of the measurement vector. The rela-
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tionship between the gate size G and the probability of the 3D measurement vector falling
inside the gate PG(nz) is expressed as [11]

PG(3) = 2gc(
√

G3D)−
√

2G3D

π
exp(

−G3D

2
) (47)

where gc denotes standard Gaussian probability integral. Following the ellipsoid gating, the
GNN algorithm is used to resolve measurement-to-track association conflicts by forming
and solving a 2D assignment matrix [11]. For the formation of the assignment matrix, the rows
are occupied by 3D velocity measurements, and the first columns of the assignment matrix are
filled with the existing tracks. The rest of the columns are filled with new track hypotheses.
The entries of the assignment matrix are expressed in the form of the score gain. That is,

αij = G− d2
ij (48)

where αij represents the margin by which the statistical distance passed the gate. The en-
tries corresponding to the assignment of a measurement to a new track were set as zero.
The non-allowed measurements are represented by −∞. The optimal solution is the set
of assignments that produces the maximum score gain [11]. In the literature, various
algorithms exist to solve the assignment problem, such as the Hungarian algorithm, the
Munkres algorithm [33], the Jonker–Volgenant–Castanon (JVC) algorithm, and the auction
algorithm [11]. However, the auction algorithm is presently the most efficient algorithm
for the assignment problem, which has replaced the Munkres algorithm [12]. Therefore, in
the current work, the GNN method with the auction algorithm was used for measurement-
to-track data association.

5. IMM-SCKF Estimator for State Estimation

The main function of the estimation filter in the MTT algorithm is to estimate the state
of the targets detected from noise-corrupted radar measurements [34]. The measurements
allocated to the tracks present in the tentative or confirmed track lists during the data
association step are utilized in the measurement update stage of the filtering procedure [24].
Referring to Equation (39), it is clear that there exists nonlinear relation between the 3D
velocity measurements received from the interferometric radar and the state of the target.
Therefore, a nonlinear filter is required for estimating the state of the target [31,32,35].

5.1. Square-Root Cubature Kalman Filter

Based on the properties of symmetry and positive semi-definiteness, the nonlinear
SCKF is used for target state estimation. It is numerically more accurate, stable, and
computationally efficient compared to the extended Kalman filter (EKF) [36], unscented
Kalman filter (UKF) [37], and CKF [38]. The SCKF algorithm is outlined below [39];

5.1.1. Time Update

Starting at time instant k, assume that the posterior density with the square-root of
error covariance matrix is given.

p(xk−1|Zk−1
1 ) = N (x̂k−1|k−1|Sk−1|k−1) (49)

Pk−1|k−1 = Sk−1|k−1S>k−1|k−1 (50)

where Pk−1|k−1 denotes the error covariance matrix, Sk−1|k−1 is the square-root of the error
covariance matrix Pk−1|k−1, and Zk−1

1 represents the set of measurements from the start
to time instant k− 1:

1. Compute the cubature points Xi : (i = 1, 2, · · · , m, where m = 2nx):

Xi,k−1|k−1 = Sk−1|k−1ξi + x̂k−1|k−1 (51)
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ξi =

√
m
2
[1]i (52)

where ξi denotes the cubature points weights.
2. Compute the cubature points propagated (i = 1, 2, · · · , m).

X∗i,k|k−1 = f(Xi,k−1|k−1) (53)

where f(·) denotes the nonlinear function of the dynamic state equation.
3. Calculate the predicted state.

x̂k|k−1 =
1
m

M

∑
m=1

X∗i,k|k−1 (54)

4. Calculate the square-root predicted error covariance.

Sk|k−1 = Tria([X ∗k|k−1 SQ,k−1]) (55)

Qk−1 = SQ,k−1S>Q,k−1 (56)

X ∗k|k−1 =
1√
m
[X∗1,k|k−1 − x̂k|k−1

X∗2,k|k−1 − x̂k|k−1 · · ·X∗m,k|k−1 − x̂k|k−1]
(57)

where SQ,k−1 is the square-root of process noise covariance Qk−1 and X ∗k|k−1 is
the weighted-centered matrix. Tria represents the QR-decomposition triangular-
ization algorithm.

