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Abstract: Energy saving in palletizing robot is a fundamental problem in the field of industrial robots.
However, the palletizing robot often suffers from the problems of high energy consumption and
lacking flexibility. In this work, we introduce a novel differential evolution algorithm to address
the adverse effects caused by the instability of the initial trajectory parameters while reducing the
energy. Specially, a simplified analytical model of the palletizing robot is firstly developed. Then,
the simplified analytical model and the differential evolutionary algorithm are combined to form a
planner with the goal of reducing energy consumption. The energy saving planner optimizes the
initial parameters of the trajectories collected by the bionic demonstration system, which in turn
enables a reduction in the operating power consumption of the palletizing robot. The major novelty
of this article is the use of a differential evolutionary algorithm that can save the energy consumption
as well as boosting its flexibility. Comparing with the traditional algorithms, the proposed method
can achieve the state-of-the-art performance. Simulated and actual experimental results illustrate that
the optimized trajectory parameters can effectively reduce the energy consumption of palletizing
robot by 16%.

Keywords: palletizing robot; differential evolutionary algorithm; bionic demonstration system;
optimization of energy

1. Introduction

Palletizing robot is widely used in the manufacturing industry. However, high energy
expenditure is a fundamental issue of palletizing robots [1]. At present, the energy con-
sumption problem of traditional palletizing robots is becoming increasingly evident [2].
Enterprises urgently needs new palletizing robots with low energy consumption and high
degree of automation [3].

The energy consumption problem caused by palletizing robots should be addressed
urgently. Energy recovery and trajectory optimization are the most widely used energy
saving methods [4,5]. Numerous factors affect how energy is recovered, so the effect of
energy saving is unclear. Conventional palletizing robots usually employ the strategies of
best time [6,7] and local optimization [8]. Those approaches can save energy consumption
by reducing the running time. However, given the complexity in the workplace, simply
reducing the time to optimize the trajectory is often impossible. The effectiveness of the
trajectory should be considered when reducing energy consumption, particularly whether
the optimized trajectory can achieve the expected handling action.

Modern palletizing robots acquire trajectory parameters by human–computer inter-
action [9–11]. Moreover, different from traditional methods in optimizing objectives [12],
modern methods combine sensors to optimize energy sources directly [13,14]. This method
can reduce energy consumption and ensure the effectiveness of the trajectory. In this study,
a palletizing robot that collects initial trajectory parameters through a bionic demonstration
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system is called a bionic palletizing robot. Bionic palletizing robot can combine flexibility
with high load characteristics. The energy-saving planner can optimize the trajectory of the
manipulator and realize the energy optimization of the bionic palletizing robot. The bionic
palletizing robot equipped with an energy-saving planner has the advantages of flexibility,
high load characteristics and energy saving.

The greatest challenges in energy consumption are the optimal algorithm design [15],
model establishment [16–18], and parameter identification [19–21]. Most researchers have
made considerable efforts in the relevant direction [22–24]. Zhu et al. selected harmony
search algorithm to reasonably allocate the running time of different trajectory points of a
robot, which reduces the running time and the corresponding operating energy consump-
tion. However, taking time as the optimization goal easily leads to trajectory deviation and
inability to complete the task [25]. In [26], the robot trajectory model constructed by Zhang
et al. utilized an input shaping algorithm to process the trajectory parameters under the
constraints of joint moments to achieve the smoothing of the trajectory while satisfying
the objective optimization. Although the trajectory is smooth, the calculation process is
complex, and the calculation speed is slow. Wei et al. introduced the property that neural
network can converge quickly to solve the problem of minimizing the energy consumption
function and improve the processing speed of trajectory parameters [27]. He et al. first es-
tablished a multi-factor dynamic model and an energy consumption model of a palletizing
robot. Then, they used a genetic algorithm to optimize the model to obtain the trajectory
with the minimum energy consumption. Although there exists a certain optimal effective,
it is easy to fall into local optimum, resulting in unsatisfactory optimization results [28].
Liu et al. proposed a multi-objective optimization method. The operating trajectory of
an industrial robot with the minimum energy consumption can be searched by means of
constraints on multiple conditions. This method reduces the energy consumption and
ensures the effectiveness of the trajectory, but the impact may occur in operation [29]. The
optimization methods of different authors are summarized in Table 1.

Table 1. Energy consumption reduction method.

