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Abstract: Light Detection and Ranging (LiDAR) systems are novel sensors that provide robust
distance and reflection strength by active pulsed laser beams. They have significant advantages over
visual cameras by providing active depth and intensity measurements that are robust to ambient
illumination. However, the systemsstill pay limited attention to intensity measurements since the
output intensity maps of LiDAR sensors are different from conventional cameras and are too sparse.
In this work, we propose exploiting the information from both intensity and depth measurements
simultaneously to complete the LiDAR intensity maps. With the completed intensity maps, mature
computer vision techniques can work well on the LiDAR data without any specific adjustment. We
propose an end-to-end convolutional neural network named LiDAR-Net to jointly complete the
sparse intensity and depth measurements by exploiting their correlations. For network training,
an intensity fusion method is proposed to generate the ground truth. Experiment results indicate
that intensity–depth fusion can benefit the task and improve performance. We further apply an
off-the-shelf object (lane) segmentation algorithm to the completed intensity maps, which delivers
consistent robust to ambient illumination performance. We believe that the intensity completion
method allows LiDAR sensors to cope with a broader range of practice applications.

Keywords: LiDAR intensity completion; LiDAR sensors; intensity normalization

1. Introduction

Unlike visual cameras, which passively capture the light emitted or reflected by
objects, LiDAR sensors actively project pulsed laser beams and measure the surrounding
environment through backscattered echoes [1]. Therefore, LiDAR sensors can function
well even in adverse illumination conditions. With robust depth measurements, LiDAR
sensors are crucial to many applications such as autonomous vehicles [2,3], classification [4],
and instance detection [5,6].

The intensity output of LiDAR sensors is a stream of laser reflection. With this unique
mechanism, mobile LiDAR sensors such as Velodyne VLP-16 can provide richer object
material information in addition to the depth map. However, the unique mechanism only
provides intensity measurements with sparse circular results. It leads to the situation that
existing computer vision techniques, including optical flow [7], relocalization [8], and object
(lane) segmentation [9], all having demonstrated impressive performance on visual images,
cannot directly operate on this unique sparse LiDAR intensity structure.

To acquire dense intensity maps from LiDAR sensors, some works focus on adding a
more complicated rotation mechanism, such as two-axis scanning with one laser sensor [10],
to obtain a dense intensity map, called LiDAR-intensity imagery [11]. Based on this dense
map, visual-liked navigation [12] and perception [13] can be produced on the LiDAR inten-
sity. The shortcoming is that there is a distortion due to motion and the LiDAR’s scanning
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nature, akin to a slow-rolling shutter camera, and the distortion is hardly compensated.
Additionally, since the rotation mechanism rotates slowly, many regions will be missed
when the carrier moves too fast. Another solution is to increase the number of lasers as
much as possible, such as VLS-128. Nevertheless, it still cannot provide the image-level
density and inevitably leads to unacceptable prices.

It should be noted that the sparse depth measurements also limit the performance in
handling tasks such as object detection and navigation. Hence, various works focus on
filling in the missing depth values on a dense depth map using only depth measurements,
and this is called depth completion [14–18]. Following this thought, LiDAR intensity com-
pletion may be an complementary solution. As far as we know, very few methods have
been proposed to address the LiDAR intensity completion. Current public completion-
related LiDAR datasets, such as KITTI Completion Benchmark [19], do not provide the
benchmark for LiDAR intensity completion, and hence the evaluation is still in the prelimi-
nary stage. Meanwhile, compared to the depth, the intensity is much more complicated.
As shown in Figure 1, the intensity measured by LiDAR can be decomposed into four
main factors under the Lambertian reflectance assumption [20]: measurement distance,
the surface reflectance, the strength of the incident ray, and the incident angle [21]. These
factors make the LiDAR intensity completion more challenging. It should be noted that the
measurement distance is one of the impact factors, implying that the intensity is correlated
with the measurement distance.

object surface

LiDAR

incident angle

LiDAR

beam
beam

normal

Figure 1. Intensity measurements. The attenuation in the traveling and the incident angle can
influence the received intensity. Therefore, from different views, the intensity values are different for
the same position.

In this paper, we propose a LiDAR intensity completion method to bridge the gap
between LiDAR intensity and conventional computer vision. For the LiDAR intensity
completion, we propose LiDAR-Net, a convolutional neural network to simultaneously
learn both intensity and depth information from LiDAR sensors to complete the intensity
map. LiDAR-Net consists of an encoder–decoder network with LiDAR information fusion
and an inverse network. The encoder consists of a sequence of convolutions to downsample
the resolution. The decoder, on the other hand, has a reversed structure with transposed
convolutions to upsample the resolution. Between the contracting and symmetric expand-
ing paths, long skip connections improve the sharpness of completion results. A network
with several convolutions produces material-related intensity maps using the results of the
encoder–decoder network.

