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Abstract: Background: Intermuscular synchronization is one of the fundamental aspects of main-
taining a stable posture and is of great importance in the aging process. This study aimed to assess
muscle synchronization and postural stabilizer asymmetry during quiet standing and the limits of
stability using wavelet analysis. Intermuscular synchrony and antagonistic sEMG-sEMG (surface
electromyography) coherence asymmetry were evaluated in the tibialis anterior and soleus muscles.
Methods: The study involved 20 elderly (aged 65 ± 3.6) and 20 young (aged 21 ± 1.3) subjects. The
task was to perform a maximum forward bend in a standing position. The prone test was divided into
three phases: quiet standing (10 s), dynamic learning, and maintenance of maximum leaning (20 s).
Wavelet analysis of coherence was performed in the delta and beta bands. Results: Young subjects
modulated interface coherences to a greater extent in the beta band. Analysis of postural stability
during standing tasks showed that only the parameter R2b (the distance between the maximal and
minimal position central of pressure), as an indicator for assessing the practical limits of stability,
was found to be significantly associated with differences in aging. Conclusion: The results showed
differences in the beta and delta band oscillations between young and older subjects in a postural
task involving standing quietly and leaning forward.

Keywords: intermuscular coherence; surface electromyography; limit of stability; aging

1. Introduction

During the aging period, there is an increasing incidence of postural-related disorders,
which in the literature is referred to as so-called physiological atrophy of motor perfor-
mance [1]. This is a phenomenon probably caused not only by changes in peripheral
structures, but also by changes in the central nervous system. Understanding the neural
control of standing balance is important to identify age-related degeneration. The standing
posture of the human body can be biomechanically described as an inverted pendulum
rotating about the ankle joint. To prevent falls, an adequate level of ankle stiffness is re-
quired, which is provided by the muscle-tendon unit. However, the neuromuscular system
must significantly assist this process by actively modulating it to an appropriate level [2].
Successful integration of vestibular and somatosensory systems is required for optimal
balance control, but age negatively affects the functioning of these systems [3]. An analysis
that may help to explain this phenomenon is a simple calculation of the coherence of a pair
of antagonistic muscles (tibialis anterior muscle and soleus muscle), which are relevant in
investigating neuromuscular mechanisms controlling the ankle joint. The relationships that
exist between the muscles mentioned above have already been analyzed by a number of
authors [2–4]. However, due to the complexity of the ankle joint stability problem, further
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exploration of this topic is still needed, if only due to the increase in life expectancy. While
many research papers have so far concentrated on peripheral mechanisms, in recent years,
research has tended to focus on central mechanisms. Studies related to the thickness of
the primary motor cortex indicate a linear correlation between human age and physiologi-
cal atrophy of these brain areas [5–7]. However, the research related to brain atrophy in
aging itself does not clearly show significant changes related to their effects on muscle
bioelectrical activity and associated impairments contributing to coordination deficits in
older people [8,9] and the proprioceptive system [10]. In the process of aging, there is
also a risk associated with falls, which are a serious health problem and one of the main
causes of injury and disability. It is estimated that one-third of community-dwelling older
people experience at least one fall per year [11,12], and research conducted in this area
shows that more than half of the causes of falls are related to factors concerning postural
control [13]. Postural control, which is understood as a complex relationship existing
between the sensory and motor systems [14,15], concerns, among other things, the appro-
priate perception of environmental stimuli, the response to changes in body orientation in
space, as well as the correct maintenance of the central of pressure (COP). Older people
have deficits in coordination of movement, resulting in slower and less fluid movements
and affecting frequent loss of balance. Difficulties associated with balance are associated
with poorer control of COP displacement [15]. The current level of technology allows a
number of tools to be used to study postural stability and muscle bioelectrical activity
with simultaneous EEG (electroencephalography) analysis; however, the interpretation
of the results is not yet completely clear. One method of analysis combining the above
aspects is coherence, regarded as the correlation measure between the frequency domain
representations of different signals [16]. Other authors describe coherence as an indicator
of the linear connection between two signals [17] and as an extension of the Pearson cor-
relation coefficient in the frequency domain [18]. Coherence analysis is now considered
as a method for assessing neuromuscular systems and obtaining information about the
communication between central and peripheral systems in the control of motor activity [19].
Coherence analysis determined at different frequencies can provide information on the
function of the nervous system in controlling muscle activity during the performance of
various tasks [20,21], which is particularly related to the development of disorders in aging.
The nature of brain waves depends on the activity being performed, and the range of wave
frequencies changes many times throughout the day, along with our activity. The authors of
the present study focused on the delta and beta wave bands. There is no definitive evidence
for the origin of 0.5–5 Hz delta band activity in the brain, but several studies place the
site of delta band generation in the cortical areas and also highlight the importance of the
coherence EMG-EMG of the delta bands during postural tasks and during decision-making
processes [22–24]. Studies show that delta band levels decrease with age, which may be
related to the aging process [25]. Moreover, delta band consistency may be related to the
variability of the force generated by the muscles and thus to postural sway [26]. Another
frequency band of muscle activity investigated is the beta band (15–35 Hz). Studies have
shown that submaximal voluntary isometric contractions are characterized by a dominant
synchrony at around 15–35 Hz [27,28]. Beta band oscillations are clearly observed in EEG
recordings from the cerebral motor cortex [29]. Previous scientific studies indicate signif-
icant beta band coherence between sensorimotor cortex and muscle contraction in both
primates and human beings [3]. Other authors state that slow EEG oscillations delta band
can contain neural information regarding the postural kinematics of the human body [30].
The importance of asymmetries in terms of intermuscular coherence is also a phenomenon
that has been little studied in terms of balance. Few scientific papers have been written
describing the location of oscillations of different bands and their influence on balance
tasks [30–33]. In the context of the presented research, we hypothesize that, due to aging
processes, there are differences in the oscillation of coherences in terms of beta and delta
wave frequencies, due to the type of postural stability task performed. Furthermore, the
second hypothesis is that there is a reduction in LoS (limits of stability) with age, deter-
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mined by the R2b index (the distance between the maximal and minimal position of central
of pressure anterior/posterior in the 2nd phase). Therefore, the aim of this study is to
determine the level of coherence asymmetry in the delta and beta bands during limits of
stability in association with aging. This has important implications for determining the
changes associated with the phenomenon known as physiological atrophy.

