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Abstract: A mixed-criticality system refers to an integrated embedded system in which tasks with
different criticality levels run on a shared computing platform. In the design and development of
mixed-criticality systems, how to schedule tasks to ensure that high-criticality tasks are executed in time
and low-criticality tasks are served as much as possible is a major problem to be studied. Existing studies
tend to consider pessimistic processing strategies to ensure the schedulability of functional tasks with
high-criticality requirements. However, excessive pessimistic processing can lead to waste of system
resources, thereby reducing the performance of functional tasks with low-criticality requirements. In this
paper, we propose an adaptive-service-level adjustment strategy for low-criticality tasks, which solves the
problem of waste of resources caused by invalid compensation in the low-criticality task compensation
method of flexible mixed-criticality systems. In view of the problem that the existing methods mostly use
static budget allocation and static independent mode switching without considering the actual operation
of the task, this paper also proposes a flexible and dynamic mixed-criticality system scheduling scheme
and designs a system execution framework, scheduling algorithm, and dynamic allocation strategy
of maximum execution budget, in order to reduce unnecessary redundant resource expenditures and
system switching costs and to improve the performance of low-criticality tasks. Experiments show that
the proposed methods are effective compared to the state-of-the-art.

Keywords: mixed-criticality system; task scheduling; resource allocation; service level

1. Introduction

The continuous breakthroughs in integrated circuit technology have greatly improved
the scale and performance of embedded systems. In recent years, mixed-criticality systems
have been increasingly used in real-time embedded fields such as automobiles, power
electronics, and aerospace [1–3]. For example, in the field of smart grids, there is a
mixed-criticality system of power inspection drones composed of computing tasks with
different safety requirements, such as motor control and image acquisition. Whether the
motor control function calculation task can be safely and reliably scheduled will directly
affect the flight of the inspection drone. If such high safety-demand computing tasks cannot
be executed in time, the impact on the inspection drone system will be serious or even
fatal. However, the failure to perform computing tasks with low safety requirements, such
as taking photos and collecting photos in a timely manner, will affect the quality of the
fault inspection photos obtained by the grid personnel and will have less impact on the
inspection UAV system.

In a mixed-criticality system, computing tasks of functional subsystems with different
criticality are represented by different criticality levels, and tasks are divided into high-criticality
tasks and low-criticality tasks according to the level of safety requirements [1]. Such a system has
two modes: high-criticality mode (HC) and low-criticality mode (LC). When a high-criticality
task overruns, the system will switch to HC mode and the task will switch to the high-criticality
level (HI). To ensure the schedulability of high-criticality tasks, existing works [4–11] mainly
include the following three aspects:
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(1) Ensure that high-criticality tasks are executed in a timely manner: that is, directly abandon
the execution of all low-criticality tasks, which will reduce the service quality of low-criticality
tasks, thereby affecting the user’s overall experience of functional requirements;

(2) Static task mode switching: that is, when a high-criticality task overruns, all other
high-criticality tasks will switch to HC mode, which generates unnecessary resource
budgets and wastes system resources;

(3) Static budget allocation method: that is, the execution resource overhead of high-criticality
tasks in LC mode is determined before the task is scheduled and the execution resources
are allocated directly according to the execution time of high-criticality tasks in LC mode.

Many researchers have studied the above problems and proposed solutions. In the
work [12–20], once the high-criticality task fails to execute in time in LC mode, the low-criticality
tasks will not be discarded directly, but their service levels are degraded to different degrees by
adjusting the frequency allocation or execution time budget of the low-criticality tasks. This can
balance the greater execution overhead required by the high-criticality task switching to HC mode.
Aiming at the shortcomings of the second aspect above, the studies [21–29] proposed different
mode switching triggering methods, which improved the problem of a large unnecessary resource
pre-sale caused by the static mode switching. It is worth mentioning that the authors in [30]
proposed a flexible mixed-criticality (FMC) system optimization scheme. However, this approach
is very conservative. In fact, it is extremely unlikely that all high-criticality tasks will overrun at
the same time. When not all high-criticality tasks have overruns, the system can give more idle
resources to compensate for overruns of high-criticality tasks. For such a demand compensation
calculation method, the FMC scheme does not consider that when there are redundant execution
resources in the system, the idle resources are recovered and compensated for the low-criticality
tasks that are degraded due to the overrun of the high-criticality tasks. Therefore, the scheme has
the problem of invalid compensation for a large number of low-criticality tasks, which greatly
reduces the execution performance of low-criticality tasks. In addition, the method adopts a
static budget allocation method and does not consider the actual operation of high-criticality
tasks. When the actual execution time of high-criticality tasks is much less than the estimated
execution time, there will be significant redundant resource expenditures, resulting in the waste
of system resources and performance degradation of low-criticality tasks.

To the best of our knowledge, none of the existing research has solved the problem
of ineffective compensation of low-criticality tasks and has not considered the solution of
reasonably allocating system resource overhead according to the actual operating conditions
of high-criticality tasks in LC mode. This paper proposes a novel dynamic mixed-criticality
system task scheduling scheme, which reduces unnecessary system pessimism while ensuring
the schedulability of high-criticality tasks and realizing the optimization of task schedulability
and system switching cost in mixed-criticality systems. Specifically, this paper proposes a
more practical adaptive service level adjustment strategy for low-criticality tasks. The system
can dynamically downgrade the service level of low-criticality tasks by adjusting the execution
frequency of low-criticality tasks according to the overspending situation of high-criticality
tasks, which solves the problem of invalid compensation for low-criticality tasks and has better
performance in supporting the execution of low-criticality tasks. This paper also proposes a
task scheduling scheme for dynamic mixed-criticality systems. The system can dynamically
allocate resources according to the actual execution of high-criticality tasks in LC mode,
reducing unnecessary waste of resources caused by pessimistic processing. The simulation
results show that the proposed scheme has obvious optimization effects compared with the
existing state-of-the-art schemes in terms of task schedulability and system switching cost.