To train this network, a vehicle carrying a Velodyne HDL64 LiDAR was used to
collect data in two 500 × 500 m2 areas. Then, we rectified the raw intensity by Lambertian
reflection model and fused sparse intensity maps from a sequence of data frames to build
an intensity dataset. To further validate the potential of dense completed intensity maps,
an object segmentation method was used to detect the lanes on the road.

The main contributions of this work can be summarized as follows:

• LiDAR-Net, a novel intensity completion method is proposed using intensity–depth
fusion. The experiment results show that the proposed method can provide competi-
tive performance compared with state-of-the-art completion methods.
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• A LiDAR intensity fusion method is proposed to generate the intensity ground truth
for training. Using multiple types of intensity data from the proposed method for
training can improve the performance of the LiDAR intensity completion.

• The proposed method is tested in object (lane) segmentation based on completed
intensity maps. The result shows that off-the-shelf computer vision techniques can
operate on the completed LiDAR intensity maps. Moreover, the LiDAR intensity
completion provides more robust lane segmentation results than visual cameras under
adverse conditions.

The rest of the paper is organized as follows. Section 2 reviews related work. Section 3
first introduces the proposed intensity fusion method for ground truth generation, then
discusses the proposed architecture and how to train the network on the self-built dataset.
Furthermore, Section 4 presents the experimental results in detail. Finally, conclusions are
drawn in Section 5.

2. Related Work

There are two types of perception technologies: passive and active, according to the
energy source used in the detection. LiDAR sensors and visual cameras are representative
of these two classes, respectively. Since LiDAR sensors function well even in adverse
lighting conditions, they are crucial to many applications. In these applications, 3D object
detection is an important task [22–26]. However, for those objects without spatial volumes,
such as road signs on the ground, they cannot be detected using the point cloud data.
Therefore, the intensity from LiDAR can be a valuable information source.

2.1. LiDAR Intensity

LiDAR intensity measurements have implicit correlations with depth measurements,
as shown in Figure 2. Moreover, LiDAR intensity is steadily available even in some adverse
conditions since LiDAR sensors are robust to lighting variation [27]. Therefore, the intensity
measurements are a potential information source. Nonetheless, intensity measurements
are dependent on multiple factors and, therefore, difficult to model. The surface observed
by the sensors is assumed not to contain mixed microstructures and conforms to the Lam-
bertian reflectance assumption [20]. In that case, the factors affecting the intensity strength
measured by LiDAR consist of three main parts: the surface reflectance, the strength of the
incident ray, and the incidence angle.

(a) (b)
Figure 2. Densified intensity and depth maps obtained from multiple frames: (a) densified intensity
(b) densified depth.

Following the Lambertian assumptions, the researchers proposed corresponding the-
oretical methods to correct geometric effects [28–30]. However, the theoretical model
parameters are difficult to compute accurately and are challenging to apply to short dis-
tances (e.g., 10 m) [27]. Hence, Höfle and Pfeifer adopted an empirical quadratic function
related to the depth to correct intensity [31]. Moreover, refs. [28,32] normalized the intensity
to obtain the intensity only related to the surface reflectivity. The limitation is that these
methods require dense depth maps, which prohibits their adaptation to sparse scanners
such as vehicle-mounted LiDAR.
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2.2. Sparse to Dense

Intensity information contains much valuable information. Therefore, some work has
focused on using intensity to accomplish tasks [1]. Aided by intensity information, ref. [1]
presents some examples: [33] detected the damage and degradation of concrete structures,
ref. [34] detected road markings and maintenance holes, etc. However, most of these works
rely on the dense intensity maps, which the LiDAR mounted on a moving car usually
cannot directly provide.

To obtain dense intensity maps, two approaches were proposed: hardware-based and
algorithm-based methods. The hardware-based method ensures that the laser traverses the
entire area by adding a complex rotating mechanism [12]. The algorithm-based method
uses the correlation between discrete sample points to estimate the missing information.
Asvadi [35] proposed using Delaunay triangulation to interpolate the missing intensity.
Melotti [36] generated dense depth and intensity maps through a bilateral filter implemen-
tation, which was used as input to the CNN network to achieve pedestrian classification.
These methods need neighbor information to interpolate the missing data, which requires
sufficient information near the interpolated point. This requirement limits the application
of these methods to further sparse structures.

The algorithm-based LiDAR intensity completion methods are similar to the methods
used for depth completion [17,18,37,38]. These depth completion methods employ hand-
crafted features or kernels to complete the missing values. Most methods are only designed
explicitly for Kinect sensors that inherently provide more dense depth maps with different
techniques than LiDAR. Recently, the learning-based approaches showcase their promising
performance thanks to the rapid advance of deep learning. Uhrig [19] creatively proposed
enhancing the sparse LiDAR depth measurements via the sparsity-invariant convolution
layer. Moreover, Eldesokey [39] modeled confidence propagation through layers to reduce
the number of model parameters.