5.1.2. Measurement Update

1. Compute the cubature points (i = 1, 2, · · · , m).

Xi,k|k−1 = Sk|k−1ξi + x̂k|k−1 (58)

2. Compute the cubature points propagated (i = 1, 2, ..., m).

Z∗i,k|k−1 = h(Xi,k|k−1) (59)

where h(·) denotes the nonlinear 3D velocity measurement function defined by
Equation (39).

3. Calculate the predicted measurement.

ẑk|k−1 =
1
m

M

∑
m=1

Z∗i,k|k−1 (60)

4. Compute the square-root innovation covariance matrix.

Szz,k|k−1 = Tria([Jk|k−1 SR,k]) (61)

Rk = SR,kS>R,k (62)

Jk|k−1 =
1√
m
[Z∗1,k|k−1 − ẑk|k−1

Z∗2,k|k−1 − x̂k|k−1 · · ·Z∗m,k|k−1 − ẑk|k−1]
(63)

where SR,k is the square-root of measurement noise covariance Rk−1 and Jk|k−1 is
the weighted-centered matrix.
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5. Compute the cross-covariance matrix.

Pxz,k|k−1 = Xk|k−1J
>
k|k−1 (64)

Xk|k−1 =
1√
m
[X1,k|k−1 − x̂k|k−1

X2,k|k−1 − x̂k|k−1 · · ·Xm,k|k−1 − x̂k|k−1]

(65)

6. Calculate the square-root cubature Kalman gain.

Wk = (Pxz,k|k−1/S>zz,k|k−1)/Szz,k|k−1 (66)

7. Compute the updated state estimate.

x̂k|k = x̂k|k−1 + Wk(zk − ẑk|k−1) (67)

8. Calculate the square-root estimated error covariance.

Sk|k = Tria([Xk|k−1 −WkJk|k−1 WkSR,k]) (68)

5.2. Interacting Multiple Model Estimator

Since the moving target does not necessarily follow a single dynamic model, modern track-
ing systems typically use the IMM filter [40] for maneuvering target tracking [29]. If the target
dynamics are characterized by multiple switching models (r > 1), the posterior density of
the target state vector is a mixture density [11,12,25,31]. The objective of the IMM filter is to com-
bine all the mixture components into a single Gaussian distribution in a manner that the first
and second moments are matched [24,25,29]. At the current time instant k, the IMM algorithm
begins with r model-conditioned state estimates x̂i

k−1|k−1, square-root error covariance matrix

Si
k−1|k−1, and model probabilities µi

k−1|k−1 at instant k− 1 [24]. Upon receiving the current
measurement zk, the IMM algorithm follows the steps outlined below [29,31,41]:

1. Computing mixing probabilities:

cj =
r

∑
i=1

pijµ
i
k−1|k−1 (69)

µ
(i,j)
k−1|k−1 = P{Mi

k−1|M
j
k, Zk−1

1 } = 1
cj pijµ

i
k|k−1 (70)

where µ
(i,j)
k−1|k−1 represents the model probability that model Mi was effective at time

instant k − 1 provided that Mj is effective at time instant k conditioned on Zk−1
1 .

Here, Zk−1
1 represents the measurement history from start to instant k− 1. pij denotes

the elements of model transition probabilities matrix, µi
k−1|k−1 is the model probability

for ith SCKF, and µ
(i,j)
k−1|k−1 is mixture probability for i, j = 1, · · · , r.

2. Interaction/mixing of state estimates:

x̂0j
k−1|k−1 =

r

∑
i=1

x̂i
k−1|k−1µ

(i,j)
k−1|k−1 (71)

P0j
k−1|k−1 =

r

∑
i=1

µ
(i,j)
k−1|k−1{S

i
k−1|k−1(S

i
k−1|k−1)

> + [x̂i
k−1|k−1 − x̂0j

k−1|k−1][x̂
i
k−1|k−1 − x̂0j

k−1|k−1]
>} (72)

where x̂0j
k−1|k−1 represents the mixed initial state estimate for the jth SCKF, P0j

k−1|k−1

represents the error covariance corresponding to x̂0j
k−1|k−1, x̂i

k−1|k−1 represents the ith
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SCKF state estimate, and Si
k−1|k−1 is the square-root covariance matrix for x̂i

k−1|k−1i
[41].