The rest of this paper is organized as follows. Section 2 introduces related work and
Section 3 presents typical models of mixed-critical systems. Section 4 presents an example
of research motivation. Section 5 introduces the method proposed in the work and Section 6
is the simulation experiment and result analysis. Section 7 concludes the paper.
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2. Related Work

In a mixed-criticality system, tasks are divided into high-criticality tasks and low-criticality
tasks according to safety requirements. Tasks have different execution time budget estimates at
their respective criticality levels. By default, all tasks are in LC mode. The high-criticality tasks
are scheduled with smaller execution time estimates and low-criticality tasks are scheduled
with fixed execution time estimates. Once a high-criticality task overruns and switches to HC
mode, it will be scheduled with a larger execution time estimate. Most of the existing algorithms
are extensions based on the nearest deadline first algorithm proposed in traditional real-time
systems. In order to ensure the schedulability of high-criticality tasks, the strategies adopted in
research [4–11] are: if any high-criticality task fails to complete the scheduling in time within
its execution time budget estimate, then all high-criticality tasks are switched to HC mode.
At the same time, more execution resources are given to high-criticality tasks to ensure the
schedulability of high-criticality tasks. All low-criticality tasks will be suspended immediately
to balance the execution overhead of switching high-criticality tasks to HC mode. For example,
Baruah combined the earliest-deadline first (EDF) algorithm and proposed a mixed-criticality
scheduling algorithm called the earliest-deadline first virtual deadline (EDF-VD) [5]. Su et al.,
proposed a strategy to set variable execution periods (i.e., service intervals) for low-criticality
tasks [14]. In this strategy, when the system switches to HC mode, the low-criticality task
reduces its allocation frequency so that the quality of service of the low-criticality task is
reasonably degraded instead of being discarded directly, and its minimum service requirement
is guaranteed by its maximum cycle. Low-criticality tasks can also reclaim the idle time
generated by the redundant execution time budget of high-criticality tasks, and release them
in advance to shorten the service interval, thereby improving their service level. Liu et al.
proposed a scheme from the perspective of reducing the execution time budget of low-criticality
tasks [15]. However, the above research still adopts the mode switching that depends on the
triggering method and the static budget allocation method.

Ren and Phan proposed a partition scheduling method for grouped Pfair-like scheduling [18].
In a task group, a high-criticality task encapsulates several low-criticality tasks. The tasks of each
task group are decomposed into quantum-length subtasks, and the subtasks of different groups are
scheduled on the basis of earliest-pseudo-deadline-first (EPDF). Although using Pfair scheduling
can delay mode switching and support low-criticality tasks with better execution performance, it
also brings many practical problems. For example, decomposing into quantum-length subtasks
for scheduling results in very high scheduling overhead due to frequent preemption, limited
scalability due to NP-hard complexity, etc. Gu et al. proposed a component-based strategy
in which component boundaries provide the isolation needed to support low-criticality task
execution [22]. Slight overruns can be handled by internal mode switching by shutting down
all low-criticality tasks within the component. A wider overrun would result in a system-wide
external mode switch and interruption of all less critical tasks. Although this strategy has a certain
ability to delay mode switching and reduce unnecessary waste of resources, it still adopts the
pessimistic process that once the high-criticality task overruns, all low-criticality tasks immediately
give up execution. Furthermore, the strategy tests the schedulability of the system using a demand
constraint function-based approach. The complexity of schedulability tests scales exponentially
with the size of the input, leading to computationally expensive issues.

The latest research [30] presented an FMC system optimization scheme in which the
mode switching of the high-criticality tasks is triggered independently and the tasks do
not affect each other. Any high-criticality task overrun will only trigger itself to switch
into HC mode and other high-criticality tasks will remain in the original mode. At the
same time, the system will downgrade the service level of low-criticality tasks according
to the overrun of high-criticality tasks, and will not immediately abandon the execution
of all low-criticality tasks. However, the demand compensation calculation used for the
service level degradation of the low-criticality tasks is carried out by considering the way
of distributing the idle resources of the system in equal proportions in the case that all the
high-critical tasks will overrun.
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3. System Model

The system studied in this paper has high-criticality level (HI) and low-criticality level
(LO), and the criticality level of the system in the initial state is LO. In this system, a total
of n mixed-critical period real-time tasks are scheduled to run, and the set composed of
these tasks is denoted as γ = {τ1, τ2, . . . , τn} for each mixed-critical period task τi, denoted
as τi = {Ti, Li, Cil , Cih}, where Ti represents the period of the task τi and also serves as
the relative deadline of the task in this model, i.e., Ti = Di . The vector Li = {LO, HI}
represents the critical level of task τi; Li = HI means that the task is a high-criticality task
and Li = LO means that the task is a low-criticality task. Cil and Cih represent the worst
case execution time (i.e., WCET) budget estimates for task τi in LC mode and HC mode,
respectively. High-criticality tasks have different WCET budget estimates in LC mode and
HC mode, satisfying Cil < Cih , and low-criticality tasks have only one WCET budget
estimate in LC mode and HC mode, satisfying Cil = Cih .