The works mentioned above accomplished the depth completion only from the depth
information. However, it was soon found that the information from other modalities,
e.g., color images, can significantly improve the performance [14]. Recently, more ex-
plorations in network design have been conducted to harness deep neural networks’
power [15,16,40–43]. Nevertheless, none of these methods can be directly applied to LiDAR
intensity completion. Compared to depth completion, the case for LiDAR intensity is more
complicated since the intensity is determined by the incidence angle, surface reflectance,
and distance from the sensor, making it difficult for the network to grasp the essence with
limited training data.

3. Method

This section first introduces the proposed intensity fusion method to generate densi-
fied intensity ground truth since the raw LiDAR measurement is too sparse. After that,
the LiDAR-Net, a novel supervised neural network that completes depth and intensity
simultaneously, will be introduced.

3.1. Intensity Fusion for Ground-Truth Generation

Since the LiDAR sensor is not motionless, each data frame is obtained from a different
view. The challenge is that raw intensity describes the reflected pulse’s strength, which is
inconsistent under different views. This leads to different intensity values from the same
position with different measurement distances or angles. Hence, a dense intensity map
cannot be directly generated using adjacent frames.

As mentioned in Section 2, the intensity values are mainly related to the distance
traveled by light, the surface reflectivity, and the incident angle. Only the reflectance of
the object surface is consistent. Therefore, we need to eliminate the effect of distance and
incident angle before fusing multi-view data. In summary, as shown in Figures 3 and 4,
the intensity fusion method consists of four main steps to obtain the intensity ground
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truth: distance compensation, incidence normalization, multi-view fusion, and inverse
reproduction.

Before introducing the intensity fusion method, some notations will be defined first.
The depth and intensity maps collected at the sampling time k by projecting LiDAR sensor
data are denoted by Dk and Ik, where Dk, Ik : R2 7→ R.

Figure 3. Distance compensation, incidence normalization, and multi-view fusion. The pixels on
the image are enlarged five times to increase the visualization. The raw intensity measurement is
compensated by the corresponding depth map and merged by poses to obtain Icom

k . The incident
angle is obtained from Nk of the fused depth map to avoid the error caused by the normal estimation
in the sparse point cloud. The multiple normalized intensity maps are fused to obtain a densified one.

!!"#$!!"#$%
!!"#$
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Iinv,norm
k

Inverse Reproduction

Figure 4. Inverse reproduction. The densified Inorm
k will be inversed to produce more dense artificial

intensity maps. This process is the inverse process of the above steps except for the multi-view fusion.

3.1.1. Distance Compensation

The compensated intensity map Icom
k is computed from the raw intensity map Ik

through
Icom

k (u) = Ik(u) + g(Dk(u)), (1)

where u ∈ R2 is a map position vector, and g(·) is a distance-aware compensation term
defined by

g(D(u)) = f ocal + K(1− Dk(u)2

dre f 2 ), (2)

where K, f ocal, and dre f are the intrinsic parameters of each laser beam after the official
calibration [44]. The compensated intensity values can thereby be almost independent
of depth.

3.1.2. Incidence Normalization

The incidence normalization step will normalize Icom
k to obtain the normalized intensity

map, which is irrelevant to the incident angle. First, it is assumed that all surfaces follow
the Lambertian Cosine Law [20]. With this assumption, the compensated intensity Icom

k can
be normalized into a sparse normalized intensity Isp,norm

k by:
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Isp,norm
k (u) = Icom

k (u)(
1

cos(v)
)/η, (3)

where v is the incident angle corresponding to the position u, and η is a constant coef-
ficient that allows the normalized intensity to be distributed between 0 and 255. In the
implementation, a data-driven parameter estimation method [32] is applied to estimate the
parameters and obtain the optimal parameter value η = 5.05 in Equation (3).

The only missing parameter is the incident angle v, which can be calculated with the
depth map. However, the LiDAR sensors only provide sparse depth measurements, which
cannot produce accurate surface normal estimation. Hence, the previous and subsequent
LiDAR data frames are reprojected to the current frame to obtain a more dense depth
map Dden

k ,

[u′T , d]
T
= π(Tk,jπ

−1(u, Dj(u)))

Dden
k (u′) = d

, (4)

where Tj,k denotes the transformation between the k-th and the j-th frame, and πa : R3 7→
R3 is the projection model to obtain the map position and the corresponding depth value.
Thus, with ground-truth poses, a densified depth map is collected by using multiple frames.
In the implementation, 11 frames are projected onto the current frame according to the
known transformation matrix.

With the densified depth map, the surface normal will be estimated so that cos v can
be computed by

cos(v) =< L, N > (5)

where L is the incidence light direction, and N is the surface normal. With cos(v), the nor-
malization can be used to recover Isp,norm

k from Icom
k .