Energy Consumption Reduction Methods

Authors Year Methods

Characteristics

Efficiency Stability Accuracy Energy
Saving

Zhang et al. [6] 2022 ISSA
√ √

× ×
Hovgard et al. [7] 2021 MPT × ×

√ √

Kyaw et al. [15] 2022 EBITR-Star
√ √

×
√

Zhu et al. [25] 2021 HSA
√

× ×
√

Zhang et al. [26] 2020 ISA ×
√

× ×
Wei et al. [27] 2019 NNS ×

√ √ √

He et al. [28] 2018 GA × ×
√ √

Liu et al. [29] 2018 MOLA ×
√

×
√

This article reposts a novel energy saving planner strategy by introducing the different
evolutionary algorithm. The energy saving planner aims at seeking the most optimized
the trajectory parameters, which can be collected by the bionic demonstration system.
The optimized trajectory should not only reduce energy consumption, but also ensure the
completion of work tasks. First, the design of the planner should analyze the structural
characteristics of the palletizing robot. The model is established according to the structural
characteristics. The connecting rod length, centroid position, and motor torque in the
model are taken as system parameters. Second, the optimal objective function is designed.
The objective function is the overall power consumption of the manipulator. Energy
consumption will be reduced by optimizing the objectives.

In this work, the objective function is proposed to find one optimized parameter group
to minimize the energy consumption. To this end, we propose an initial trajectory parameter
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optimization planner based on the differential evolution algorithm for palletizing robots.
The planner optimizes the initial trajectory parameters, which are collected by the bionic
demonstration system. The major contributions of this article are summarized as follows:

(i) A novel differential evolution algorithm is introduced, which can obtain the instability
of initial trajectory parameters by the bionic demonstration system. The advantage of
the proposed method is summed as two aspects, such as ensuring the flexibility of the
bionic palletizing robot, and boosting the adverse effects of parameter instability.

(ii) To raise the operating efficiency of the energy-saving planner, the mechanical structure
only contains the most important influencing factors. The simplified dynamic model
of palletizing robot is combined with differential evolution algorithm to form energy-
saving planner.

(iii) Experimental results demonstrate that the proposed energy-saving planner can effec-
tively reduce energy consumption, and combines flexibility, high load characteristics
and anti-interference. It can effectively reduce the energy consumption of palletizing
robot by 16%.

The rest of this paper is structured as follows. The process of building the energy
consumption model of the palletizing robot is presented in Section 2. In Section 3, we
first introduce the overall structure of the differential optimization algorithm and the
selection of related parameters. Secondly, the overall design of energy-saving planner and
the establishment of the objective function are described. Section 4 compares the optimal
results of different algorithms and tests the planner under different disturbance conditions.
Section 5 summarizes the overall content of the paper.

2. Model of the Palletizing Robot
2.1. Palletizing Robot

The main work of palletizing robot is responsible for the handling and palletizing
of materials in automatic production. The emergence of palletizing robots improves the
efficiency of logistics operations in the production process, reduces the labor intensity
of staff and ensures the safety of personnel. At the same time, the palletizing robot is a
high-power robot in industrial robots. Its working environment is complex, and it is often
faced with high speed and heavy load during normal operation. Compared with other
industrial robots on automatic production lines, palletizing robots consume a lot of energy
due to their special working conditions.

The coordinate system of the palletizing robot is shown in Figure 1. The coordinate
system takes the rotation center of the bottom fixed base as the origin. The big arm and
the small arm are located in the vertical plane composed of X axis and Y axis. By changing
the angle of the driving motor in this plane, the coordinate change of the palletizing robot
execution end in a certain range in the vertical plane can be realized. The x-axis and z-axis
constitute the horizontal plane in the coordinate system. Through the rotation of the waist,
the coordinate change of the palletizing robot executive end in the horizontal plane is
realized. Three servo motors realize the change of the actual position of the palletizing
robot in the spatial coordinate system.

Figure 1. Palletizing robot coordinate system.
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The major structure of palletizing robot includes five parts, such as a fixed base, a
rotating waist, a large arm structure, a small arm structure, and a wrist part. The base
of palletizing robot is composed of a square fixed disk, which can be utilized to fix the
robot arm to the ground or move the mechanism. The waist is driven by servo motors
to realize the rotational movement of the robot arm body around the center of the fixed
base in space. The large and small arms are driven by two servo motors installed in the
drive cabin above the base of the body. The wrist mechanism is driven directly by small
servo motors to realize the rotational movement of the end of the robot arm. In Figure 2,
the process of palletizing robot in palletizing work is shown. The complete and efficient
mechanical structure will be able to effectively cooperate with the bionic demonstration
system to realize the palletizing work.