2. Materials and Methods

A total of 44 people in two groups participated in the study. The senior group included
22 people aged 65 ± 3.6 (members of the senior citizens’ association). Participation was
preceded by prior recruitment carried out in the community of Opole senior citizens. The
young people’s group consisted of 22 healthy students aged 21 ± 1.3.

2.1. Applied Equipment

Muscle bioelectrical activity measurement (sEMG) was performed using a TeleMyo
DTS surface electromyography (Noraxon), following the SENIAM methodology (Surface
ElectroMyoGraphy for the Non-Invasive Assessment of Muscles). We recorded electromyo-
graphic (sEMG) activity from the tibialis anterior muscle (TA) and soleus muscle (SOL) of
both lower limbs. Before the study, the electrode sticking site was prepared by removing
hair and cleaning the skin to improve electrode adhesion. Surface electrodes (Ag/AgCl)
were placed on the muscle belly between the motor point and the tendon attachment, along
the longitudinal midline of the muscle. The TeleMyo DTS system (Noraxon) had the following
technical specifications: device fundamental noise of less than 1 µV RMS, input impedance
greater than 100 MΩ, CMR (common-mode rejection ratio) greater than 100 dB, sampling
frequency 1500 Hz, and gain 500. Matlab software was used to analyze the signals [34].

The registration of the standard deviation (SD) of central of pressure (COP) displace-
ments was performed by a force plate (type: 9286AA; Kistler Group, Winterthur, Switzerland),
with a sampling frequency of 100 Hz and the duration of the test equal to 30 s [35].

2.2. Inclusion Criteria

The following inclusion criteria were adopted during the study: ability to comprehend
commands (based on mini mental state examination <23 points) and lack of lower limb
injury and medical contraindications to participate in moderate physical exercise, and an
agreement to take over the role of test subject.