3.1.3. Multi-View Fusion

Since Isp,norm
k is irrelevant to the depth and incidence angle, similar to the depth map

re-projection mentioned in incidence normalization, a more dense Inorm
k will be acquired

through reprojection of the multi-view normalized intensity maps. The missing value will
be filled by

[u′T , d]
T
= π(Tk,jπ

−1(u, Dden
j (u)))

Inorm
k (u′) = Isp,norm

j (u)
, (6)

where j = k− 5, k− 4, · · · , k + 4, k + 5.

3.1.4. Inverse Reproduction

This operation consists of inverse normalization and inverse compensation. These two
steps can be considered as the inverse version of the incidence normalization and distance
compensation using dense data. In this operation, we will inverse the densified Inorm

k to

generate the artificial raw intensity Iat f
k according to

Iinv,norm
k (u) = Inorm

k (u) cos(v)η

Iat f
k (u) = Inorm

k (u)− g(Dden
k (u))

, (7)

where Dden
k and cos(v) were obtained from the previous steps. An example is shown in

Figure 4.

3.2. LiDAR-Net

As shown in Figure 5, the LiDAR-Net, including the multi-task completion backbone
and the inverse normalization parts, completes the intensity using intensity and depth
measurements simultaneously.
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Figure 5. LiDAR-Net architecture. The pixels on the input are enlarged five times to increase the
visualization. The output D̂pred and Înorm of the backbone will be input for the inverse normalization
network, as shown in the upper left corner. Because it is difficult to quickly estimate the normal using
D̂pred, the inverse normalization network attempts to fit the inverse normalization process shown in
Equation (7) with several convolution layers and predicts the dense Î supervised by Iat f .

The multi-task completion backbone consists of a contracting path(encoding layers) to
capture the shared context and a symmetric expanding path(decoding layers) that enables
precise prediction [45]. We fuse the features extracted from depth and intensity to combine
geometry and reflectivity information in the contracting path. Meanwhile, high-resolution
features from the contracting path are combined with the upsampled output. Therefore,
this network can give a more precise prediction. Since the material-related Inorm is more
consistent under different views, it is used for training the backbone with the depth map.

In the inverse network, a successive network fuses the backbone’s output to provide
a dense intensity. This network will be supervised by the artificial intensity Iat f . Finally,
the LiDAR-Net will predict first Înorm and then Î.

3.2.1. Architecture

The densified depth Dden and Inorm are the ground truth of the Multi-task Completion
Backbone shown in Figure 5. The feature extraction (encoding) layers of the network
are highlighted in blue. Both intensity and depth encoders consist of a series of ResNet
blocks [46]. The sum of each layer’s depth and intensity features in the encoder is con-
catenated with the corresponding decoder layer. The last component of the encoding
structure, a convolution layer, is used to further downsize the feature resolution. In the
intermediate layer, a convolution shown in orange has a kernel size of 3-by-3. The decoding
layers highlighted in yellow consist of five transposed convolutions to upsample the spatial
resolution and combine the information from both intensity and depth encoders.

Since it is difficult to quickly estimate the normal without guidance, an inverse normal-
ization network will be set to attempt to fit the inverse process with several convolutional
layers and predict the dense Îar f supervised by Iar f . Therefore, after backbone processing,
D̂pred and Înorm will be input into the inverse normalization network, as shown in the upper
left corner of Figure 5.

In the LiDAR-Net, all convolutions are followed by batch normalization [47] and
ReLU, except at the last layer.
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3.2.2. Training

The training is divided into two steps. First, Inorm and its corresponding dense Dden

are used to supervise the multi-task completion backbone. After the convergence, the entire
LiDAR-Net, including the multi-task completion backbone and the inverse network, will be
supervised by Iar f , Inorm, and Dden to obtain the optimal intensity prediction. The difference
between the network input and output is penalized on a pixel set of available known sparse
depth. The depth loss is defined as

LDepth = ∑
u,k

∥∥∥D̂pred
k (u)−Dden

k (u)
∥∥∥

2
. (8)

Similarly, for normalized intensity maps, the loss through all available data can be
defined as

LInorm = ∑
u,k

∥∥Înorm
k (u)− Inorm

k (u)
∥∥

2. (9)

In summary, the L2 loss is minimized in the training process, and the overall loss function
containing two terms to supervise D̂pred and Înorm is defined by

L = LDepth + αLInorm , (10)

where α is a weighting coefficient, which is set to 0.3.
In the second step, the proposed network can simultaneously complete the depth,

the material-related Înorm, and the theoretical dense intensity value of the current frame Î.
The loss for final intensity completion is defined as

LInorm = ∑
u,k

∥∥∥Îk(u)− Iat f
k (u)

∥∥∥
2
. (11)

In this step, the overall loss function contains three terms to supervise D̂pred, Înorm, and Î,
and is defined by

L = LDepth + αLInorm + βLIar f , (12)

where α and β are weighting coefficients and are set to 0.3 and 0.02 in the experiments,
respectively.