Figure 2. Palletizing robot workflow. (a) Grabbing of materials. (b) Transport of materials. (c) Place-
ment of materials. (d) Returning unloaded.

2.2. Establishment of the Model

The mechanical mechanism of bionic palletizing robot consists of four joint compo-
nents. Each component interacts in the operation process, forming a complex mechanical
relationship in the whole system. The mechanical relationships of the joints of the me-
chanical system can be represented by using dynamics modeling. Some of these joints
have a high degree of interaction, making it impossible to model each joint separately to
study the energy consumption of individual joints. The overall power consumption of the
system must be considered as a whole. Palletizing robot modeling methods can refer to
the Springer Handbook of Robotics is written by Bruno Siciliano. In the study, the Lagrangian
equation method is leveraged to model the system dynamics.

The Lagrangian equation of the system is

Qi =
d
dt

∂L
∂

.
qi
− ∂L

∂qi
, i = 1, 2, · · · n, (1)

where Qi denotes the generalized moment, L represents the Lagrangian function, qi is the
generalized coordinate,

.
qi represents the corresponding generalized velocity, and n means

the number of the connecting rods. The Lagrangian function L is the difference between
the kinetic energy K and the potential energy P of the machine system.
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According to the analysis of the mechanical structure of the bionic palletizing robot,
the rotation of the wrist of the bionic palletizing robot only determines the operation
posture of the end actuator. It has little effect on the overall dynamics of bionic palletizing
robot. In kinematic modeling, the influence of the wrist is ignored, and only the dynamics
of the waist, shoulder, and elbow are considered.

Through the analysis of the conventional dynamics modeling results. The inertia
matrix of the system has nothing to do with the rotation of the waist, but only with the
control of the shoulder and elbow joints. Only a few parameters in Coriolis and centrifugal
force matrices relate to the rotation of the waist. Thus, the system dynamics can be divided
into two parts for analysis. In the first part, the rotational motion of the waist is analyzed as
a single-joint system. In the second part, the shoulder and elbow are analyzed as a two-joint
system. The operation time of trajectory planning can be effectively reduced by adopting
this analysis method.

According to the specific structure and simplified factors of bionic palletizing robot,
the simplified structures of the shoulder and elbow joints are obtained, as shown in Figure 3.
The solid points in Figure 3 are the positions of the center of mass of each rod. I1, I2, and I3
represent the length of the corresponding connecting rod. The length of Rod 4 from Point C
to Point D is replaced by I4. The angle between the corresponding connecting rod and the
X-axis is defined by q1 and q2.

Figure 3. Structural simplification of palletizing robot.

2.3. Shoulder and Elbow Partial Energy Consumption Model
2.3.1. Kinetic Energy Module

Step 1. Calculation of the kinetic energy of the translational part.
First, the centroid coordinates of each connecting rod are obtained. Then, the centroid

coordinates of the connecting rod are derived to obtain the centroid velocity.
The centroid velocity from Rod 1 to Rod 4 is

Vci = Jvi

.
q, i = 1, 2, 3, 4. (2)

From Equation (2), the translational part is derived as follows:

K1 =
1
2

.
qT
(

4

∑
i=1

mi Jvi
T Jvi

)
.
q, (3)

where K1 represents the kinetic energy of the translational part, and mi is the mass of
different connecting rods. The detailed calculation process is illustrated in Figure 4.
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Step 2. Calculate the kinetic energy of the rotating part.
The following conclusion can be drawn based on the analysis of the simplified struc-

tural model of the robotic arm:

ω1 = ω3 and ω2 = ω4, (4)

where ω1, ω2, ω3, and ω4 are expressed as the rotation speed of Connecting rod 1 to
Connecting rod 4, respectively. The velocity equation is expressed as

ω1 = Jω1

.
q =

 0 0
0 0
1 0

[ .
q1.
q2

]

ω2 = Jω2

.
q =

 0 0
0 0
0 1

[ .
q1.
q2

] (5)

The kinetic energy equation of the rotating parts is derived from Equation (5), which
can be expressed as follows:

K2 =
1
2

.
qT
(

4

∑
i=1

Ii Jωi
T Jωi

)
.
q, (6)

By adding Equations (3) and (6), the kinetic energy component of the system is
defined by

K = K1 + K2 =
1
2

.
qT D

.
q, (7)

where D is expressed as an inertial matrix equation, as follows:

D =
4

∑
i=1

mi JVci
T JVci +

4

∑
i=1

Ii Jωi
T Jωi =

4

∑
i=1

mi JVci
T JVci +

[
I1 + I3 0

0 I2 + I4

]
. (8)

After calculation, the element of D is obtained as
d11 = m1 Ic1

2 + m3 Ic3
2 + m4 I1

2 + I1 + I3
d22 = m2 Ic2

2 + m3 I2
2 + m4 Ic4

2 + I2 + I4
d12 = d21 = (m3 I3 Ic3 −m4 I1 Ic4) cos(q2 − q1).