3. Updating state estimates: The initial condition state estimate x̂0j
k−1|k−1 and error co-

variance matrix P0j
k−1|k−1 for each filter model are used to compute the updated state

estimate x̂j
k|k and square-root error covariance Sj

k|k for the SCKF model.

4. Computing the model likelihood:

ṽj
k = zk − h(x̂j

k|k−1)

= zk −


(xk−xs)vxk+(yk−ys)vyk+(zk−zs)vzk√

(xk−xs)
2+(yk−ys)

2+(zk−zs)
2

(yk−ys)vxk−(xk−xs)vyk
(xk−xs)

2+(yk−ys)
2

R2
k vzk−(xk−xs)(zk−zs)vxk−(yk−ys)(zk−zs)vyk

ρ2
k Rk

x̂j
k|k−1

(73)

∧j
k =

1√
|2πSj

Z,k|
exp{−0.5[ṽj

k]
T [Sj

Z,k]
−1[ṽj

k]} (74)

Sj
Z,k = Aj

k(A
j
k)
> (75)

where ∧j
k is the likelihood function and Aj

k represents the square-root measurement
residual covariance matrix for the jth SCKF model.

5. Updating the model probability:

c =
r

∑
j=1
∧j

kcj (76)

µ
j
k|k = P{Mj

k|Z
k
1} =

1
c
∧j

k cj (77)

6. Combining the state mean and covariance estimates for the output:

x̂k|k =
r

∑
j=1

x̂j
k|kµ

j
k|k (78)

Pk|k =
r

∑
j=1

µ
j
k|k{S

j
k|k(S

j
k|k)
>

+ [x̂k|k − x̂j
k|k][x̂k|k − x̂j

k|k]
>}

(79)

The proposed MTT algorithm utilizes the IMM-SCKF estimator with the 3D velocity
measurement function for the confirmed tracks’ state estimation. For the tracks not receiv-
ing measurements during the data association process, the predicted state and covariance
estimates become the measurement-updated state and covariance estimates. Since only
a few tentative tracks fulfill the criteria to be inserted into the confirmed tracks’ list, a simple
NCV-SCKF estimator is used for tentative track state estimation. Employing the IMM-SCKF
estimator for the targets in the tentative tracks’ list will increase the computational load
and complexity for the data processing unit.

6. Filter Initialization

Filter initialization is an extremely crucial problem in tracking applications, specifically
for nonlinear systems, as nonlinear estimation filters generally depend on approximation
theory [24,25]. The nonlinear measurement function in Equation (39), defining the rela-
tionship between 3D velocity measurements and the state of the target, makes finding
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the analytical solution impossible for filter initialization. Therefore, the initial range mea-
surement and initial azimuth and elevation angles determined from Equations (41) and
(42), respectively, are used to extract the 3D Cartesian position (x0, y0, z0) of the target.
That is,

x0 = ρ cos ϕ sin θ (80)

y0 = ρ cos ϕ cos θ (81)

z0 = ρ sin ϕ (82)

The velocity of the target is calculated by integrating the position estimate at two consec-
utive time instants, i.e., vx0 = (x1 − x0)/∆T, vy0 = (y1 − y0)/∆T, and vz0 = (z1 − z0)/∆T.
Since the azimuth and elevation angles calculated are highly sensitive to the range measurement
error, (R, θ, ϕ) measurements are not reliable for target tracking in the 3D Cartesian space.
These measurements are only utilized for filter initialization, and tracking is performed based
on the 3D velocity information obtained from the interferometric radar.