In order to better characterize the execution budget of low-criticality tasks in HC mode,
we introduce the following definitions:

Definition 1 (k-level HC mode). At a given moment, if k high-criticality tasks switch to HC
mode, the system is in k-level HC mode. When all high-criticality tasks are in LC mode, the system
can be considered to be in 0-level HC mode.

Definition 2 (service level). The service level is used to represent the service quality of the
low-criticality tasks after the mode switching of the high-criticality tasks, which is denoted here as
Zk

i . Each time the system switches modes, the current service level will be updated to determine
the new service quality of low-criticality tasks. Assuming the initial state Z0

i = 1 and Zk
i ≥ Zk−1

i ,
if the system has experienced the kth mode transition at this time, the new service quality of the
low-criticality task τi is Zk

i · Ti , that is, the execution frequency of the low-criticality task is adjusted
from Zk−1

i · Ti to Zk
i · Ti.

Definition 3 (k-level maximum execution resource budget). The k-level maximum execution
resource budget refers to the maximum resource expenditure for which all high-criticality tasks
in LC mode can still run in LC mode when the system is in k-level HC mode, which is denoted
here as uk

threshold . Assuming that the 0-level maximum execution resource budget is the sum of
the estimated execution time budget of all high-criticality tasks in LC mode for the system CPU
utilization (denoted as uihl), for the entire task set, the 0-level maximum execution resource budget is:

u0
threshold = ∑

τi∈γHI

uihl (1)

The k-level maximum execution resource budget can be obtained by subtracting the
cost of high-criticality tasks in LC mode before switching to HC mode from the 0-level
maximum execution resource budget. When the system is in the k-level HC mode, once
the remaining high-criticality task execution resource overhead in LC mode exceeds the
k-level maximum execution resource budget, a new high-criticality task will be triggered to
perform mode switching and the HC mode of the system will be increased by one level.
The all k-level maximum execution resource budget is:

uk
threshold = ∑

τi∈γHI

uihl − ∑
τi∈γHI

HI

uis (2)

Here, uis refers to the execution resources occupied by the high-criticality task τi in LC
mode before switching to HC mode. γHI

HI refers to the high-criticality task set in HC mode.
In addition, the calculation formulas of other related utilization rates are as follows.

The resource utilization of tasks in different modes is:

uiab =
Cib
Ti

(3)
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a indicates whether the type of task is high-criticality (h) or low-criticality (l). b indicates the
type of system mode, which is either high-criticality mode (h) or low-criticality mode (l).

For example, the resource utilization of high-criticality tasks in LC mode is:

uihl =
Cil
Ti

(4)

The resource utilization of low-criticality tasks after the kth independent mode transition is:

uk
ill =

Cil

Ti × zk
i

(5)

For the entire task set, the resource utilization of tasks is:

uab = ∑
τi∈γa

uiab (6)

For example, the resource utilization of high-criticality tasks in HC mode is:

uhh = ∑
τi∈γHI

uihh (7)

The resource utilization of low-criticality tasks after the k-th independent mode
transition is:

uk
ll = ∑

τi∈γLO

uk
ill (8)

The resource utilization at minimum quality of service for low-criticality tasks is
uman

lO = ∑τi∈γLO
zman

i uill , where zman
i is the minimum service level specified by the user.

4. Motivation Case

When tasks are executed on a mixed-criticality system, the key is how to ensure the
timely execution of high-safety-critical tasks while enabling low-safety-critical tasks to be
served as much as possible. Table 1 lists the basic parameters of each task. In this example,
there are a total of six mixed-critical tasks, of which τ2 ∼ τ4 are high-criticality tasks and
the rest are low-criticality tasks. D

′
i represents the virtual deadline obtained by multiplying

the virtual time factor Di , and D
′
i is only applicable when the high-criticality task is in LC

mode. A low-criticality task has only one WCET estimate in both LC mode and HC modes,
and satisfies Cil = Cih.

Table 1. Parameter information of task set.

τi Li Di Cil Cih D
′
i

τ1 LO 86 12 12 86
τ2 HI 51 6 12 29
τ3 HI 106 14 28 61
τ4 HI 30 3 6 17
τ5 LO 137 17 17 137
τ6 LO 145 20 20 145

Figure 1 shows the scheduling result of the task set under the FMC scheme. According
to the scheme, the first job of task τ4 (denoted as τ4,1) is first selected for scheduling at
time 0. When the system runs to time 3, the high-criticality job τ4,1 fails to complete its
execution within its worst execution time estimate (3 time units); i.e., the high-criticality
job overruns and switches to HC mode. The resource requirements of the overrun part of
the high-criticality tasks are compensated according to the principle of the minimum task
utilization priority in the FMC scheme. Since the low-criticality task τ5 has the smallest
utilization rate, the low-criticality task τ5 will be selected first to compensate; that is, the task
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execution time budget needs to be adjusted from the original 17 to 7.54. As long as the
low-criticality job τ5,1 cannot be completed within 7.54 time units, the job fails, and the next
job can only be executed after waiting for the time budget of the next cycle.

Figure 1. Scheduling result of task set under FMC scheme.

However, as can be seen from Figure 1, the deadline for the low-criticality job τ5,1
is 137 and at time 137, there are still a number of abundant idle resource blocks in the
system. If these idle resources can be utilized, the low-criticality job τ5,1 can actually be
scheduled according to the original execution time budget without reducing the execution
time budget. Therefore, the FMC scheme does not consider the recovery of the system’s
idle resources and inversely compensates for the low-criticality tasks whose execution time
is reduced due to the overrun of the high-criticality tasks when the system has redundant
execution resources that can be recovered.