(9)

where IC1, IC2, IC3, and IC4 denote the distance between the centroid of Rod 1 and point A,
the centroid of Rod 2 and point A, the centroid of Rod 3 and point B, and the centroid of
Rod 4 and point D, respectively.
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2.3.2. Potential Energy Module

Potential energy is calculated as follows:

P = g
4

∑
i=1

miyci, (10)

where mi denotes the mass of the different connecting rods, yci is the coordinate position of
the center of the mass of different connecting rods on the Y-axis.

According to the simplified structure of the bionic palletizing robot arm, the expression
of the potential energy part can be derived as follows:

P = g sin q1(m1 Ic1 + m3 Ic3 + m4 I1) + g sin q2(m2 Ic2 + m3 I2 −m4 Ic4). (11)

After the derivation of Equation (11), the potential energy part of Lagrange equation
can be obtained as follows:

g1 =
∂P
∂q1

= g cos q1(m1 Ic1 + m3 Ic3 + m4 I1), (12)

g2 =
∂P
∂q2

= g cos q2(m2 Ic2 + m3 I2 −m4 Ic4). (13)

The structure is made to satisfy the condition m3 I3 Ic3 = m4 I1 Ic4 when designing
the mechanical arm structure of the five-linked rod. Therefore, d12 = d21 = 0, and
the centrifugal forces inside the system can cancel one another. The system does not
produce Coriolis and centripetal forces. The Coriolis and centrifugal force matrices in their
Lagrangian dynamics equation will be zero.

The Lagrangian dynamics equation of the shoulder and elbow is simplified as

τ = D(q(t))
..

q(t)+ G(q(t)). (14)

Equations (9), (12) and (13) are introduced into Equation (14) to obtain the dynamic
equations of the shoulder and elbow of the system. The equation is as follows:

d11
..

q1 + g1 = τ1, (15)

d22
..

q2 + g2 = τ2. (16)

Equations (15) and (16) show that τ1 separately controls
..

q1, and τ2 separately controls
..

q2. d11 and d22 are a constant matrix, independent of the generalized variables of q1 and
q2. The two poles of shoulder and elbow can be independently controlled and will not
interfere with each other during operation.

2.4. Waist Partial Energy Consumption Model

The end position of the robot arm in the vertical plane is determined by the shoulder
and elbow. The rotational motion of the waist joint is mainly responsible for the change of
the horizontal spatial position of the robot arm. The mechanical structure of this system
can be simplified as a single-joint motion system.

The overall center of mass position of the robot arm is constantly changing when it
is working and running. To facilitate a simple calculation, the centroid position of the
connecting rod is taken from the center of the maximum arm span of the robot arm to the
fixed position. The distance from the center of the maximum arm span of the arm to the
center of the fixed base is used to calculate the dynamic equations.

The simplified dynamic equation of the waist system is

mr2 ..
q3 + b

.
q3 = τ3, (17)
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where r denotes the distance from the centroid to the rotating center, q3 is the rotation angle
of the waist, b is the coefficient of viscous friction of the motor, and τ3 represents the torque
in the generalized sense.

Combined with the above content, the dynamics model of the three joints of the
palletizing robot can be obtained, and the equation is as follows:

d11
..

q1 + g1 = τ1
d22

..
q2 + g2 = τ2

mr2 ..
q3 + b

.
q3 = τ3.

(18)

3. Energy Optimization Method

According to the analysis of the working characteristics of bionic palletizing robot.
A trajectory planner based on the differential evolution algorithm is used to optimize the
initial trajectory collected by the bionic demonstration system.

3.1. Differential Evolutionary Algorithm

Through the [30] in human and robot collaboration process. When the flexibility of
human arm is given to the manipulator, the local optimal solution will appear due to the
fluctuation of the human arm when entering the initial trajectory. If genetic algorithm
is used, it may fall into local optimum and cannot achieve energy optimization. On the
contrary, the differential evolutionary algorithm can well solve this problem.

