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Abstract: The concept of verifiable delay functions has received attention from researchers since it was
first proposed in 2018. The applications of verifiable delay are also widespread in blockchain research,
such as: computational timestamping, public random beacons, resource-efficient blockchains, and
proofs of data replication. This paper introduces the concept of verifiable delay functions and system-
atically summarizes the types of verifiable delay functions. Firstly, the description and characteristics
of verifiable delay functions are given, and weak verifiable delay functions, incremental verifiable
delay functions, decodable verifiable delay functions, and trapdoor verifiable delay functions are
introduced respectively. The construction of verifiable delay functions generally relies on two security
assumptions: algebraic assumption or structural assumption. Then, the security assumptions of
two different verifiable delay functions are described based on cryptography theory. Secondly, a
post-quantum verifiable delay function based on super-singular isogeny is introduced. Finally, the
paper summarizes the blockchain-related applications of verifiable delay functions.

Keywords: verifiable delay function; blockchain; algebraic assumption; structural assumption

1. Introduction

The concept of a verifiable delay function was first proposed in 2018 by Boneh et al. [1],
who proposed several candidate structures for constructing verifiable delay functions and
it is an important tool to add time delay in decentralized applications [2–5]. To be exact,
the verifiable delay function is a function f : X → Y that takes a prescribed wall-clock time
to compute, even on a parallel processor, ond outputs a unique result that can effectively
output the verification. In short, even if it is evaluated on a large number of parallel
processors and still requires evaluation of f in a specified number of sequential steps. Most
importantly, given an input x and an output y, anyone must quickly verify the output
y = f (x). That is to say, for all x ∈ X and y ∈ Y , this function f : X → Y satisfies the
following requirements:

x → x2 → x22 → x23 → . . .→ x2T
mod N = y. (1)

The verifiable delay function is a cryptographic function that requires to be computed
in T sequential steps and produces a unique, efficiently and publicly verified output [6].
Because the verifiable delay function satisfies the characteristic of sequentiality, the iterated
value does depend on the order of the iterated elements. Choose the tuple (N, x, T) as the
puzzle, and the verifiable delay function is defined as

e := 2T mod ϕ(N), y := xe mod N. (2)
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where N = p · q is an RSA modulus [7], x ∈ Z∗N is a random seed, T ∈ N is time parameter
and knows the group order ϕ(N) = (p− 1) · (q− 1).

Although verifiable delay functions have been roughly described in the review of verifi-
able delay functions published by Boneh et al. [8], the summary is not comprehensive with
the emergence of more candidate structures of verifiable delay functions. In addition, the ap-
plication of different kinds of verifiable delay functions in the blockchain is not explained in
detail. Therefore, this paper makes a more comprehensive and detailed summary.

The verifiable delay function has several important characteristics, such as being
T-sequential, uniqueness and effective verifiability, as shown in Table 1.

Table 1. Characteristics of verifiable delay functions.

Characteristics Description

T-Sequentiality The function cannot be calculated in a sequential steps less than T to
obtain the final result, even given a large amount of parallelism.

Uniqueness

For the input of any verifiable delay functions, only one unique output
result shall pass the inspection. Meanwhile, it is necessary to ensure that
the probability of the verifier passes the verification because of the proof,

but the output result is not the correct result is negligible.

Effective verifiability The calculation results can be efficiently verified so that the honest party
can calculate.

The remainder of this paper is organized as follows. Section 2 introduces the descrip-
tions of verifiable delay functions. Section 3 describes verifiable delay functions based on
various algebraic assumptions. In Section 4, verifiable delay functions based on various
structural assumptions are introduced in detail. Section 5 the postquantum-secure verifi-
able delay function. Section 6 describes applications of verifiable delay functions combined
with blockchain. Section 7 gives a summary.