Figure 2 shows the final scheduling result of the task set under the improved FMC
scheme. Different from Figure 1, the resource requirement of the overrun portion of
switching the high-criticality task τ4 to HC mode is realized by reducing the execution
frequency of the low-criticality task τ5. The new execution period of low-criticality task τ5
is extended from the original 137 time units to 311 time units and its execution time budget,
which is still 17 time units. is not reduced. It can be seen from the final scheduling result in
Figure 2 that the idle system resources can be better utilized under this scheme, and the
low-criticality tasks τ5,1 has been executed within 137 time units of its original specified
time and the execution budget has not been reduced.

Figure 2. Scheduling results of task sets under the improved FMC scheme.

5. FMCI and FDMC Schemes

To address the two problems in the traditional mixed-critical system model, namely,
once any high-criticality task overruns, all low-criticality tasks are suspended, and all
other high-criticality tasks are assumed to exhibit high-criticality behavior at the same
time, Ref. [30] has proposed a more realistic mixed-criticality model, called the flexible
mixed-criticality (FMC) model. In FMC, it is assumed that only the overrun task itself
exhibits high-critical behavior, while the other high-criticality tasks maintain the same
mode as before and the guaranteed service level of the low-critical task degrades relative to
the high-critical task.

However, the problem of invalid compensation of low-criticality tasks occurs in
the existing scheme because the demand compensation calculation is only for the most
pessimistic scheduling situation; in non-pessimistic cases, the use of system idle resource
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recovery to reversely compensate low-criticality tasks is not considered. In addition,
the existing scheme adopts the methods of static budget allocation and static mode
switching. The execution resources are specified before tasks are scheduled and the actual
operation of the tasks is not considered. However, in actual task scheduling, if the actual
execution time of a high-criticality task is much smaller than its worst execution time budget
estimate, it will cause significant waste of resources. In response to the above problems,
this paper proposes an adaptive service level adjustment method for low-criticality tasks,
namely FMC improved (denoted as FMCI), which can enable low-criticality tasks to have
better execution performance. This paper also proposes a more practical feasible dynamic
mixed-criticality system (denoted as FDMC), which can dynamically allocate resources
according to the actual operation of high-criticality tasks in LC mode, reducing unnecessary
resources caused by pessimistic processing.

5.1. FMCI

In the FMC scheme [30], the demand compensation calculation is shown in Formula (9).
uk

ll is the service level of a low-criticality tasks in the k-level HC mode. ∆ull is the minimum
compensation overhead adjustment value that a low-criticality task needs to make to
balance the resource requirements of high-criticality task overrun when the system switches
from the k-1 level HC mode to k-level HC mode.

∆ull = uk
ll − uk−1

ll ≤ min(0,
uihl/uhl × (1− ull)− uihh

1− x
) (9)

From Formula (9), it can be seen that the dynamic adjustment of service quality of
low-criticality tasks is analyzed based on the technology of utilization, and the following
two points can be observed.

(1) When a new high-criticality task mode switch occurs, the low-criticality task service
dynamic adjustment strategy will adjust the utilization rate of its own tasks according to
the overrun of the high-criticality task to compensate.

(2) The adjustment of the utilization rate of the low-criticality task is only determined
by the high-criticality task where mode switching occurs. This means that the mode
switching of high-criticality tasks has an independent effect on adjusting the utilization of
low-criticality tasks, and the sequence of mode-switching of high-criticality tasks has no
effect on the adjustment of service levels of low-criticality tasks.

The change in utilization is directly affected by two factors: execution time and execution
frequency (the reciprocal of the execution cycle). Utilization is positively correlated with execution
time and negatively correlated with execution frequency. Therefore, in addition to reducing the
execution time budget of low-criticality tasks, service quality degradation of low-criticality tasks
can also be achieved by extending the execution frequency of low-criticality tasks.

Aiming at the shortcomings of the low-criticality task service adjustment compensation
method in the FMC scheme, this paper presents a more practical low-criticality task adaptive
service level adjustment scheme. The system downgrades the service level of low-criticality
tasks according to the overrun of high-criticality tasks, and the resource requirements of
the over-expenditure part are met by reducing the execution frequency of low-criticality
tasks, not by reducing the execution time of low-criticality tasks. The improved calculation
method of demand compensation is shown in Formula (10), where ∆ull is the minimum
compensation overhead adjustment required by the low-criticality task to balance the
resource requirements of the overrun portion of the high-criticality task, when the system
switches from the k-1 to the k level HC mode. Tk

i is the execution period of the low-criticality
task τi in the k-level HC mode (T0

i = Ti ). ∆Tll is the execution period that needs to be
elongated, i.e., the execution frequency that needs to be reduced. The low-criticality task
service level needs to adjust its execution frequency to achieve compensation for the overrun
resource requirements of the high-criticality task, which can be calculated by (10). In the
adjustment scheme proposed in this paper, the execution time of low-criticality tasks will
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not be reduced, so the situation of ineffective compensation of low-criticality tasks can be
avoided and the service level of low-criticality tasks can be better dynamically reduced.