4. Experiments

In this section, the quality of the generated ground truth in the dataset is first evaluated.
Then, the proposed LiDAR-Net network is evaluated in detail. Since there is no open-
source method designed for LiDAR intensity completion and no open-source method
using depth and intensity information for completion simultaneously, first we use depth
completion methods for comparison and then design an ablation experiment to verify and
demonstrate the proposed algorithm’s effectiveness and accuracy. To further illustrate
the intensity–depth fusion’s effectiveness, we design a comparison experiment with the
state-of-the-art depth completion algorithm, which only utilizes depth information. Finally,
an off-the-shelf vision technique will operate on the dense intensity maps obtained from
the proposed network to find the lanes on the road. This experiment will verify that
LiDAR intensity completion can be used to bridge the gap between vision techniques and
LiDAR sensors.

Since none of the existing datasets provide training data of dense depth and intensity
for completion, we use the proposed intensity fusion method to create a dataset to obtain
the ground truth for training and validation. As shown in Figure 6, there are two scenes.
A vehicle carried a Velodyne HDL64 LiDAR and collected data for two 500 × 500 m2 areas,
as shown in Figure 7, at a speed of about 40 km per hour. A Global Navigation Satellite
System (GNSS) called Novatel provided accurate pose information.
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(a) (b) (c) (d) (e)

Figure 6. The overview of the dataset. Four different instances are demonstrated. Each pixel in (a,b) is
enlarged five times to increase the visualization. Colder color in the depth map indicates a farther
distance, while colder color in the intensity map indicates a weaker strength. The dataset consists
of two inputs: sparse depth and sparse intensity. It has three ground-truth values: densified depth,
artificial intensity Iat f , and normalized intensity Inorm. Inorm eliminates the influence of distance and
the incidence angle, resulting in sharper edges between different materials and a better consistency
within the same material: (a) sparse input depth D; (b) sparse input intensity I; (c) densified depth
Dden; (d) artificial intensity Iat f ; (e) normalized intensity Inorm.

Figure 7. Trajectories of the two scenes in the dataset.

Our dataset takes the sparse depth and the measured raw intensity as input, and the
densified depth maps, Dden, Inorm, and Iat f as the ground truth. The train/validation/test sets
contain 8647/1730/300 frames, and each frame is scaled from 1762× 800 to 800× 288. More-
over, to prove the generality of this method, a dataset was generated in different environments
with more dynamic scenes in another city in the same way, and the train/validation/test sets
contain 9340/1037/697 frames scaled to 800× 288. Point clouds with intensity and depth
from 11 frames are accumulated, as mentioned in Section 3.1, to increase density.

In the implementation, LiDAR-Net was trained using the Adam [48] optimizer with
an initial learning rate of 0.0001 for 40 epochs with a batch size of 8. The learning rate was
reduced to 10% every ten epochs, and the weights α and β were set to 0.3 and 0.02. We
used four Nvidia GTX 1080Ti GPUs with 11Gb of RAM, and it took roughly 16 h to train
the LiDAR-Net.

For each network, we tried our best to adjust the parameters and record the opti-
mal values. The error metric of the KITTI depth completion benchmark, including the
root mean square error (RMSE) and the mean absolute error (MAE), was used as the
evaluation indicator.
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4.1. Evaluation of Intensity Ground Truth

To evaluate the quality of the obtained ground truth, we analyzed each step’s effect in
the intensity fusion method, firstly through qualitative perspectives and then by a numerical
quantitative analysis, to illustrate some visual intuition and enhance the credibility.

The essential part of the proposed intensity fusion method is to obtain consistent
intensity information from different viewing angles and different distances. Therefore,
the intensity distribution of the same material in the normalized intensity maps should
show consistency. After the inverse reproduction, the artificial intensity maps should have
the same distribution as the raw intensity maps.

4.1.1. Consistency in Normalized Intensity Maps

As mentioned in Section 3.1, we sequentially used Equations (1) and (3) to compensate
and normalize each frame’s raw intensity map before the fusion. Since the obtained Inorm

should be only related to material reflectivity, the intensity values should be more consistent
in the same material.

As shown in Figure 8, the arrows on the road surface show that the normalized inten-
sity Inorm of the same material is more robust to variations in the distance and incidence
angle than Iat f . Moreover, the Inorm of the shrub remains consistent even when the inci-
dence angle changes drastically. Furthermore, Inorm shows an advantage in distinguishing
between different materials, such as the lane and the road.

(a) (b)
Figure 8. Two types of intensity ground truth (enhanced for visualization): (a) artificial intensity
Iat f ; (b) normalized intensity Inorm. The boundaries of different materials of Inorm are much more
distinguishable. In addition, the intensity of the same material shows consistency in Inorm. (a) Iat f .
(b) Inorm.

As shown in Figure 9, the histogram indicates that after normalization, the intensity
distribution of the same object is more concentrated, which implies a higher consistency
after incidence normalization.