Exclusion Criteria

The criteria adopted as the basis for the potential rejection of an application included:
aphasia, significant loss of sight or hearing, which makes it impossible to assess cognitive
functions, as well as voluntary resignation from participation in the study. The participants
of the study signed the written informed consent. The goal of the study was approved by
the Bioethics Committee of the Chamber of Physicians (Resolution No. 237 of 13 December
2016) in accordance with the guidelines described in the Declaration of Helsinki involving
human beings [35].

2.3. Study Protocol

The task consisted of a leaning test preceded by quiet standing. The test performed
was divided into three phases: (i) quiet standing, (ii) dynamic leaning, (iii) maintenance of
maximum leaning. The start and end of the leaning—the phase boundaries—were deter-
mined using the Matlab function “findchangepts” with a linear trend change parameter in
the signal. The function uses as the total deviation the sum of the squared differences between
the signal values and the predictions of the least-squares linear fit through the values.

2.4. Central of Pressure and Coherence Analysis

The SD of COP displacements was calculated for the quiet standing task and for the
maximum forward leaning (limits of stability—LOS) task. For the first and third phases,
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the SD of COP displacements were calculated (for the first and last 9 s of each phase).
Additionally, the R2b (the distance between the maximal and minimal position of central of
pressure anterior/posterior in the 2nd phase) parameter was estimated in order to assess
the effective stability limits between the mean values of COPA/P trajectory in the 1st and
3rd phases of the trial [36].

We quantified the following: (1) COP variability as the standard deviation (SD) of
anterior-posterior COP displacements (in the AP planes); (2) COP modulation as the power
of COP displacements from 0 to 2 Hz. [27] Coherence analysis was carried out in two
frequency bands 0–5 Hz and 15–35 Hz, (in the first and third phases). Mean coherence
values were calculated in the same way as for COP, i.e., over the time interval of the first
and last 9 s of each phase. Coherence was determined between the TA-SOL muscle pair
separately for both limbs in the study groups and was calculated using the Matlab version
R2021a function “wcoherence”.

The wavelet coherence of two time series x and y is:∣∣S(C∗
x(a, b)Cy(a, b)

)∣∣2
S(
∣∣Cx(a, b)

∣∣2)·S(∣∣Cy(a, b)
∣∣2)

Cx(a,b) and Cy(a,b) denote the continuous wavelet transforms of x and y at scales a and
positions b. The superscript * is the complex conjugate and S is a smoothing operator in
time and scale.

For real-valued time series, the wavelet coherence is real-valued if you use a real-
valued analyzing wavelet, and complex-valued if you use a complex-valued analyzing
wavelet [37,38].

2.5. Statistical Analysis

The collected data were analyzed by application of Jamovi 1.1.9. software. In this
study, the authors used ANOVA to analyze the significance of the differences between
groups. The Independent Samples t-Test was used to determine the intergroup differences
in the R2b parameter. The sample size of 22 (in each group) participants in 2 groups is
sensitive enough to detect effect size f = 0.4 (η2

p = 0,16) power 80% and a 5% (two-sided)
significance level. Due to the skewed distributions of each parameter, a logarithmic (natural
base) transformation was applied.