7. Rule-Based M/N Logic for Track Management

Since the GNN algorithm is incapable of addressing the track management issue auto-
matically, the rule-based M/N logic is used to handle the appearance and disappearance
of the targets in the radar’s FOV. The track management involves new track initiation,
tentative track confirmation, and tentative/confirmed track deletion. The measurement-
to-track data association procedure is followed by the track management step, which is
responsible for managing both the tentative tracks’ list and confirmed tracks’ list on the ba-
sis of predefined rules. Each track list contains the information of state estimate vector
x̂k|k, square-root error covariance estimate matrix Sk|k, measurement residual covariance
matrix SZ,k, “Hit” counter, and “Miss” counter. Upon receiving a new set of 3D veloc-
ity measurements from the interferometric radar, these measurements are first tested for
association with the confirmed tracks. If a confirmed track does not get associated with
a measurement during this step, its “Hit” counter is decremented and its “Miss” counter is
incremented. The measurements not associated with the confirmed tracks are tested for
data association with existing tentative tracks. The “Hit” counters of the tentative tracks
receiving measurements during the data association procedure get incremented, whereas
their “Miss” counters remain unchanged. On the other hand, if a tentative track does
not receive any measurement during the data association step, its “Hit” counter remains
unchanged, whereas its “Miss” counter gets incremented. The still unassociated measure-
ments are utilized by the track management unit to initiate new tentative tracks. The “Hit”
and “Miss” counters of new tentative tracks are set to 1 and 0, respectively. The tentative
tracks satisfying the 2/2 and 2/3 rules are inserted in the confirmed tracks’ list. This means
that a tentative track receiving measurements during the first two consecutive scans of
the data and then receiving measurements at least twice during the next three consecutive
scans is eligible to be inserted in the confirmed tracks’ list. At this stage, the ”Hit” and
“Miss” counters of the confirmed tracks are set as ”Hit = 5” and “Miss = 0”. The tentative
track not satisfying the 2/2 and 2/3 criteria is deleted from the tentative track list. If
a confirmed track does not receive any measurements during five consecutive scans of data,
i.e., “Hit = 0” and “Miss = 5”, the delete flag for this track is set to 1 and the track is deleted
from the confirmed tracks’ list [29].

8. Performance Evaluation Simulations

This section presents the performance evaluation of the proposed 3D MTT algorithm
on the basis of a number of performance evaluation metrics for non-maneuvering and
maneuvering multi-target scenarios in the presence of process noise, measurement noise,
and clutter due to false alarms.
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8.1. Performance Metrics

The performance evaluation metrics considered in the proposed research include the
following.

8.1.1. Root-Mean-Squared Error in Position

Assume [xk, yk, zk] and [x̂k, ŷk, ẑk]) represent the true and estimated positions, respec-
tively, of a target at time instant k in 3D Cartesian coordinates. For M number of Monte
Carlo runs, the RMSE in the position of the target is defined as [24,29]

RMSEpos
k =

√√√√ 1
M

M

∑
i=1

(x̂i
k − xi

k)
2
+ (ŷi

k − yi
k)

2
+ (ẑi

k − zi
k)

2 (83)

8.1.2. Root-Mean-Squared Error in Velocity

Similarly, if [vxk , vyk , vzk ] and [v̂xk , v̂yk , v̂zk ] represent the true and estimated velocities,
respectively, of a target, the RMSE in velocity for M number of Monte Carlo runs at time
instant k can be written as

RMSEvel
k =

√√√√ 1
M

M

∑
i=1

(v̂i
xk
− vi

xk
)

2
+ (v̂i

yk
− vi

yk
)

2
+ (v̂i

zk
− vi

zk
)

2 (84)

8.1.3. Mean Execution Time for One Data Scan

The mean execution time TE of the algorithm for one data scan was computed on a
laptop computer. The specifications of the computer were 1.9 GHz processor, 4GB RAM,
and Windows 10 for Matlab2018. The total execution time was composed of the time
for data association TDA, filtering for state estimation TF, and track management TTM
functions [24,29].

TE = TDA + TF + TTM (85)

8.1.4. IMM Mean Model Probabilities

The IMM mean model probabilities for maneuvering targets reflect how efficiently
the IMM algorithm can recognize the different dynamic motion models of the targets and
switch between different filter models accordingly [29].