2. Descriptions of Verifiable Delay Functions

The concept of the verifiable delay function first proposed by Boneh and Fisch. The ver-
ifiable delay function requires a specified number of sequential steps to evaluate and will
produce a function with a unique output that can be validated effectively and publicly.
Next, a triple of algorithm (Setup, Eval, Verify) of verifiable delay functions are described as
follows [9]. The algorithm flow is shown in Figure 1 and the different types of verifiable
delay functions are described in Table 2.

Figure 1. The algorithmic flow of verifiable delay functions.

Setup(λ, T)→ pp = (ek, vk) is a randomized algorithm that takes a delay parameter
T and a security parameter λ as input and outputs public parameters pp composed of
the evaluation key ek and the verification key vk. Because Setup algorithm is limited by
security parameter λ, the running time cannot be too long. In addition, Setup algorithm
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usually needs a secret random as a parameter to ensure meaningful security, so it is difficult
to avoid that the scheme needs a trusted setup to select the random.

Table 2. Classification of verifiable delay functions.

Classification Description

Weak verifiable delay functions
The function cannot be calculated in a sequential steps
less than T to obtain the final result, even given a large

amount of parallelism.

Incremental verifiable delay functions

All verifiable delay functions need to require the Eval
algorithm to be completed in at least T steps. If the

delay parameter T is not uniquely determined in the
Setup algorithm, but is allowed to be determined in the
Eval algorithm, then the verifiable delay function can be

called as incremental verifiable delay function.

Decodable verifiable delay functions

For any verifiable delay function scheme, as long as a
random input element x can be obtained from the

output value y in reverse, the verifiable delay function
can be called a decodable verifiable delay function.

Another output value π for the proof is empty.

Trapdoor verifiable delay functions

If there is an algorithm that enables the party who
knows a certain secret key value sk to calculate the

output value of the verifiable delay function through
the Eval algorithm too quickly, then the function is a

trapdoor verifiable delay function.

Eval(ek, x)→ (y, π) is a slow cryptographic algorithm that takes the evaluation key
ek and a random seed x ∈ X as input and outputs a y ∈ Y together with a possibly empty
proof π. To ensure sequentiality, Eval must run in time T with no more than a polynomial
logarithm of T parallel processors.

Veri f y(vk, x, y, π) → {accept, reject} is a deterministic cryptographic algorithm,
in which the algorithm inputs verification key vk, random seed x, outputs y and proof π.
If f (x) = y, output accept; Otherwise output reject. Veri f y is much faster than Eval and it
must run in total time polynomial in log(T) and λ.

2.1. Weak Verifiable Delay Functions

Definition 1. (Weak verifiable delay functions.) The system V = (Setup, Eval, Veri f y) is a
weak verifiable delay function if the verifiable delay function allows Eval to achieve O(T) paral-
lelism. (T2, o(T))-sequentiality can only be meaningful for a weak verifiable delay function if Eval
is allowed strictly less that T − o(T) on fewer than T2 parallel processors, otherwise the honest
computation of Eval would require more parallelism than even the adversary is allowed.

The weak verifiable delay function can be constructed based on the existence of degree
T injective rational maps [10] that cannot be inverted faster than computing polynomial
greatest common denominators of degree T polynomials.

Injective rational maps. Define the reverse problem of an injective rational map
F = ( f1, . . . , fm) on algebraic sets Y ⊆ Fn

q to X ⊆ Fm
q , where each fi : Fn

q → Fq is a rational
function in Fq( X1, . . . ,Xn), for i = {1, . . . , m}. An algebraic set Y is the set of vanish points
of some set of polynomial S.

Boneh et. al. abstract weak verifiable delay functions from an injective rational map.
First, let F: Fn

q → Fq be a rational function that is an injective map from Y to X := F(Y).
At the same time, X is required to be efficiently sampleable and F can be evaluated
efficiently for all y′ ∈ Y . If you need to use the injective rational map function F in the
verifiable delay function, you must guarantee |X | > λT3 to prevent brute force attacks,
where a delay parameter T and a security parameter λ as input to the Setup algorithm.
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Verifiable delay functions construct a weak verifiable delay function by function family
F := (q, F,X ,Y)λ,T with a security parameter λ and a delay parameter T as input parameters.