A differential evolutionary algorithm is a heuristic search algorithm designed accord-
ing to the natural law of the survival of the fittest. The algorithm has the advantages of
good robustness, ease of operation, robustness, and global search capability. At present, it
has been applied in different fields. In [31], the derivation steps and algorithm composition
of the differential evolution algorithm are introduced in detail. According to the content
of the article, we briefly give the main components of the algorithm and the mathemat-
ical equation. Differential evolutionary algorithm includes four basic processes: initial
population generation, mutation operation, crossover operation, and selection operation.

The initialization of the population is performed to generate the initial population.
M individuals of randomness satisfying the requirements are generated in a generalized
space of n dimensions. The initialization process is as follows:

xij(0) = randij(0, 1)(xmax
ij − xmin

ij ) + xmin
ij , i = 1, 2, 3, · · · , M; j = 1, 2, 3, · · · , n, (19)

where randij(0, 1) denotes a random small number between 0 and 1; and xmax
ij and xmin

ij
represent the upper and lower bounds of the population, respectively.

Then, the variation operation is performed on the initial population by selecting three
random individuals from the population, noted as xp1, xp2, and xp3. The variation operation
is rewritten as

hij(t + 1) = xp1j(t) + F
(
xp2j(t)− xp3j(t)

)
, (20)

where xp2j(t)− xp3j(t) denotes the differentiation vector; F represents the variation factor;
and p1, p2, and p3 denote different integers randomly selected to represent the position of
the individual in the population. This part of the operation is the core of the differential
evolution algorithm.

Thereafter, the crossover operation is performed. Crossover operations aim to increase
diversity in the population. The crossover operation is rewritten as

vij(t + 1) =
{

hij(t + 1), randlij ≤ CR
xij(t), randlij > CR,

(21)

where rand lij represents the random decimal between 0 and 1; and CR is the crossover
probability, which takes values between 0 and 1.
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Finally, there exists the selection operation, which aims to judge whether the pop-
ulation after the mutation and crossover operations can become a new member of the
next generation.

The previous generation is compared with the new generation through the evaluation
function. The results of the comparison are used for selection. The selection process of
comparison can be expressed as

xi(t + 1) =
{

vij(t + 1), f (vi1(t + 1), · · · , vin(t + 1)) < f (xi1(t), · · · , xin(t))
xij(t), f (vi1(t + 1), · · · , vin(t + 1)) ≥ f (xi1(t), · · · , xin(t)).

(22)

After repeatedly performing the variation-to-selection operation process and upon
reaching the maximum number of iterations G, the differential evolution algorithm is
completed. The above steps are shown in Figure 5.

Figure 5. Initial track parameter variation, crossover, and selection form optimal trajectory.

The selection of some parameters in the differential evolution algorithm is worth
noting. The main parameters are the scaling factor F, the crossover factor CR, the maxi-
mum number of iterations G, and the population size M. For different optimization objec-
tives, the parameter settings of the evolutionary algorithm are also changed according to
their characteristics.

3.2. Initial Trajectory Parameters
3.2.1. Acquisition of Trajectory Parameters

The trajectory parameters are collected by the bionic demonstration system. Bionic
demonstration system is a control method for the height coordination between human
arm and mechanical arm. The system gives the human arm flexibility to the palletizing
robot manipulator. This approach combines flexibility with payload capabilities, allowing
handling tasks to be performed more efficiently and safely. Bionic demonstration system
uses the trajectory sensor system installed on the human arm to collect the relative spatial
position of the human arm actuator and program the palletizing robot.

The trajectory sensor system consists of a shoulder angle sensor, an elbow angle sensor,
a wrist angle sensor, and a gyroscope mounted on the human arm. The sensors in different
parts synchronize the collected data to the upper machine in real time. The upper computer
analyzes and synthesizes the trajectory of the arm executive terminal. The processed
information is transmitted to the lower computer of the palletizing robot to realize the
preliminary acquisition of the bionic trajectory parameters of the palletizing robot.
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3.2.2. Bionic Trajectory Parameter

The trajectory of the pendulum form is selected as the trajectory parameter collected
by the bionic demonstration. The energy-optimized trajectory design is performed for it.
The expression of the pendulum trajectory is defined by

θr =
(
θep − θinit

)[ t
TZ
− 1

2π
sin
(

2πt
TZ

)]
+ θinit, (23)

where TZ is the period of the pendulum, θinit represents the initial angle of the joint, and
θep denotes the target angle of the joint.