Figure 9. Histogram statistics before (left) and after (right) the incidence normalization. The red and
green columns represent the statistical results of the lane and the road areas, respectively. Gaussian
curves were used to fit their mathematical distributions. The smaller overlapping area and the
sharper distribution indicate a better result after normalization.
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4.1.2. Quality of Artificial Intensity Maps

Iat f is the artificial intensity map that is collected theoretically for the current frame,
so Iat f and I should follow a similar distribution and material discrimination. Since it is
difficult to compare them from the picture, we used two quantitative results to evaluate
the similarity between the artificial intensity and the original raw intensity. In each eval-
uation, the road surface areas and the lane areas were manually selected for computing
the distributions.

If one object’s intensity distribution is assumed as Gaussian distributions, the indicator
RV proposed in [32] can be employed to assess the similarity of the intensity distribution
for the same object V in different intensity maps and is written below:

RV =
σV∈Ieva

µV∈Ieva
/

σV∈I

µV∈I
, (13)

where µ and σ denote the mean and standard deviation of the selected map regions, and
Ieva is the intensity map under evaluation. As shown in Table 1, the RV between I and
Iat f is almost equal to one, which indicates that the results reserve the same pattern of the
intensity distribution for the same object.

Table 1. Intensity consistency of the same object. The closer the value is to 1, the greater the similarity
of the same object’s intensity distribution in two intensity maps.

RV I Inorm Iat f

I 1 0.72 0.97

In order to prove that the artificial intensity retains the distribution difference between
different objects, the overlapping coefficient ρ [49] defined below can be used to measure
the similarity between different Gaussian distributions from different objects,

ρ = 1− F1(i) + F2(i), (14)

where i is the intersection between two probability density functions, and F(·) represents
the cumulative distribution functions. Therefore, the smaller the ρ value, the higher the
discrimination between different materials will be. As shown in Table 2, the ρ of I and Iat f

are almost equal to each other. The result indicates that, for different objects, I and Iat f have
similar distributions, implying that the value of Iat f is a reasonable synthetic measurement.

Table 2. Intensity consistency of different objects. Similar values indicate that the relative intensity
distributions of different objects in the two images are similar.

I Inorm Iat f

ρ 0.396 0.317 0.407

4.2. Comparison of Intensity Completion

Most methods only focus on LiDAR depth completion, and there are no Lidar inten-
sity completion methods with open-source code available. Therefore, several methods for
LiDAR depth completion that can work on a single input type will be evaluated on the
LiDAR intensity dataset. Their intensity completion results are then used in the compari-
son experiment.
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For comparison, results were obtained using the following state-of-the-art methods:
Sparse-to-dense [15], SparseConvs [19], nConv-CNN [39], and pNCNN [50]. In addition,
the reported results of IP-Basic [51] are also included in the comparison. Sparse-to-dense,
SparseConvs, nConv-CNN, and pNCNN represent the most advanced methods using
learning-based techniques, while IP-Basic leverages non-learning models.

As shown in Figure 10, using the proposed dataset, the LiDAR-Net can use spare input
to provide dense results. The completion results are satisfactory, except in the area where
the original information is missing. A qualitative comparison is shown in Figure 11. Ip-
Basic almost failed in Scene 2, and the sparse-to-dense method cannot provide satisfactory
results. For pNCNN, although the prediction result is correct around the corner, the edges
of the lane on the ground are blurry. Hence, the proposed method outperformed the rest in
the completion task while preserving sharper textures.

(a) (b) (c) (d)
Figure 10. Input (a,b) and output (c,d). The proposed completion system takes the sparse depth and
intensity from a LiDAR sensor as input (row 1) to obtain the dense completion result (row 2). Each
pixel in (a,b) is enlarged five times to increase the visualization: (a) sparse input intensity; (b) sparse
input depth; (c) intensity completion; (d) depth completion.

(a) (b) (c) (d)
Figure 11. Comparison of intensity completion. Colder color in the intensity map indicates weaker
strength: (a) Ip-Basic [51]; (b) sparse-to-dense [15]; (c) pNCNN [50]; (d) ours.

The quantitative results are shown in Table 3. If the method cannot complete the
training, the results are marked with an ‘x’. The results indicate that the proposed method
generates the best performance. The reason is that most methods are dedicated to the KITTI
completion dataset. In the KITTI dataset, the input depth maps are denser. In contrast,
our dataset provides more spare data since many fields are beyond the range of the
LiDAR sensors due to the spacious road environment. This sparse dataset makes the
completion task more challenging. Moreover, the spatial characteristics of the depth maps
used in some methods are invalid for the intensity completion task. As shown in the
table, the performance of the learning-based methods is close. The possible reason is
that the data, such as the lane lines, account for a small percentage of the overall data.
Therefore, the good completion of these areas cannot impact the metric a lot, even though
the completion results of the proposed method are clearly better than other methods,
as shown in the qualitative comparison.