∆ull = uk
ll − uk−1

ll =
cil

Tk
i
− cil

Tk−1
i

⇒ ∆Tll = Tk
i − Tk−1

i =
−(Tk−1

i )2 × ∆ull

Tk−1
i × ∆ull + cil

(10)

5.2. FDMC

In FDMC, high-criticality tasks will dynamically allocate system resources according
to their actual execution time requirements in LC mode and will no longer be statically
allocated according to the estimated execution time budget that has been allocated before
scheduling. The conditions for switching high-criticality tasks to HC mode in LC mode are
no longer based on their execution time budget estimates, but are dynamically evaluated
based on the actual execution of all high-criticality tasks in LC mode. This section introduces
the execution framework, scheduling algorithm, and maximum execution budget allocation
strategy involved in FDMC.

5.2.1. Execution Framework

Initially, all tasks are in LC mode. In the scheduling execution process, once any
high-criticality job overruns, it will be triggered to switch to HC mode, and the level of the
system HC mode will also be increased by one level. If the conditions for returning to LC
mode are met during the scheduling process, the task will return to LC mode again, and so
on until the scheduling ends. The execution framework is shown in Figure 3.

Figure 3. FDMC execution framework.

LC mode: In the initial state, all tasks are in LC mode. As long as the maximum
execution budget u0

threshold is not exceeded, the system can always maintain task scheduling
in LC mode.

Scheduling and execution: During the scheduling process, when a new job is released,
it will be inserted into the task queue to be scheduled and the system will select the job with
the highest priority in the task queue to be scheduled. When job τi,j is a high-criticality job
and cannot be completed within bi,j, it immediately switches from LC mode to HC mode;
other high-criticality tasks remain unchanged and the system HC mode level k is raised by
one level.

Update low-criticality tasks service level: During the scheduling and execution process,
the system will update the current service level Zk

i of the low-criticality task every time
the system switches modes, and the low-criticality task execution frequency is adjusted
from Zk−1

i · Ti to Zk
i · Ti . Changes in Zk

i are dynamically adjusted by the specific overruns
of high-criticality tasks. Under the new HC mode level, the low-criticality job execution
time budget remains unchanged and is scheduled according to the new deadline.

Return to LC mode: When the system detects an idle state, that is, when there are no
more tasks to be scheduled, the system returns to LC mode, and the execution frequency of
low-criticality tasks returns to Ti.
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5.2.2. Maximum Execution Budget Allocation Strategy

Aiming at the problem that the static budget allocation method of high-criticality
tasks in LC mode is not flexible and practical in mixed-criticality system scheduling,
this section proposes a maximum execution budget allocation strategy. In the FDMC
scheme, the execution time overhead of high-criticality tasks in LC mode is dynamically
allocated according to the actual execution time of their running. The overall idea of
the maximum execution budget allocation strategy is to ensure that high-criticality tasks
can dynamically allocate execution overhead according to the actual time required for
their scheduled execution in LC mode and, at the same time. evaluate the upper limit of
the execution budget with which high-criticality tasks can keep running in LC mode to
ensure the schedulability of the high-criticality tasks. That is, if the actual time required
for its scheduled execution is greater than the maximum execution budget that can be
allocated by the calculation of the maximum execution budget allocation strategy, then
the high-criticality task needs to be switched to HC mode immediately and the other
high-criticality tasks remain in the original mode. In this way, the actual situation of task
scheduling is more realistically considered, and unnecessary waste of resources can be
reduced; the frequency of system mode switching can also be delayed, finally ensuring
the schedulability of high-criticality tasks and improving the execution performance of
low-criticality tasks.

The following describes how the maximum execution budget allocation strategy in the
FDMC scheme supports the dynamic allocation of execution overhead for high-criticality
tasks in LC mode. As shown in Figure 4, it can be divided into four parts.

Figure 4. The maximum execution budget allocation strategy.

(1) Calculation: when the currently scheduled job is selected from the task queue to be
scheduled as a high-criticality job, calculate the maximum execution time budget bi,j that
can be allocated by the scheduling job τi,j in LC mode according to Formula (11); then, use
it as an indicator of whether to trigger the switch to HC mode. When the task assigned by
the current scheduling is selected from the task queue to be scheduled as a low-criticality
task, this calculation link is not required.

bi,j = Ti × (uk
threshold − ∑

τn∈γLO
HI

etotal
n,j

Tn
) (11)

(2) Switching: When the high-criticality job τi,j fails to complete within its maximum
execution time budget bi,j, a mode switch will be triggered; then, it will switch from LC
mode to HC mode and the value of k-level HC mode increases by one. Excessive execution
of this task will not trigger other high-criticality tasks to enter HC mode. In the latest
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HC mode level, the system re-evaluates the execution frequency of low-criticality tasks
according to the overrun of high-criticality tasks to balance the resource requirements
caused by over-expenditure of high-criticality tasks. At the same time, the execution time
budget of low-criticality tasks remains unchanged and is still scheduled according to the
new deadline. Finally, at this latest HC mode level, the maximum execution resources are
also recalculated to evaluate if the remaining high-criticality tasks that have not switched
to HC mode can remain running in LC mode.

The mode switching conditions are as follows. Assuming that the system is in a
busy state at time t◦ , and job τi,j is being scheduled, the mode switching of the system is
triggered at this time. et

i,j represents the total execution time of the | t
Ti
|+ 1 -th job of task τi

before time t . If the scheduling of job τn,j starts from time t and an overrun occurs at time
t◦ , then it must satisfy:

∑
τi∈γLO

HI

et
i,j

Ti
6 uk

threshold (12)

∑
τi∈γLO

HI

et◦
i,j

Ti
= uk

threshold (13)

(3) Update: The maximum execution time budget bi,j that can be allocated to a
high-criticality job is related to the actual execution time etotal

n,j of other high-criticality
jobs τn,j . Therefore, when each high-criticality job τi,j is completed or preempted by a
higher priority job and needs to be returned to the queue to be scheduled, the update of
etotal

i,j is triggered and the duration ei,j of the current scheduling operation is accumulated

into etotal
i,j .