8.2. Parameter Selection and Simulated Data Generation

To evaluate the performance of the proposed MTT algorithm, the targets were con-
sidered as point sources in the far-field relative to the observing radar. A DF-FMCW
interferometric radar with fc1 = 6 GHz and fc2 = 24 GHz was simulated with a band-
width B = 500 MHz and a sweep time T = 1 ms. The sampling frequency was set to be
fs = 128 kHz. The receiving antennas Rx1, Rx2, and Rx3, corresponding to fc1 , were located
at (0,0,0), (−D12,0,0), and (0,0,D13), where D12 = D13 = 3 m [29]. The target trajectories
were modeled using the NCV and NCT dynamic models with discrete white Gaussian
process noise. The straight line motion of the targets followed the NCV model, whereas
the maneuvering motion of the targets followed the NCT model. The standard deviations
associated with the linear and circular segments of target motion were assumed to be
σv1 = 0.20 and σv2 = 0.10. Further, the radial velocity, azimuth angular velocity, and eleva-
tion angular velocity measurement error standard deviations were set as σvr = 0.14 m/s,
σωθ

= 0.10 rad/s, and σωϕ = 0.10 rad/s, respectively. The probability of gate detection was
set as PG = 0.99999. The sampling interval was ∆T = 0.02 s [29]. The number of Monte
Carlo simulation runs was M = 20. The clutter points assumed a Poisson distribution
and were uniformly distributed in the measurement region [42]. Each clutter point was
composed of (i) a radial velocity measurement distributed in the range of [vrmin , vrmax ], (ii) an
azimuth angular velocity measurement distributed in [ωθmin , ωθmax], and (iii) an elevation
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angular velocity measurement distributed in [ωϕmin , ωϕmax ]. The average number of clutter
points was set as 5 for each scan [29]. For the IMM filter with Model 1 as the NCV model
and Model 2 as the NCT model, the model transition probabilities matrix is

π =

[
0.99 0.01
0.01 0.99

]
(86)

The initial model probability for each filter model was chosen to be µj = 0.5, where
j = 1, 2 [29].

8.3. Scenario 1: Two Non-Maneuvering Closely Spaced Targets

Scenario 1 for 3D tracking with two non-maneuvering targets and radar antennas
is shown in Figure 3. Table 1 presents the initial states of the targets. The trajectories
of the targets were modeled using the NCT dynamic model defined by Equation (23).
However, the circular motion was along the xz-plane, rather than the xy-plane, as described
by state transition matrix FNCT,3D

k−1 in Equation (25).

Figure 3. The radar and target geometry for Scenario 1.

Table 1. Scenario 1.

Targets Initial States of Targets

x (m) vx1 (m/s) y (m) vy (m/s) z (m) vz (m/s) Ω (rad/s)

1 0 3.5 3 1 1.5 0 4.83
2 0 −2 2.6 1 1.8 0 −4.83

The range–radial velocity map ( fc2 = 24 GHz) represented by Figure 4a shows two
targets with initial ranges of R01 = 3.47 m and R02 = 3.11 m and initial radial velocities of
vr1 = 1.31 m/s and vr2 = 1.1 m/s, respectively.

The time-varying Doppler spectrogram ( fc2 = 24 GHz), azimuth interferometric
spectrogram ( fc1 = 6 GHz), and elevation interferometric spectrogram ( fc1 = 6 GHz) are
shown in Figure 4b–d, respectively. The instantaneous Doppler frequency shift caused
by the radial velocity of the target increases for the target moving away from the radar
and decreases for the target moving towards the radar. Moreover, the sinusoidal patterns
of the radial velocities represent the circular motions of the targets moving towards and
away from the radar. The instantaneous azimuth angular frequency caused by the azimuth
angular velocity is positive for the target moving along the positive x direction and negative
for the target moving along the negative x direction. Similarly, the instantaneous elevation
angular frequency caused by the elevation angular velocity is positive for the target moving
in the positive ϕ direction and negative for the target moving in the negative ϕ direction.