Given that the differential evolution algorithm is a discrete evolution algorithm, the
continuous pendulum motion trajectory needs to be initially discretized. The sampling
time interval is taken as TZ/2n, and the discrete reference trajectory that can be optimized
by the differential evolution algorithm is then derived. The trajectory is given by

θr =
[
θr1 , θr2 ......θr2n−1 , θr2n

]
, (24)

where θrj represents the sampled value of the discrete pendulum motion trajectory at
t = (j/2n)TZ.

Define ∆θ J(k) as the deviation between the reference trajectory. The joint angles are
optimized by the differential evolution algorithm. Then, the optimized correction angle is
obtained as

θopj(k) = θrj + ∆θ j(k), (25)

where θopj(k) represents the optimized joint angle after k iterations of the differential
evolution algorithm. k represents the kth iteration of the differential evolution algorithm.

3.3. Design of Energy Saving Planner

Assuming that the time that the bionic palletizing robot can allow to reach the required
steady state is 3 s, the energy consumption objective function for the ith robot arm is
expressed as

Wi = ωi

∫ 3

0

∣∣τi
.

qi
∣∣dt + (1−ωi)

∫ 3

0

∣∣qopi

(
tj
)
− qri

(
tj
)∣∣dt, (26)

where Wi represents the objective function of the corresponding manipulator, τi denotes the
generalized moment in the dynamics model, and qopi

(
tj
)
− qri

(
tj
)

is the distance between
the actual tracking trajectory and the optimized one.

According to the mechanical structure constituted by the shoulder and elbow of the
bionic palletizing robot arm, the objective function of its system is given by

J =
n

∑
i=1

Ji, n = 3. (27)

After the objective function is constructed, a differential evolution algorithm is used
to optimize the reference trajectory. In this way, a trajectory with minimum energy con-
sumption is obtained.

The main parameters of the differential evolution algorithm are set, namely, the
maximum number of iterations G, the population size M, the crossover factor CR, and
the variation factor F. The above parameters should be chosen reasonably according to
the objective function to be optimized. After the optimization of the differential evolution
algorithm, the discrete optimal trajectory of each robotic arm corner joint can be obtained.

The optimized discrete trajectory needs to be continuous as the optimal tracking
trajectory of the robot arm joint angle of this bionic palletizing robot. The discrete optimal
trajectory is continuous by the method of the third spline interpolation. The continuous
function is obtained after the interpolation optimization is used as the ideal trajectory of
the joint angle of the robot arm. To simplify the calculation of tracking the ideal trajectory,
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the proportional-derivative control algorithm is used to track the ideal trajectory under the
condition of neglecting gravity and applied disturbance.

3.4. Optimization Process of Running Trajectory

The optimization process is mainly divided into two parts: model building and
parameter selection. The robot arm of the bionic palletizing robot is used as the controlled
object, and the dynamics model of this system has been established in the previous sections.
The approximate structure is shown in Figure 6.

Figure 6. Energy consumption components.

The research objective of this paper is a SAR-50 vertical multi-joint palletizing robot.
The robot has a standard four-axis degree of freedom, an effective load of 50 KG, a repetitive
positioning accuracy of ±0.5mm, and a body weight of 450 KG (including the drive motor
and body shell). This type of palletizing robot has the advantages of large load, good
stability, energy saving and environmental protection. The specific parameters are shown
in Table 2.

Table 2. Structural parameters of palletizing robot mechanical.

Mechanical Structure Mass (kg) Length (m) Distance from the Center of Mass (m)

Connecting rod 1 50.60 1.25 0.625
Connecting rod 2 30.40 0.25 0.125
Connecting rod 3 24.32 1.25 0.625
Connecting rod 4 30.40 1.50 0.500

After the model is established, the parameters of the algorithm need to be selected,
and the selection needs to be tried continuously during the operation. The larger the value
of M is, the stronger the initialized population diversity will be and the more likely the
optimal solution will be obtained; however, the optimization time will be longer. According
to actual requirements, the number of samples selected is 60. The variation factor is used to
change the diversity and convergence of the initialized population, and the range of values
is usually between 0 and 2. When the value is small, the variation between populations
decreases, leading to premature convergence without jumping out of local extremes in the
evolutionary process. When the value taken is larger, jumping out of the local extremes
is easier, but at the same time, the speed of convergence will decrease. After testing, the
variation factor F is set as 0.9.