Setup(λ, T) → pp = ((q, F), (q, F)) is a randomized algorithm that takes a delay
parameter T and a security parameter λ as input and choose a (q, F,X ,Y) ∈ F , then
outputs public parameters pp composed of the (q, F).

Eval((q, F), x′)→ (y′, π) is a slow cryptographic algorithm that takes the (q, F) and a
random seed x′ ∈ X ⊆ Fm

q as input and compute a y′ ∈ Y together with a possibly empty
proof π.

Veri f y((q, F), x′, y′, π)→ {accept, reject} is a deterministic cryptographic algorithm,
in which the algorithm inputs (q, F), random seed x′, outputs y′ and proof π. If F(x′) = y′,
output accept; Otherwise output reject.

In order to ensure that the solution y′ is unique, F is required to be injective on Y.

2.2. Incremental Verifiable Delay Functions

Definition 2. (Incremental verifiable delay functions.) The system V = (Setup, Eval, Veri f y) is
a incremental verifiable delay function if the time parameter T of the verifiable delay function is
not uniquely determined and is allowed to be determined in the output π of Eval, which does not
generate additional proofs.

Since the verifiable delay function is a sequential function [11], Boneh et. al. propose
the use of tight incremental verifiable computation to construct an incremental verifiable
delay function construction. Next, here’s how to build an incremental verifiable delay
function with a tight incremental verifiable computation.

Incremental verifiable computation was first proposed by Valiant [12]. After that,
Bitansky et al. [13] applied it to distributed computions and to other proof systems. The in-
cremental verifiable computation is to guarantee that the prover can generate a proof that a
certain state is indeed the current state of the computation at every incremental step of the
computation. The proof is updated after every step of the computation to produce a new
proof. Iterative sequence functions can be implemented via tight incremental verifiable
computation, which captures the primitives required by verifiable delay functions.

Let fλ : N × X → X be an interated sequential function with round function gλ

having (T, ε)-sequentiality. An incremental verifiable computation system for an interated
sequential function fλ is polynomial time algorithm (IVCGen, IVCProve, IVCVeri f y) that
satisfy completeness, succinctness and soundness.

Completeness.

∀x ∈ X , Pr

[
IVCVeri f y(vk, x, y, k, π) = Yes

∣∣ (vk, ek) R← IVCGen(λ, f )∣∣ (y, π)
R← IVCProve(ek, k, x)

]
= 1 (3)

Succinctness. The length of a proof is bounded by ploy(λ, log(kT)).
Soundness. The soundness satisfied by the incremental verifiable computation is

sub-exponential soundness. For all algorithm A running in time 2o(λ).

Pr

[
IVCVeri f y y(vk, x, y, k, π) = Yes

∣∣ (vk, ek) R← IVCGen(λ, f )

f (k, x) 6= y
∣∣ (x, y, k, π)

R← A(λ, vk, ek)

]
< negl(λ) (4)

Next, we introduce the verifiable delay function construction based on tight incre-
mental verifiable computation. Let a family fλ, where each fλ, N×Xλ → Xλ is defined
by fλ(k, x) = gk

λ(x). Here gλ is a (T, ε)-sequential function on an efficiently sampleable
domain of size O(2λ).

Setup(λ, T)→ pp = ((ek, k), vk) is a randomized algorithm that takes a delay param-
eter T and a security parameter λ as input and outputs public parameters pp composed of
the evaluation key ek, a largest integer k and the verification key vk. Generate (ek, vk) by
running IVCGen(λ, fλ).
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Eval((ek, k), x)→ (y, π) is a slow cryptographic algorithm that takes the evaluation
key ek, a largest integer k and a random seed x as input and runs IVCProve(ek, k, x),
and outputs a y together with a possibly empty proof π.

Veri f y(vk, x, y, π) → {accept, reject} is a deterministic cryptographic algorithm,
in which the algorithm runs and outputs IVCVeri f y(vk, x, y, k,π). If fλ(x, k) = y, output
accept; Otherwise output reject.