(4) Recovery: When the system detects an idle state, that is, there are no more tasks
to be scheduled, the system recovery process is triggered. All tasks return to LC mode, A
is cleared, and the execution frequency of the low-criticality task returns to the original
execution frequency.

5.2.3. Scheduling Algorithm

This section introduces the algorithm based on EDF-VD scheduling suitable for the
FDMC scheme, which is called the FDMC-EDF-VD algorithm. Before the scheduling
starts, the virtual deadline factor x is obtained by calculating uhl

1−ull
. Formula (14) is the

test condition to ensure the schedulability of the task under FDMC-EDF-VD. u0
threshold is

the maximum resource cost under which all high-criticality tasks can keep running in LC
mode, and us used to determine whether the system needs to switch to HC mode in the
online task scheduling execution stage.

(1− x)(ull − uman
ll ) + ∑

τi∈γHI

φ(τi) ≥ 0 (14)

φ(τi) =
uihl

u0
threshold

(1− ull)− uihh(τi ∈ γHI) (15)

In the initial state of scheduling, all high-criticality tasks will be scheduled according
to the virtual deadline x× Ti. When any high-criticality task overruns, it will immediately
switch to HC mode. The deadline used for scheduling the overrun high-criticality task
is restored from the original virtual deadline x × Ti to the actual deadline Ti, and other
high-criticality tasks are not affected and still keep the original deadline for scheduling.
At the same time, the execution frequency of low-criticality tasks under the new service
level is updated according to Formula (16), so as to achieve a utilization balance between
low-criticality tasks and high-criticality tasks. Then, calculate the maximum execution
resource budget in the latest HC mode according to Formula (2). During the scheduling
process, when the system detects an idle state, that is, when there are no more tasks to be
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scheduled, the system returns to LC mode and the execution frequency of the low-criticality
tasks returns to Ti until the scheduling ends.

∆ull = uk
ll − uk−1

ll ≤ min(0,
uihl/u0

threshold · (1− ull)− uihh

1− x
) (16)

The algorithm implementation framework is shown in Algorithm 1.

Algorithm 1: FDMC-EDF-VD
Input: task set Γ
Output: scheduling result(PEJ),switching cost

1 calculate uhl ,uhh,ull ;
2 calculate x,u0

threshold;
3 Initialization();
4 while current time < endtime do
5 schedule();
6 if the ready task queue is not empty then
7 if high-criticality task overrun occurs then
8 update task status and continue;
9 else

10 continue;
11 else
12 updata all low-criticality tasks back to the LC mode state and continue;
13 end
14 End of scheduling,calculate PFJ and switching cost.

Lines 1–3 are the off-line calculation process before scheduling starts. First, according to
Formulas (6) and (1), the utilization rates uhh , uhl , ull , and u0

threshold are calculated respectively,
and the virtual deadline factor of the high-criticality task in LC mode is obtained. The initial
state of all tasks is LC mode (Line 3). The task set enters the online scheduling stage when it
satisfies the schedulability condition under FDMC-EDF-VD (i.e., Formula (11)). Lines 4–12 are
the process of online scheduling. In LC mode, high-criticality tasks are scheduled according
to their virtual deadlines. The system selects the task closest to the deadline from the queue
of tasks to be scheduled for scheduling (Line 5). Once there is a high-criticality job τi,j that is
not completed within the time bi,j (calculated dynamically based on the actual execution of
all high-criticality tasks in LC mode) (Line 7), the task state immediately switches from LC
mode to HC mode and receives a larger execution time budget, while other high-criticality
tasks remain in their original mode. In this process, the overrun of the high-criticality task
is calculated by Formula (15), the service quality of the low-criticality task is updated by
Formula (16) to balance the resource demand, and the total maximum execution resource
budget in the updated HC mode is also calculated according to Formula (2) for subsequent
scheduling budget. When the assigned job is scheduled and there are no more jobs in the task
queue to be scheduled (that is, the system detects idleness), the completion status of all tasks
is calculated and updated, and all tasks return to LC mode; otherwise, continue to schedule
the next job. Finally, when the scheduling is over, output the PFJ (indicating the completion
rate of the successful execution of the low-criticality task within the deadline) and the result of
the switching cost (Line 14).

6. Experiment and Evaluation

In this section, we evaluate the effectiveness of our proposed FMCI and FDMC
through extensive simulations. All the simulations are implemented on the Visual Studio.
The PC configuration information is Intel(R) Core(TM) I5-5200U CPU 2.20 ghz processor,
memory: 6 GB.

Similar to the task settings in [5,8,22,30], the parameter settings of this experiment
are configured first; then, the corresponding task set is generated. The parameters are as
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follows. The low-criticality utilization uil of each task is obtained by the UUnifast algorithm.
The period Ti of each task τi is an integer drawn randomly in the range [20,150] according
to the average distribution. The ratio of resource utilization of high-criticality tasks in HC
mode to LC mode is an integer drawn uniformly and randomly in [2,3]. The mixing critical
level is set to L = 2 . The probability that a task is a high-criticality task is 0.5 and the
lower bound uman

ll of the total utilization of a low-criticality task is 0.33 ([17] points out that
most tasks will be completed within 33% of their estimated execution time, so we set the
minimum service guarantee for low-critical tasks). In order to ensure the schedulability
of the mixed-critical system, a limit uB of utilization is given here until the following two
conditions are satisfied; if not, the task set is regenerated.