The crossover factor is used to control the participation of individuals from different
populations in the crossover operation and balance the global and local search abilities.
Values usually range from 0 to 1. The smaller the value of the crossover factor is, the
smaller the diversity of the populations will be, leading to premature convergence and
inaccurate optimization results. The larger the value of the crossover factor is, the faster the
convergence rate will be reduced. After several tests, the suitable crossover factor CR is 0.9.
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The larger the value of the maximum iteration number G, the more accurate the
optimization result will be. However, with it, the time of optimization calculation will
also increase. Therefore, the choice should be made according to the actual situation
of optimization. According to the test of the energy consumption model, the maximum
number of iterations is set to 20. Through the above process, the initial trajectory parameters
are optimized by the energy-saving planner to the optimal energy consumption trajectory.
In Figure 7, the optimization process is summarized. First, the main parameters of the
planner are set, combined with the actual energy consumption model and the characteristics
of the above parameters. Second, the initial trajectory parameters are optimized for energy
reduction. Finally, the trajectory of palletizing robot with optimal energy consumption
is obtained.

Figure 7. Process of energy saving planner reducing energy consumption of trajectory operation.

4. Experimental Result and Discussion

Optimization effects of planners based on different algorithms are compared. The
optimization effect of the planner based on differential evolution algorithm on trajectory
and energy is analyzed. Under different interference environments, the optimal effect of
the planner based on the differential evolution algorithm is tested.

4.1. Comparison of Track Optimization Results

In some literature, a Fourier approximation was used to construct the energy consump-
tion model of a palletizing robot. The energy of the drive system was optimized by genetic
algorithm with good results. In this study, the genetic algorithm is used for comparison
with the differential evolution algorithm.

Figure 8 is the optimal curve comparison diagram of genetic algorithm and differential
evolution algorithm. In Figure 8, in the first half of the curve, before the fifth iteration, it
can be clearly seen that the convergence rate of the differential evolution algorithm is signif-
icantly greater than that of the genetic algorithm after the third iteration. After the fourth
iteration of the energy consumption value, differential evolution algorithm and genetic
algorithm have pulled a certain distance. In the first half of the curve, the convergence rate
of the differential evolution algorithm is faster than the genetic optimization algorithm in a
short time. Additionally, the curve of the latter half of the observation, genetic algorithm
in the fifth iteration to the twentieth iteration, energy consumption values still have a
significant decline. The numerical decline of the differential evolution algorithm in the
second half is not large. It can be seen that the differential evolution algorithm does not only
converges fast at the initial time, but also quickly obtains the required global extremum,
which has obvious advantages compared with the genetic algorithm.
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Figure 8. Comparison of the results of different algorithms.

Moreover, given its own evolutionary characteristics, it is not easy to fall into local
optimum. After completing 20 iterations, the energy value of the differential evolution
algorithm is lower than that of the genetic algorithm. The energy consumption of the
trajectory parameters optimized by the differential evolutionary algorithm is lower than
that of the trajectory parameters optimized by the genetic optimization algorithm in terms
of the energy optimization of the initial trajectory parameters. Thus, the differential
evolutionary algorithm has a stronger optimization capability than the genetic algorithm
under this model.

4.2. Analysis of Trajectory Optimization Results

In Figure 9a,c,e the optimal trajectory is the trajectory parameters of the initial trajectory
optimized by the planner. The actual trajectory is the trajectory profile of the optimal
trajectory tracked by the proportional-derivative control algorithm. In Figure 9b,d,f the
initial routes are the initial trajectory parameters collected by the bionic trajectory designed
in the paper. The optimized routes are the path operation parameters with the lowest
energy consumption at the waist, shoulder and elbow after optimization by the energy
optimization algorithm.

Figure 9. Trajectory parameter optimization. (a) Actual trajectory of the waist (b) Optimised route
of the waist. (c) Actual trajectory of the shoulder. (d) Optimised route of the shoulder. (e) Actual
trajectory of the elbow. (f) Optimised route of the elbow.

In Figure 9a, proportional-derivative control algorithms can stabilize the waist joint be-
fore the system-determined stability time. The curves of the actual and optimal trajectories
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almost coincide during the tracking process, indicating that the proportional-derivative
control algorithm can track the optimal trajectory well.