Since T is fixed in the public parameters pp. However, it is also possible to directly
assign the T to Eval algorithm. Therefore, a tight incremental verifiable computation based
the verifiable delay function is an incremental verifiable delay function.

2.3. Decodable Verifiable Delay Functions

Definition 3. (Decodable verifiable delay functions.) The system V = (Setup, Eval, Veri f y) is a
decodable verifiable delay function if there is an algorithm in the verifiable delay function that can
decode input x backwards from output y. If the decoding is efficient then no additional proof π is
required [14].

Using a slow and easy to verify function with exponentiation [15] based calculations
in a finite group can be constructed a decodable verifiable delay function. Boneh et al.
propose a simple exponentiation-based decodable verifiable delay functions with bounded
pre-computation. However, the adversary cannot run a long pre-computation between the
time the public parameter pp is exposed and the time that the verifiable delay function
is computed.

Next, we introduce a decodable verifiable delay function based on an exponentiation
in a finite group. Let L = {ι1, ι2, . . . , ιT} be the first T odd promes, namely ι1 = 3, ι2 = 5,
etc. Let P be the product of the primes in L, namely P := ι1ι2. . . ιT .

Setup(λ, T, b)→ pp = (ek, vk) is a randomized algorithm that takes a delay parameter
T, a security parameter λ and a preprocessing security parameter b as input and outputs
public parameters pp composed of the evaluation key ek and the verification key vk.

In algorithm Setup, let a integer module N multiplicative group G := (Z/N N)∗ and
a random hash function H : Z → G. The algorithm needs to compute hi ← H(i) ∈
G, for i ∈ {1, 2, . . . , b = 230} then compute gi := h1/P

i . It outputs the evaluation key
ek := (G, H, g1, g2, . . . , gb) and the verification key vk := (G, H).

Eval(ek, x)→ y is a slow cryptographic algorithm that takes the evaluation key ek and
a random seed x as input and outputs a y.

In algorithm Eval, using random hash function to map a random seed x to a size of λ
random subset Lx ⊆ L and random subset Sx of λ values in {1, 2 . . . , b = 230}. At the same
time, let Px be the product of all prime numbers in Lx. Let g be g := Πi∈Sx gi ∈ G and the
seed solution y is simply y← gP/Px ∈ G.

Veri f y(vk, x, y, π) → {accept, reject} is a deterministic cryptographic algorithm,
in which the algorithm inputs verification key vk, random seed x, outputs y and proof π.
If f (x) = y, output accept; Otherwise output reject.

In algorithm Veri f y, let h be h := Πi∈Sx H(i) ∈ G and if and only if yPx = h ∈G, where
Px and Sx are calculated by the algorithm Eval(ek, x).

The preprocessing parameter b in an exponentiation-based the decodable verifiable
delay function ensures the security of the construction. The construction requires a trusted
setup [16,17], but can be eliminated by choosing a random number large enough.

2.4. Trapdoor Verifiable Delay Functions

Definition 4. (Trapdoor verifiable delay functions.) The system V = (Keygen, Trapdoor, Eval,
Veri f y) is a trapdoor verifiable delay function if there is a secret key sk that can quickly get the
output of Eval through the input of Eval. In other words, the trapdoor verifiable delay function can
bypass the delay parameter to quickly calculate the result through the trapdoor [18].
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Given a pair of Alice’s public-secret keys (pk, sk), where pk is Alice’s public key and
sk is the secret key. Alice is able to quickly evaluate trap [19,20] functions Trapdoorsk on x
with a secret key sk. Let T be an implicit time function about the security parameter λ and
x be a piece of data. Except for Alice, everyone else can only compute the public evaluation
function Evalpk with the public key pk in T-sequential steps and the calculation is slow,
but the result between Evalpk and Trapdoorsk is equal. A trapdoor verifiable delay function
comsists of four algorihtm (Keygen, Trapdoor, Eval, Veri f y).