(1) uB − 0.05 ≤ max(ull + uhl , uhh) ≤ uB;
(2) At least three high-criticality tasks are generated.

6.1. Simulation Verification of FMCI Scheme

We use the same test task set generated to perform task scheduling according to the FMCI
scheme and the FMC scheme. Since the FMCI is an improved scheme to achieve computing
resource compensation by reducing the execution frequency of low-criticality tasks, the PFJ
here is represented by the ratio of the number of times that the low-criticality task actually
successfully completes the scheduling to the number of times that the low-criticality task should
complete the scheduling without changing its execution frequency. By comparing the results
of PFJ, the performance of the two schemes in supporting the execution of low-criticality
tasks while ensuring the schedulability of high-criticality tasks is evaluated. Since the generated
mixed-critical task set has a certain degree of randomness, in order to obtain more reliable results,
all data are the results of the average of 100 task sets scheduled. The parameter variables of the
simulation experiment are the probability of overruns for high-criticality tasks (uB), and the
aggregate utilization rate of the generated tasks (p). In the case of different combinations of these
two parameters (p ∈ 0.1, 0.3, 0.5, 0.7, 0.9; uB ∈ 0.7, 0.75, 0.8, 0.85, 0.9 ), the scheduling results
corresponding to the FMCI scheme and the FMC scheme are shown in Figure 5. The horizontal
axis represents the total utilization of the task set and the vertical axis represents the performance
of low-criticality tasks (i.e., PFJ value).

It can be seen from Figure 5 that under the same conditions, the performance of
low-criticality tasks under the FMCI scheme is always better than that of the FMC scheme.
The performance of low-criticality tasks under the FMCI scheme is less volatile. This means
that when the high-criticality task has a higher probability of entering HC mode or the
scheduled task set is crowded, the performance of the low-criticality task is less affected.

Figure 5. Comparison of scheduling results between FMCI and FMC.
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The following is a further comparison of the differences between the FMCI scheme
and the FMC scheme in the execution performance of low-criticality tasks under different
probabilities (p = 10%, p = 50%, p = 90%) of overruns in high-criticality tasks. As shown
in Figure 6, with the increase of the probability of high-criticality tasks entering HC mode,
the advantage of FMCI in the performance of low-criticality tasks will be more obvious.

Figure 6. Comparison of scheduling results under different probabilities of overruns in
high-criticality tasks.

6.2. Simulation Verification of FDMC Scheme

In this section, the simulation verification of the FDMC scheme is carried out. The PFJ
results are also compared to evaluate the performance of the classic EDF-VD [5,7], FMC [30],
FMCI, and FDMC for supporting low-criticality task execution while ensuring the schedulability
of high-criticality tasks. Figure 7 shows the PFJ simulation experiment results of each scheme
under different probabilities that the high-criticality task enters HC mode. The results are
analyzed as follows.

Under the EDF-VD scheme, the execution performance of low-criticality tasks is the
highest and the completion degree can reach more than 70%. The overall scheduling is
greatly affected by the probability of high-criticality tasks switching to HC mode. When the
probability of high-criticality tasks entering HC mode is above 30%, the scheduling completion
of low-criticality tasks will drop significantly below 40%. When the high-criticality task has
a high probability of entering HC mode or the generated scheduling task set is crowded,
the execution performance of the low-criticality task will become very poor and the scheduling
completion rate will be lower than 20%.

Under the FMC scheme, when the generated scheduling task set is not crowded,
the execution completion degree of low-criticality tasks can reach 70%, while the highest
can reach 93%. However, the overall scheme is greatly affected by the congestion degree
of the generated scheduling task set and the probability of switching high-criticality tasks
to HC mode. When the probability is greater than 70%, as the congestion degree of the
scheduling task set increases, the execution completion degree of the low-criticality tasks
will also drop significantly; the worst performance is lower than 20%.

Under the FMCI scheme, the execution performance of low-criticality tasks has a
greater optimization effect in terms of stability and completion. The execution completion
degree of low-criticality tasks is above 65% and the overall performance is less affected
by the crowding degree of the generated task set and the probability of high-criticality
tasks entering HC mode. When the probability of switching high-criticality tasks to HC
mode is 10%, no matter how crowded the scheduling task set is, the completion degree of
low-criticality tasks is stable above 90%.

Under the FDMC scheme, no matter the congestion degree of the generated task set
and the probability of the high-criticality task entering HC mode change, the low-criticality
task has a better execution performance and the scheduling completion degree is above
90%. The overall performance is minimally affected by how crowded the generated task
set and the probability of high-criticality tasks entering HC mode.
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It can be seen that the FDMC scheme proposed in this paper has obvious advantages
in the performance of low-criticality tasks in the same mixed-critical system compared with
the other three schemes in terms of completion degree and stability.

Figure 7. The PFJ evaluation of each scheme under different p values.

Figure 8 shows the horizontal comparison results of the PFJs of each scheme when
the probability of the high-criticality task entering HC mode is the same (taking p = 10%,
30%, 50%, and 90% as an example). When p is 10%, the performance of FDMC and FMCI
for low-criticality tasks is comparable, the performance of FMC is slightly worse, and the
performance of EDF-VD has a certain lag gap compared with the other three schemes. When
p increased, the differences between FMC, FMCI, and FDMC begin to appear gradually
and the performance of low-criticality tasks under EDF-VD is the worst. When p is 90%,
the performance gap of low-criticality tasks between FMC, FMCI, and FDMC is widened
and the execution completion degree of low-criticality tasks under FMC is greatly reduced.
We found that as the probability of high-criticality tasks entering HC mode is greater,
the advantages of using FDMC for task scheduling in the performance of low-criticality
tasks are more obvious. Low-criticality tasks under FMDC can also maintain a good degree
of completion, when the task set is relatively congested in system scheduling.