Sensors 2022, 22, 7549 19 of 25

(a) (b)

(c) (d)

Figure 4. Range–radial velocity map, time-varying Doppler, and azimuth interferometric and el-
evation interferometric spectrograms for Scenario 1. (a) Range–radial velocity map; (b) Doppler
spectrogram; (c) Azimuth interferometric spectrogram; (d) Elevation interferometric spectrogram.

Figure 5a–c represent the ideal and extracted radial, azimuth angular, and elevation
angular velocities of the targets, providing complete 3D velocity measurement informa-
tion. The extracted 3D velocity measurements are fed to the proposed GNN-IMM-SCKF
algorithm for 3D tracking, which includes data association, state estimation, and track
management functions.

(a) (b)

(c)

Figure 5. Three-dimensional velocity measurements for Scenario 1. (a) Radial velocity measurement;
(b) Azimuth angular velocity measurement; (c) Elevation angular velocity measurement.

The real target tracks following Equation (23) and the output of the proposed algorithm
as estimated target tracks in the 3D Cartesian space are shown in Figure 6a. Moreover, 6b–d
represent the target tracks in the 2D xy, xz, and yz Cartesian spaces, respectively.
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(a) (b)

(c) (d)

Figure 6. Real and estimated target tracks for Scenario 1. (a) Real and estimated target tracks in 3D
Cartesian space; (b) Real and estimated target tracks in xy-plane; (c) Real and estimated target tracks
in xz-plane; (d) Real and estimated target tracks in yz-plane.

To access the performance of the proposed algorithm, the RMSEs in the positions
and velocities of the targets are plotted in Figure 7a,b, respectively, which prove that
the proposed algorithm based on 3D velocity measurements from the interferometric radar
can be used for MTT in the 3D Cartesian space.

(a) (b)

Figure 7. RMSEs in position and velocity for Scenario 1. (a) RMSE in position; (b) RMSE in velocity.

8.4. Scenario 2: Two Maneuvering Closely Spaced Targets

Scenario 2 for 3D target tracking with two closely spaced maneuvering targets and
radar location is shown in Figure 8. The trajectories of the targets were modeled by the NCV
(Equation (18)) and NCT (Equation (23)) dynamic models. The initial states of the targets
are summarized in Table 2.
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Figure 8. The radar and target geometry for Scenario 2.

Table 2. Scenario 2.

Targets Initial States of Targets

x (m) vx1 (m/s) y (m) vy (m/s) z (m) vz (m/s) Ω (rad/s)

1 −2.25 3 3.5 0 −2 1 4.83
2 1.5 −2 3.5 0 2 −1 −4.83

The range–radial velocity map plotted in Figure 9a clearly shows two different targets
in the radar’s FOV with initial ranges of R01 = 4.68 m and R02 = 4.35 m and initial radial
velocities of vr1 = −1.91 m/s and vr2 = −1.11 m/s, respectively.

Time-varying Doppler, azimuth interferometric, and elevation interferometric spectro-
grams for Scenario 2 are shown in Figure 9b–d, respectively. The radial, azimuth angular,
and elevation angular velocities extracted from the time-varying spectrograms are pre-
sented in Figure 10a–c, respectively, together with the ideal 3D velocity measurements. For
targets moving towards the radar, the radial velocities decrease, and for targets moving
away from the radar, the radial velocities increase. Similarly, the azimuth and elevation
angular velocities of the targets moving in positive θ and ϕ are positive, respectively, and
vice versa.

(a) (b)

(c) (d)

Figure 9. Range–radial velocity map, time-varying Doppler, and azimuth interferometric and el-
evation interferometric spectrograms for Scenario 2. (a) Range–radial velocity map; (b) Doppler
spectrogram; (c) Azimuth interferometric spectrogram; (d) Elevation interferometric spectrogram.
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(a) (b)

(c)

Figure 10. Three-dimensional velocity measurements for Scenario 2. (a) Radial velocity measurement;
(b) Azimuth angular velocity measurement; (c) Elevation angular velocity measurement.