Genkey(λ)→ (pk, sk) is a key generation algorithm that takes a security parameter λ
as input and outputs Alice’s public key pk and the secret key sk. Meanwhile, Alice’s public
key is publicly valid, and the secret key is known only to Alice herself.

Trapdoorsk(x, T) → (y, π) is a slow cryptographic algorithm that takes an implicit
time function T about the security parameter λ and a piece of data x as input, and uses
the secret key sk to output y together with a possibly empty proof π. The function T is a
sequence of sequential steps required to compute the same output y without knowledge of
the secret key sk.

Evalpk(x, T)→ (y′, π′) is a slow cryptographic algorithm to evaluate the function on
x using only the public key pk. It produces an output y associated with y′ and a possibly
empty proof π′. This procedure is meant to be infeasible in time less than T (this will be
expressed precisely in the security requirements).

Veri f y(x, T, y, π) → {accept, reject} is a deterministic cryptographic algorithm to
verify if y is indeed the correct output for x, associated with the public key pk and the
evaluation time T, possibly with the help of the proof π.

The time delay T is a function of the security parameter λ and T is an input to each
algorithm, so the security parameter λ is implicitly an input to each of these procedures.
Generate a public-secret key pair (pk, sk) through the key generation algorithm Genkey.
Given a piece of data x and time delay parameter T, let Trapdoorsk(x, T) → (y, π) and
Evalpk(x, T)→ (y′, π′). If y = y′ and Veri f y(x, T, y, π) = Veri f y(x, T, y′, π′) output accept;
Otherwise output reject.

3. Verifiable Delay Functions Based on Algebraic Assumptions
3.1. Construction Based on Finite Abelian Groups of Unknown Order

Verifiable delay functions can be constructed by showing Rivests-Shamir-Wagner
(RSW) when the time-lock puzzle [21,22] is publicly verifiable. To be precise, giving
a statistically sound public-coin protocol [23] to prove that a tuple (T, N, x, y) satisfies
y = xt(modN) verifiers do not know the decomposition of N and its running time is mainly
to solve the puzzle, where the time t = 2T is a power of two. This construction solves an
instance of the time-lock puzzle, and computes a proof of correctness, which allows anyone
to efficiently verify the result.

Pietrzak [24] proposed a verifiable delay function based on finite abelian groups [25,26]
of unknown order consisting of four algorithm (Setup, Genkey, Sloth, Veri f y).

Setup(1λ) → N inputs the statistical security parameter 1λ output N, where the λ
defines another security parameter λRSA specifying the bitlength of an λRSA modulus and
N is the single λRSA bit RSA modulus of public parameters. The N := p · q is composed of
two λRSA/2-bit secure prime numbers p and q randomly selected by the Setup algorithm.

Genkey(N, T)→ (x, T) samples a random number x ∈ QR+ and outputs (x, T).

Define QRN
def
= {z2modN : z ∈ Z∗N} as quadratic residues and the signed quadratic

residues [27] are the group QR+ def
= {|x| : x ∈ QRN}. In a verifiable delay func-

tion, calculating x2T
is difficult in (Z∗N , ·). Pietrzak uses (QR+

N , ◦) instead of (Z∗N , ·). Be-
cause |QRN | = |Z∗N |/4, the probability that a random number in ε is also in QRN is 1/4.
Therefore, if one can break the assumption with probability ε over QRN , the assumption
can also be broken over Z∗N with probability ε/4. Then, they uses (QRN , ·) instead of
(QR+

N , ◦) in the proof. This approach can make the proof more efficient because the mul-
tiplication mod N in QRN is more convenient and simpler than the ◦ operation in QR+

N .
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Since (QRN , ·) and (QR+, ◦) are isomorphic, it is proved (QRN , ·) means (QR+, ◦) has the
same security.