Figure 8. The PFJ comparison of different schemes under the same p value.
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Frequent mode switching will generate significant energy consumption, which may
lead to problems such as system heating and performance degradation. Therefore, switching
overhead is also a key consideration in task scheduling. Since the mode switching of
high-criticality tasks in the EDF-VD scheme is not independent (when any high-criticality
task overruns, all high-criticality tasks will perform mode switching), such switching costs
must be the largest; here only the Independent mode switching of FMC, FMCI, and FDMC
is evaluated. The switching cost mentioned here refers to the ratio of the number of
mode switches performed by a high-criticality task to the number of tasks that are finally
scheduled. That is, the fewer the number of mode switches (in the case of successfully
scheduling the same number of tasks) or the larger the number of tasks that are finally
successfully scheduled (in the case of the same number of mode switches), the lower
the mode switching cost. This also means that the less unnecessary switching overhead,
the greater the solution’s ability to avoid mode switching.

Figure 9 shows the simulation results of the switching cost of the four schemes
when a high-criticality task enters HC mode with different probabilities. Under FMC,
the switching cost is greatly affected by the probability of high-criticality tasks entering
HC mode and the switching costs under different probabilities are significantly different.
The maximum mode switching cost exceeds 0.35, and the minimum is below 0.1. Compared
with FMC, the switching cost under FMCI is significantly less affected by the probability
of high-criticality tasks entering HC mode and the gap between switching costs under
different probabilities is significantly narrowed. The mode switching cost is not more than
0.3 at the maximum, but is above 0.1 at the minimum. In FDMC, the mode switching cost
is the least affected and the difference is not obvious under different probabilities, which
are kept below 0.1.

Compared with other schemes, FDMC has obvious advantages in avoiding mode
switching. The reason is that FDMC adopts dynamic allocation of the execution time overhead
of high-criticality tasks in LC mode according to the actual operation of high-criticality tasks.
That is, the condition for switching a high-criticality task to HC mode is no longer based on not
being completed within its estimated execution time budget in LC mode, but by the maximum
execution time budget allocated by dynamic calculation in its LC mode. Using FDMC for task
scheduling can enable system resources to be called more flexibly and realistically, reduce
unnecessary mode switching, and support the execution of more low-criticality tasks.

Figure 9. Evaluation of switching cost of each scheme under different p values.

Figure 10 shows the horizontal comparison of the switching cost of each scheme when
the high-criticality task enters HC mode with the same probability (taking p = 10%, 30%,
50%, and 90% as examples). When p is 10%, the switching cost of FMCI is the largest,
followed by FMC; the switching cost of FDMC is the smallest. As p increases, the switching
costs of FMCI and FMC both increase to varying degrees, while the switching costs of
FDMC does not change significantly. When p is 90%, the FDMC scheme still maintains a
small mode switching overhead.
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Figure 10. Horizontal comparison of switching cost results of each scheme under the same p.

From the above comparison results, we can conclude that FMC is most affected by the
probability of high-criticality tasks entering HC mode, followed by FMCI, while FDMC is
the least affected. The FMC scheme performs well when the high-criticality task enters HC
mode with low probability, but the switching cost increases significantly as the probability
increases. Although the switching cost of the FMCI scheme does not change as much as the
FMC, it still has a certain gap compared with the FDMC scheme. As the probability of a
high-criticality task entering HC mode increases, the advantage of using the FDMC scheme
for task scheduling in terms of switching cost performance becomes more obvious. Even if
the task set is relatively congested in scheduling, the FMDC scheme can stably maintain a
small switching cost.

7. Conclusions

In mixed-critical systems, traditional classical task scheduling methods often fail to
achieve reasonable resource allocation and performance. In order to ensure the schedulability
of high-criticality tasks, existing task scheduling schemes of mixed-criticality systems have
problems such as waste of system resources and performance degradation of low-criticality
tasks in pessimistic processing. This paper proposes a more practical method for self-adaptive
adjustment of service levels for low-criticality tasks and a more realistic task scheduling
scheme for dynamic mixed-criticality systems. The system dynamically allocates the execution
overhead according to the actual operation of the high-criticality task in LC mode, avoiding
unnecessary pessimistic processing in the existing task scheduling scheme, solving the
problem of unnecessary extra execution budget resources generated by the static allocation
method, and realizing the optimization of the task schedulability and system switching cost
of a mixed-criticality system. Numerical results show that the service level of low-criticality
tasks is improved while ensuring the schedulability of high-criticality tasks.

In terms of future work, we are interested in implementing the proposed method on a
real-time operating system and evaluating its performance. In the process of dynamically
allocating execution overhead, when the probability of high-criticality tasks entering
HC mode is small and the total execution overhead of all high-criticality tasks in LC
mode is less than the maximum execution budget threshold, there may still be room
for further reclaiming idle system resources and improving task execution performance.
In another research direction, it is possible to consider integrating FDMC and fault-tolerant
technologies to develop better resource allocation strategies to ensure different fault types,
since mixed-criticality systems have certain requirements for real-time and reliability.
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