3. Results

Table 1 shows the results of the ANOVA analysis of the significance of the Within
Subjects Effects differences in the delta band (0–5 Hz) and beta band (15–35 Hz). Within
the delta band, statistically significant differences at F(1,42) = 6.78, p ≤ 0.01 occurred only
between the Within Subjects Effects TASK (qs/lean). The statistical significance presented
demonstrates the fact that there is significant variability in the frequency of the delta band
waves, due to the type of task, regardless of age group. Coherence in the delta band is also
not modulated in terms of body asymmetry, and there is no interaction between Task ×
Side × GROUP. A graphical analysis of the differences is shown in Figure 1. A statistical
analysis of the beta band (15–35 Hz) shows significant differences between both the Within
Subjects Effects TASK (qs/lean) at the level of F(1,42) = 10.41, p ≤ 0.001 as well as signifi-
cant differences F(1,42) = 10.60, p ≤ 0.001 between the Between Subjects Effects GROUP
(young/old). In the analyzed band, the effect of young age on the modulation of coherence
is evident, which is associated with an increase in coherence values. The values shown
also demonstrate the fact that the frequency of this band increases during the body leaning
task regardless of age. Such significant modulation of the delta band frequencies may also
be indicative of age-related degenerative changes, which may influence occurrences with
decreased body control. A graphical analysis of the differences is presented in Figure 2.
The authors found no statistically significant difference in coherence asymmetry in both
analyzed bands between young and older participants. The results of the significance
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analysis of the differences of the R2b parameter, between the study group of young and
elderly people, are presented in Table 2, while the SD parameter is presented in Table 3.
The results of the descriptive statistics of the parameters studied are shown in Table 4.
A graphical analysis of the coherence oscillations in the asymmetry of the two groups is
shown in Figure 3.

Table 1. Results of ANOVA analysis of significance of Within Subjects Effects differences in delta
band (0–5 Hz) and beta band (15–35 Hz).

F p η2
p

delta band (0–5 Hz)

Task 6.78 0.013 0.14

Task × GROUP 0.39 0.536 0.01

Side 0.03 0.867 0.00

Side × GROUP 0.19 0.669 0.00

Task × Side 0.01 0.919 0.00

Task × Side × GROUP 0.00 0.994 0.00

GROUP 0.13 0.717 0.00

beta band (15–35 Hz)

Task 10.41 0.003 0.04

Task × GROUP 1.25 0.270 0.00

Side 0.59 0.446 0.00

Side × GROUP 0.14 0.708 0.00

Task × Side 0.45 0.509 0.00

Task × Side × GROUP 0.08 0.774 0.00

GROUP 10.60 0.002 0.21

F—F-test value (ANOVA); p—p-value—level of statistical significance (set at 0.05); η2
p—partial eta squared—

determines the effect size of variables in ANOVA models.

Figure 1. Illustration of the asymmetry of the logarithmic delta band frequency data in the (qs/lean)
tasks in the comparison of the two groups.
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Figure 2. Illustration of the asymmetry of the logarithmic beta band frequency data in the (qs/lean)
tasks in the comparison of the two groups.

Table 2. Results of the significance analysis of differences of the R2b parameter, between the study
group of young and older people, analyzed by Independent Samples t-Test.

T p Cohen’s d

R2b −3.34 0.002 −1.01
T—Student’s t-test value; p—p-value—level of statistical significance (set at 0.05); Cohen’s d—effect size ratio.

Table 3. Results of ANOVA analysis of significance of Within Subjects Effects differences in SD of
COP displacements.

F p η2
p

task 5.77 0.021 0.12

task × GROUP 2.47 0.124 0.06

GROUP 2.59 0.115 0.06

Table 4. Descriptive statistics of the studied COP and coherence parameters in both study groups.

Group
Mean ± SD

Old Young

R2b 60.50 ± 17.70 81.90 ± 24.20

SD qs 4.41 ± 2.88 4.09 ± 1.25

SD lean 4.19 ± 1.36 5.40 ± 1.67

SOL/R-TIB/R 0–5 Hz qs 0.53 ± 0.11 0.52 ± 0.11

SOL/R-TIB/R 0–5 Hz lean 0.48 ± 0.08 0.49 ± 0.12

SOL/L -TIB/L 0–5 Hz qs 0.52 ± 0.10 0.54 ± 0.15

SOL/L-TIB/L 0–5 Hz lean 0.47 ± 0.09 0.50 ± 0.12

SOL/R-TIB/R 15–35 Hz qs 0.30 ± 0.07 0.35 ± 0.07

SOL/R-TIB/R 15–35 Hz lean 0.33 ± 0.04 0.36 ± 0.05

SOL/L-TIB/L 15–35 Hz qs 0.30 ± 0.03 0.36 ± 0.08

SOL/L-TIB/L 15–35 Hz lean 0.33 ± 0.03 0.37 ± 0.08
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Figure 3. Graphical illustration of the asymmetry (left/right leg) of the delta and beta band coherence
oscillations in the tasks (qs/leaning) in both groups.