Let random number x ∈ QRN and y = x2T
modN in (QRN , ·), and x′ = |x| and

y′ = (x′ = |y| in (QR+
N , ◦), where y′ = |y| and y = |y′|−1, and y ∈ y′, N − y′. Although it

is not certain whether y = y′ or y = N − y′, y has a 1/2 probability of getting the correct
value. This shows that given an algorithm that calculates x2T

in QR+
N with probability ε in

time T, it is possible to obtain an algorithm that calculates x2T
in QR+

N in time when time T
and probability ε/2 are essentially the same.

Sloth(N, (x, T)) → (y, π) is a slow algorithm that takes the N and a random seed
x and time delay parameter T as input and outputs a y together with π, where y = x2T

is the solution of the RSW time-lock puzzle in QR+
N and π = {ui}i ∈ [T] is a possibly

empty proof that y has been correctly evaluated. It is derived by applying the Fiat-Shamir
heuristic [28,29] to the protocol.

Veri f y(N, (x, T), (y, π))→ {accept, reject} is a deterministic cryptographic algorithm
to verify if x, y and all ui are in QR+

N . If these are not the case output reject. Otherwise,

all xi and yi should be calculated, and yT+1
?
= x2

T+1 should be judged. If all the above are
satisfied, output accept.

3.2. Construction Based on Elliptic Curve Cryptography

De Feo et al. [30] designed a new verifiable delay function using isogenic and bilinear
pairs [31,32] of super-singular elliptic curves [33], and this framework is non-interactive
in nature, the output can be effectively verified without additional proofs. Before describ-
ing this structure, let’s introduce some basic factors of super-singular curves, pairings
and isogenies.

Elliptic curves on finite fields are described in detail in [34–36] and their use in cryp-
tography is described in detail in [37–39]. In addition, the ideal class group of quadratic
imaginary fields are explained in [40] and the maximal orders of quaternion algebras are
introduced in [41,42].

Let C be an elliptic curve defined over a finite field Fq characterized by p and the order
of C(Fq) is #C(Fq) = q + 1− L, where L is the trace of the Frobenius endomorphism π.
If and only when p divided L, the curve can be called a super-singular elliptic curve. Each
super-singular curve is isomorphic to the curve defined on Fp2 , and for the fixed prime
number p, there are only a finite number of super-singular curves until isomorphism.

Weil pairing [43] eN : C[N] × C[N] → µN with bilinear pairs is defined on super-
singular curves are used to describe verifiable delay functions. That pairing needs to be
satisfied the compatibility condition eN(ϕ(P), Q) = eN(P, ϕ̃(Q)) for any isogeny ϕ : C →
C′ and points P ∈ C[N], Q ∈ C′[N].

Verifiable delay functions from super-singular curves. Let X1, X2, Y1, Y2, G be groups
of prime order N. Let eX : X1 × X2 → G and eY : Y1 ×Y2 → G be non degenerate bilinear
pairings, where a pair of bijections ϕ : X1 → Y1 and ϕ̃ : Y2 → X2 and ϕ and ϕ̃ are group
isomorphisms. Let g be any generator of X1 and (N, X1, X2, Y1, Y2,G, eX , eY, g, ϕ(g)) be the
public parameters. The verifiable delay function is the map ϕ̃ and the maps ϕ, ϕ̃ are also part
of the public parameters. To verify the output, one checks that eX(g, ϕ̃(Q)) = eY(ϕ(g), Q),
where Q ∈ Y1 is the point at which Eval calculates the value.

De Feo et al. propose verifiable delay functions for super-singular curves over prime
field Fp and Fp2 , using super-singular elliptic curves for the pairing groups, and isogenies
of prime power degree for the maps ϕ, ϕ̃. Next, we mainly introduce verifiable delay
functions with super-singular curves over a prime field Fp.

Let p be prime so that p + 1 contains the larger prime factor N. Let degree l = 2,
p = 7mod8 or a small prime such that (−p

l ) = 1. Take the super-singular elliptic curve
C/Fp, and denote by eN(·, ·) the Weil pairing on C[N].