4.3. Completion Ablation Experiments

To verify the architecture of the proposed method, some detailed ablation studies are
conducted in this section. There are two ablation experiments to evaluate the effectiveness
of intensity–depth fusion and show the necessity of incidence normalization. The first
experiment will verify the complementarity between depth and intensity. The second will
confirm the benefit of the inverse network with the additional supervision.
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Table 3. Comparison of intensity completion accuracy. The results from state-of-the-art completion
algorithms are shown in the bottom part. The best results are shown in bold; ‘x’ denotes a failure.

Scene 1 Scene 2 Mean

Intensity Intensity Intensity

Method Input Type RMSE MAE RMSE MAE RMSE

LiDAR-Net (Ours) intensity + depth learning 20.332 13.449 28.137 18.392 24.234

Sparse-to-dense [15] single intensity learning 20.676 13.696 28.570 18.767 24.623
SparseConvs [19] single intensity learning 25.942 17.460 36.055 27.150 30.999
nConv-CNN [39] single intensity learning x x x x x
pNCNN [50] single intensity learning 22.131 14.911 29.539 19.928 25.835
IP-Basic [51] single intensity non-learning 28.725 17.957 56.374 35.784 42.550

4.3.1. Effectiveness of Intensity–Depth Fusion

Unlike the depth completion schemes, the proposed method uses both the depth and
intensity data from a single LiDAR to achieve intensity completion jointly. To verify the
complementarity of depth and intensity, the model in [15], which is also a U-like network
using only intensity information Iat f , serves as the baseline of the single-input model.

As depicted in Figure 12a and Table 4, the results from the method using only intensity
show that when the information source includes only sparse intensity maps, the completion
result has ripples, and the intensity of the lane with the same material is inconsistent.
Corresponding to this phenomenon, the fusion of depth improves the consistency of
intensity, as shown in Figure 12b. The reason may be that the geometry information can
reduce the ripple effect. Therefore, the correlation between depth and intensity learned by
the network, especially in those scenes where the intensity value is regularly distributed
such as the road surface, can help achieve better completion. Unfortunately, the addition
of depth information does not entirely solve the ripple issue due to the intrinsic ripple
distribution in the depth and intensity ground truth, as shown in Figure 8.

Table 4. Quantitative analysis of ablation study. The best results are shown in bold. The ablation
study indicates that intensity–depth fusion and supervision with normalized intensity can improve
the performance.

Scene 1 Scene 2 Mean

Intensity Intensity Intensity

Method RMSE MAE RMSE MAE RMSE

onlyI (Iat f ) 20.676 13.696 28.570 18.767 24.623
DI-to-DI (Iat f +Dden) 20.454 13.556 28.237 18.582 24.346
LiDAR-Net (Iat f +Dden+Inorm) 20.332 13.449 28.137 18.392 24.234

(a) (b) (c) (d)
Figure 12. Qualitative analysis of ablation study: (a) the intensity map completed by the single
input model supervised by Iat f ; (b) the completion result from using only the proposed completion
backbone network supervised by Iat f and Dden; (c,d) are Î and Înorm completed by LiDAR-Net
supervised by Iat f , Dden, and Inorm; (a) Î from onlyI (Iat f ); (b) Î from DI-to-DI (Iat f +Dden); (c) Î from
LiDAR-Net (Iat f +Dden+Inorm); (d) Înorm from LiDAR-Net (Iat f +Dden+Inorm).

4.3.2. Effectiveness of Supervision with Normalized Intensity

The LiDAR-Net proposed in Section 3.2 is supervised by Inorm at the end of the decoder
and by Iat f at the end of the inverse network. To verify the effectiveness of the inverse
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normalization network, we also present the experiment results on DI-to-DI, which is directly
supervised by Iat f at the end of the decoder but without the inverse normalization network.

As shown in Table 4, based on the DI-to-DI network, LiDAR-Net further enhances the
performance of the completion with only a few extra parameters.

Figure 12c shows that with the supervision aided by the densified normalized intensity
Inorm, the ripple effect mentioned above is less evident than the results of DI-to-DI network.
Meanwhile, as shown in Figure 12d, the predicted Înorm is more related to materials and
more robust to distance and incidence angle. It indicates that the additional material
information from Inorm enables the network to learn possible distributions of intensity
through the correlation between depth and reflectivity, even in the ripple area where the
supervision information is unavailable.

We also find that LiDAR-Net converges much faster than DI-to-DI, as shown in
Figure 13. The LiDAR-Net improves the completion performance. It also reduces the
difficulty of convergence and oscillation in the training process.

The results from the experiments show that the addition of the inverse network leads
to a faster and smoother convergence and that Inorm serves as an additional supervisor to
improve the completion performance.
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Figure 13. Convergence curves. LiDAR-Net (green) converges on intensity (left) faster than DI-to-DI
(yellow) and onlyI (blue) and achieves better depth (right) completion performance.