In Figure 9c, the tracking trajectory curve of the shoulder joint has some tracking
error with the optimal trajectory curve. However, the tracking trajectory reaches the stable
state before the stability time set by the system. In Figure 9e, the tracking trajectory of the
elbow joint almost coincides with the optimal trajectory, indicating that the proportional-
derivative control algorithm can achieve the tracking of the optimal trajectory.

Through the above conclusions, it can be seen that the proportional-derivative control
algorithms can be used to track and control the real-time trajectory of the manipulator.

4.3. Analysis of Energy Optimization Results

In Figure 10a, during optimization, the objective function based on the kinetic equa-
tions of the shoulder and elbow of the robot arm decreases continuously. The value of the
objective function reaches a relatively stable situation after the 15th optimization. From the
line graph, the energy consumption of the optimal trajectory has a large reduction after
optimization, proving that the trajectory planner has a significant optimization effect on
the objective function studied in this article.

Figure 10. Energy consumption trends for different joints.

In Figure 10b, the value of the objective function based on the waist dynamics equation
of the robot arm decreases with the increase in the number of optimizations. The value
of the objective function reaches a relatively stable condition after the 10th optimization.
From the line graph, the energy consumption of the optimal trajectory has a large reduction
after optimization. Thus, a significant reduction in waist motion energy consumption can
be attributed to the trajectory planner.

To further verify the applicability of the differential evolution algorithm-based energy
saving planner for various usage scenarios. Two situations that often occur in the produc-
tion process are chosen to interfere with the initial trajectory parameter acquisition of the
bionic demonstration system and the energy consumption model of the robotic arm.

As a disturbing factor that often occurs in industrial production, power harmonics
can have a significant influence on the normal operation and energy consumption of the
motor. The main cause of harmonic interference is the high-order harmonic caused by
the frequency conversion of power electronic devices during the operation of the motor.
Higher harmonics will affect the motor drive, especially more than three harmonics will
interfere with the drive signal. High-order harmonics also have a great impact on the initial
trajectory parameter acquisition of the bionic demonstration system. In Figure 11, the initial
value of energy optimization changes significantly compared with the normal operation,
when harmonic disturbances appear. However, with the increasing number of iterations, it
can finally remain stable at the same value as in the normal case.
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Figure 11. Comparison of energy optimization under different conditions.

As power industrial robots, palletizing robots are often used in handling large ma-
terials, most of which produce large amounts of dust during handling. In the dusty
environment, the viscous friction coefficient in the joint motor joint of the manipulator
is mainly changed. The more serious the dust environment is, the greater the operating
resistance will be, which increases the energy consumption and changes the parameters of
the model. In Figure 11, the parameters of the energy consumption model change when
working in dusty conditions, and the speed of energy optimization decreases compared
with normal operation. However, as the number of iterations increases, it remains stable at
the same value as normal. The energy optimization rate decreases compared with the nor-
mal operation; however, with the increasing number of iterations, it can still be stabilized
at the same value as the normal case.

The above data show that the energy saving planner based on the differential evolu-
tionary algorithm can complete the optimization task of the initial trajectory parameters
well when it is affected by certain disturbing factors.

5. Conclusions

In this paper, we proposed a novel differential evolutionary algorithm-based planner
to reduce the energy consumption for bionic palletizing robot. Specially, an energy saving
planner is designed to optimize the bionic trajectory parameters, which is established
by analyzing the dynamics of the robot arm structure. Then, a suitable initial trajectory
parameter is selected to test the energy saving planner. The required objective function is
established for the optimization process. Furthermore, the optimal energy saving planner
based on the differential evolution algorithm is tested by simulation software, verifying that
the energy consumption of the initial parameters of the bionic trajectory can be reduced after
the optimization of the planner. Finally, energy consumption trajectories generated with the
increase of iterations in the optimization results under different environments are analyzed.
Experimental results demonstrates that the differential evolution algorithm-based planner
can well reduce the energy consumption of the palletizing robot by 16%. At the same time,
it is suitable for different working environments. In the future, accelerating the calculation
speed of energy consumption optimization can rely on the gradual improvement of chip
computing power. Moreover, the planner can collect the information of the manipulator
in real time through the sensors installed on the industrial robot and construct a dynamic
energy consumption model. The dynamic interaction model ensures the accuracy of the
energy consumption model of the energy saving planner and can achieve better energy
saving effect. Accurate energy consumption model combined with stable and efficient
algorithm. This method will be an effective development direction to further improve the
energy saving effect of the planner in the future.
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