Setup(λ, T) → (ek, vk) = (ϕ̃, (C, C′, g, ϕ(g))) is a randomized algorithm that takes a
delay parameter T and a security parameter λ as input. First, a super-singular curve C/Fp
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needs to be chosen and a direction needs to be chosen on the horizontal l-isogeny graph to
compute a cyclic isogeny ϕ : C → C′ of degree lT and its dual ϕ̃ in this algorithm. Next,
the algorithm chooses a generator g of X1 = v−1(C̃[N]∩ C̃(Fp))) and compute ϕ(g), where
µ ∈ Fp is a non quadratic residue and C̃ is a quadratic twist of C. Finally, the algorithm
outputs public parameters (ek, vk) = (ϕ̃, (C, C′, g, ϕ(g))), where (ek, vk) composed of the
evaluation key ek and the verification key vk, and (ϕ̃, (C, C′, g, ϕ(g))) composed of the map
ϕ̃, the cyclic isogeny C → C′, generator of X1 and the map ϕ(g) of generator g.

Eval(ϕ̃, Q ∈ Y1)→ ϕ̃(Q) is a slow cryptographic algorithm that takes the map ϕ̃ and
a point Q ∈ Y1 as input and outputs ϕ̃(Q).

Veri f y(C, C′, g, Q, ϕ(g), ϕ̃(Q)) → {accept, reject} is a deterministic cryptographic al-
gorithm. The algorithm needs to verify that ϕ̃(Q) ∈ X2 = C[N]∩C(Fp) and eN(g, ϕ̃(Q)) =
eN(ϕ(g), Q). If all the above are satisfied, output accept; Otherwise, output reject.

4. Verifiable Delay Functions Based on Structural Assumptions

Ephraim et al. design continuous verifiable delay functions based on a high arity
tree [44], where each intermediate state of the computation can be verified and proofs of
the computation can be efficiently merged. It is a verifiable delay function based on the
assumption of tree structure constructed on the basis of the repeated square [45] assumption.
The continuous verifiable delay function only depends on the Fiat-Shamir heuristic for a
constant round proof system. Next, we introduce continuous verifiable delay functions
based on high arity trees.

First, the computational steps correspond to a specific traversal of a (k + 1)-ary tree
of height h = logB

k . Each node in the (k + 1)-ary tree is related to a statement (x, y, T, π)

of the underlying verifiable delay functions, where the output value y = x2T
and the

possible empty proof π are the corresponding proofs of correctness. If x is the node’s input,
the difficulty T = kh−l is determined by its height in (k + 1)-ary tree and l is root node.

Next, they define a tree structure. Starting from the root node with input x0 and
difficulty T = kh, divide the tree structure into k segments x1, x2, . . . , xk similar to the
verifiable delay functions structure. In a tree-based verifiable delay functions structure,
only calculating the input x of a leaf node from the previous state can guarantee that each
step of calculation corresponds to the calculation of a single leaf’s statement.

Before introducing continuous verifiable delay functions, let’s review unique verifiable
delay functions. Next, the interactive proof that language LN,B corresponding to repeated
squares is transformed into unique verifiable delay functions by using the Fiat-Shamir
heuristic, where

LN,B =

{
(x0, y, T) :

y2 = (x0)
2T+1

mod N, x0 is valid and T ≤ B3

}
y =⊥, othersize

(5)

A unique verifiable delay function is composed of the following four algorithm
(uVDF.Gen, uVDF.Sample, uVDF.Eval, uVDF.Veri f y).

uVDF.Gen(1λ) → pp = (N, B, k, d, hash) is a randomized algorithm that takes a
statistical security parameter 1λ as input and outputs public parameters pp composed of
the RSA modulus N, the upper bound B, the arity k, a constant d and a hash function hash,
where hash← H, k = λ and B = B(λ).

uVDF.Sample(1λ, pp)→ x0 takes a statistical security parameter 1λ and the public pa-
rameters pp and sample and output a random element x0 ← Z∗N such that gcd(x0 ± 1, N) = 1
and x0 = |x0|.