4.4. Comparison of Depth Completion

Since the proposed method has the capability for depth completion, this section will
compare the performance of the proposed method with several state-of-the-art depth
completion methods [19,39,51] to show the benefit of intensity information. Since the KITTI
depth completion benchmark does not provide simultaneously the ground truth of depth
and of intensity, we have to test various methods on our dataset.

As shown in the lower part of Table 5, the proposed method, which uses both intensity
and depth information, provides the highest accuracy of depth completion according to
RMSE. The result proves that using only depth is insufficient to train the network to predict
the area where values are missing. In other words, since the input of the proposed dataset
is too sparse, the results of the state-of-the-art methods tend to be unsatisfactory. This
result explains why many methods seek the assistance of RGB cameras to provide better
completion outcomes.
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Table 5. Comparison of depth completion accuracy. The results from state-of-the-art depth completion
algorithms are shown in the bottom part. The best results are shown in bold. We use ‘i’ and ‘d’ to
represent Lidar intensity and depth, respectively; ‘x’ denotes a failure.

Scene 1 Scene 2 Mean

Depth [mm] Depth [mm] Depth
[mm]

Method Input RMSE MAE RMSE MAE RMSE

LiDAR-Net (Ours) i + d 3822.5 1300.2 5093.0 1974.5 4457.8

Sparse-to-dense [15] single d 3900.1 1310.2 5226.3 2165.3 4563.2
SparseConvs [19] single d 7134.5 3162.3 9486.8 4271.21 8310.7
NConv-CNN [39] single d 5190.1 1725.2 6534.8 2425.7 5862.4
pNCNN [50] single d 3956.8 1110.4 5104.4 1816.0 4530.5
IP-Basic [51] single d 6645.9 1934.9 8521.6 2159.7 7583.8

4.5. Lane Segmentation

As discussed in the introduction, as an active sensor, LiDAR is not affected by the
ambient light and can respond to dramatic lighting variations in autopilot situations.
With the proposed method, many modern computer vision methods can be employed, such
as object segmentation. To demonstrate the significant advantage of dense LiDAR intensity,
we investigate the lane segmentation performance using RGB images versus completed
LiDAR intensity under normal and low illumination conditions.

The SCNN [52] is used as a segmentation model. Without any alteration, the results
in Table 6 indicate that the dense LiDAR intensity can be used for lane segmentation with
comparable performance. The performance of the proposed method can also be proved in
Figure 14. Furthermore, it should be noted that, as shown in Figure 15, in complex illumi-
nation environments, the lane lines obtained from the completed LiDAR intensity are easy
to detect in both scenarios while the RGB images are not usable under certain conditions.

Table 6. Comparison of lane segmentation results. F1 = 2× Precision× Recall/(Precision + Recall).

Input Type Precision Recall F1

RGB image from visible cameras 0.957 0.612 0.746
Î from LiDAR-Net 0.862 0.553 0.674

(a) (b)
Figure 14. Lane segmentation results in good illumination conditions. Under normal lighting
conditions, the dense intensity after completion can reach the same performance as RGB images in
lane segmentation. It shows that traditional vision methods can be applied to the LiDAR intensity
maps without modification: (a) RGB; (b) intensity.
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(a) (b)
Figure 15. Lane segmentation results in complex illumination conditions. The upper and lower rows
are the data under two different illumination conditions. The left and right images are the data from
a visible light camera and LiDAR, respectively. Different colored lines indicate the segmentation
results of different lanes. It shows that the LiDAR intensity maps have great potential for applications
under adverse illumination conditions: (a) RGB; (b) intensity.

5. Conclusions

In this paper, we proposed a LiDAR-Net to achieve joint intensity completion using
both the sparse depth and the intensity of the LiDAR sensors. The proposed LiDAR-Net can
achieve satisfactory performance in experiments. With the intensity–depth fusion, the pro-
posed method can provide a better performance of the completion. Moreover, a dataset
was built for the intensity completion task. In this dataset, the influence of incidence angle
and depth is eliminated to obtain more accurate intensity ground truth that can be used
for training, which finally helps improve the model’s performance. The supplementary
experiment demonstrates that the completed intensity map can be used for lane detection,
showing the potential for practical applications. With the validation of lane detection, we
hope that the proposed method will appeal to the computer vision community’s interest in
LiDAR intensity measurements.

In future work, new BRDF models, such as the Phong [53], Oren–Nayar [54], or the
Torrance–Sparrow [55] reflectance model, will be used to replace Lambertian assumption
since the intensity is only corrected by the incident angle and may induce the so-called
“over-correction effect” [56] on a large incidence angle.

For applications, we will explore the application potential of dense LiDAR intensity
in the field of computer vision, such as semantic detection, tracking, and relocalization.
In addition to the 2D tasks, the dense intensity completion method can also be extended to
3D vision tasks such as LiDAR-based 3D object detection and classification.
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