The real target tracks and the estimated target tracks obtained as the output of the GNN-
IMM-SCKF algorithm in the 3D Cartesian space are plotted in Figure 11a. The real and estimated
2D tracks in the xy, xz, and yz Cartesian spaces are shown in Figure 11b–d, respectively.

(a) (b)

(c) (d)

Figure 11. Real and estimated target tracks for Scenario 2. (a) Real and estimated target tracks in 3D
Cartesian space; (b) Real and estimated target tracks in xy-plane; (c) Real and estimated target tracks
in xz-plane; (d) Real and estimated target tracks in yz-plane.

For the performance evaluation, the RMSEs in the positions and velocities of the targets
are presented in Figure 12a,b. Figure 12a,b assert the fact that the RMSEs for the GNN-
IMM-SCKF algorithm are less compared to the RMSEs for the GNN-NCV-SCKF algorithm
during the targets’ maneuvers. The IMM mean model probabilities for the NCV and NCT
dynamic models presented in Figure 12c validate the fact that the proposed GNN-IMM-
SCKF algorithm based on 3D velocity measurements obtained from the interferometric
radar is applicable to 3D tracking systems for state estimation of maneuvering targets.
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(a) (b)

(c)

Figure 12. RMSEs in position and velocity and IMM-SCKF mean model probabilities for maneuvering
targets for Scenario 2. (a) RMSE in position; (b) RMSE in velocity; (c) IMM-SCKF mean model
probabilities.

The execution times for different 3D target tracking scenarios are summarized
in Table 3. It is evident that the data association block of the tracking algorithm con-
sumes more time than the filtering and track management blocks, which is approximately
48–56% of the total execution time. Furthermore, the execution time for the GNN-IMM-
SCKF algorithm is approximately 27% greater than the execution time for the GNN-NCV-
SCKF algorithm. The total execution time TE being less than the measurement sampling
interval ∆T proves the fact that the proposed MTT algorithm can be implemented for
real-time applications.

Table 3. Execution times.

Scenario Execution Time

TE (ms) TDA (ms) TF (ms) TT M (ms)

1 (GNN-IMM-
SCKF) 17.7 10 (56%) 5.94 (34%) 1.80 (10%)

2 (GNN-NCV-
SCKF) 15.1 7.25 (48%) 4.41 (29%) 3.44 (23%)

2 (GNN-IMM-
SCKF) 19.2 9.18 (48%) 7.53 (39%) 2.48 (13%)

9. Conclusions

MTT typically requires either a network of Doppler radar receivers at different loca-
tions or a single phased array radar. However, Doppler radar networks have high compu-
tational complexity and data throughput attributed to multiple receivers in the network.
Moreover, array signal processing techniques for phased array radar are computation-
ally expensive. To resolve the issue, this paper presented an algorithm for detection and
tracking of multiple moving targets based on 3D velocity measurements obtained from
a dual-orthogonal baseline interferometric radar. First, we presented the mathematical
model of the 3D velocities of multiple moving point sources as targets. The radial, azimuth
angular, and elevation angular velocities were extracted using reference receiving antenna,
a baseline along the x-axis and a second orthogonal baseline along the z-axis, respectively.
Then, we derived the nonlinear 3D velocity measurement function, which defines the rela-
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tionship between the 3D velocity measurements and the state of the target. Based on the 3D
velocity measurement function, we introduced the design and implementation of an MTT
algorithm, which included the GNN for data association, the IMM-SCKF estimator for state
estimation, and the rule-based M/N logic for track management. Then, we performed
Monte Carlo simulations for different multi-target scenarios and evaluated the performance
of the algorithm in terms of the RMSEs in position and velocity, the mean execution time,
and the IMM mean model probability. In order to simulate a multi-target scenario close
to a real environment, process noise in the dynamic motion models of the targets was
modeled as the DWNA, taking into consideration small accelerations as noise. Moreover,
zero-mean Gaussian measurement noise and clutter due to false alarms following a Pois-
son distribution were added to the received data. Consequently, the simulation results
proved the fact that the proposed algorithm is robust and can be applied to practical 3D
tracking systems.
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