4. Discussion

In the present study, wavelet analysis was used to determine intermuscular coherence
in order to identify differences in intermuscular synchronization and lower limb muscle
asymmetry in relation to aging processes. Our analysis of intermuscular coherence in
the delta and beta bands (tibialis anterior and soleus muscles) in terms of asymmetry
in the quiet standing and leaning task was related to the R2b factor and the SD of COP
displacements to show the difference between young and older people.

Our analysis of intermuscular coherence in the delta and beta bands (tibialis anterior
muscle and soleus muscle) in terms of asymmetry in the silent standing and leaning task
was related to the SD of COP displacements and was designed to show the difference
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between young and elderly people. The R2b parameter was estimated in order to assess the
effective stability limits between the mean values of the COPA/P trajectory between qs/lean.
We present that the differences in intermuscular coherence that occur during the aging
process and its impact on imbalance are also confirmed by studies by other authors [24,39],
and that they are linked to changes in the nervous system. In the scientific reports cited in
this article, the authors conclude that there is a progressive and heterogeneous deterioration
in the functioning of the sensorimotor and neuromuscular systems with age. They conclude
by hypothesizing that aging is associated with a reorganization of postural muscle control
mechanisms. In our study, there was no statistic asymmetry phenomenon; however,
in terms of the delta band oscillations, increased differences between the logarithmic
values of the right and left limb in the elderly were noticeable. The delta band oscillation
changes markedly due to the difficulty of the task without significant differences related
to asymmetry and age. Ref. [30] also recognizes the importance of increased cortical
activation in the delta band during difficult postural conditions. However, the studies
related to statistically significant age-related delta band differences that it presents [39] are
not confirmed. It is also important to note that many studies vary by the type of muscles
analyzed and the tasks performed. Clark [40] finds an association of changes in the delta
band oscillations, but this relates to the synergistic muscles during gait. There are reports
in the scientific literature that differentiate age-related asymmetry in the lower limbs in
association with a decrease in lower limb muscle strength, without being able to pinpoint a
cause [24,41–43]. In the scientific reports cited in this article, the authors conclude that there
is a progressive and heterogeneous deterioration in the functioning of the sensorimotor
and neuromuscular systems with age. They conclude the paper by hypothesizing that
aging is associated with a reorganization of the synergistic mechanisms controlling postural
muscles. The result of a recent study [44] confirms that, under the influence of training
associated with EMG biofeedback, one can voluntarily increase intermuscular coherence,
and thus synchronization of the vastus muscles.

The results of our study on the relationship between postural stability and aging
show that the R2b index changes significantly with aging, as younger people are able
to lean further forward. This is corroborated by the results of other authors, who find
a significantly smaller range of limits of stability in older people, possibly related to the
phenomenon of natural belay and fear of falls [13,45–47]. Tomita [13] also confirms in his
study that older people show a reduction in the range of stability in a number of passages,
which also supports our hypothesis of a reduction in the stability limit of older people.

5. Conclusions

In the present study, we demonstrated differences in the beta and delta band oscilla-
tions between young and older subjects in a postural task involving quiet standing and
forward leaning. Young subjects modulated intermuscle coherences to a greater extent
in the beta band, which may indicate the presence of age-related detection of changes in
multi-muscular control, but there were no differences in intermuscular asymmetry. Our
study demonstrates the importance and potential of using intermuscular coherence analysis
as an indicator of synchronization between cortical motor regions and their associated
body muscles. Analysis of postural stability during standing tasks showed that only the
parameter R2b, as an indicator for assessing the effective limits of stability, was found to be
significantly associated with differences in aging.
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Abbreviations

sEMG surface electromyography
R2b the distance between maximal and minimal position of central of pressure

anterior/posterior in the 2nd phase
COP A/P central of pressure anterior/posteriori
SD standard deviation
LoS limits of stability
EEG electroencephalography
TA tibialis anterior muscle
SOL soleus muscle
SENIAM Surface ElectroMyoGraphy for the Non-Invasive Assessment of Muscles
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