uVDF.Eval(1λ, pp, (x0, T)) → (y, π) is a slow cryptographic algorithm that takes a
statistical security parameter 1λ, the public parameters pp, a random element x0 and the
time delay parameter T as input and outputs a y together with a possibly empty proof π.

uVDF.Veri f y(1λ, pp, (x0, T), (y, π))→ {0, FS−Veri f y(pp, (x0, T), (y, π))} is a deter-
ministic cryptographic algorithm. If all the above are satisfied, output accept. Otherwise,
output FS − Veri f y(pp, (x0, T), (y, π)). The FS − Veri f y is a verification algorithm for
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Fiat-Shamir transformations defined on the protocol for language LN,B relative to some
hash family H. For details of the algorithm, see [46]. Then, we review the definition of a
continuous verifiable delay function and describe it in detail.

Definition 5. (Continuous verifiable delay functions.) Let B, l : N → N and ε ∈ (0, 1).
A (B, l, ε)-continuous verifiable delay function is a tuple (cVDF.Gen, cVDF.Sample, cVDF.Eval,
cVDF.veri f y) such that (cVDF.Gen, cVDF.Sample, cVDF.Eval) is a (a, B, l, ε)-iteratively se-
quential function, (cVDF.Eval, cVDF.veri f y) is a B-sound function.

At a high level, the continuous verifiable delay function will iteratively compute each
leaf node in a (ppuVDF, d′, g)-puzzle tree, where ppuVDF = (N, B, k, d, hash) are the public
parameters of the underlying unique verifiable delay function and g is the starting point of
the tree given by uVDF.Sample.

Next, we define a frontier. At a high level, for a leaf s, the frontier of s will correspond
to the state of the continuous verifiable delay function upon reaching s. Specifically, it
will contain all nodes whose values have been computed at that point, but whose parents′

values have not yet been computed.

Definition 6. (Frontier.) For a node s in a (ppuVDF, d′, g)-puzzle tree, the frontier of s, denoted
f rontier(s), is the set of pairs (s′, val(s′)) for nodes s′ that are left siblings of any of the ancestors
of s. We note that s is included as one of its ancestors.

Next, we review the formal details of continuous verifiable delay functions, which is a
tuple (cVDF.Gen, cVDF.Sample, cVDF.Eval, cVDF.Veri f y).

cVDF.Gen(1λ) → pp = (ppuVDF, d′, hgt) is a randomized algorithm that takes a
statistical security parameter 1λ as input and outputs public parameters pp composed of
the ppuVDF = (N, B, k, d, hash), a constant d′ and a tree height hgt = dlogk(B)e − d′.

cVDF.Sample(1λ, pp) → v = (g, 0h, φ) takes a statistical security parameter 1λ and
public parameters pp as input and outputs a random element v, where g← uVDF.Sample(1λ,
ppuVDF) is sampled by the Sample algorithm of unique verifiable delay functions.

cVDF.Eval(1λ, pp, v) → v′ takes a state v corresponding to a leaf s in the tree and
computes the next state v′ corresponding to the next leaf. Each state v will be of the form
(g, s, F), where s is the current leaf in the tree, F is the frontier of s and g is the starting point
of the tree given by uVDF.Sample.

cVDF.Veri f y(1λ, pp, (v, T), v′) → {accept, reject} verifies the state v by recursively
running this verification algorithm and whether v′ is correct. Output accept if all the check
conditions of the continuous verifiable delay function are satisfied; Otherwise output reject.

The heart of our construction is the cVDF.Eval functionality which takes a state v
corresponding to a leaf s in the tree and computes the next state v′ corresponding to the
next leaf. Each state v will be of the form (g, s, F), where s is the current leaf in the tree
and F is the frontier of s. Then, cVDF.Eval(1λ, pp, (g, s, f rontier(s)) will output (g, s + 1,
f rontier(s + 1)). There are three phases of the algorithm cVDF.Eval. First, it checks that
its input is well-formed. It then computes val(s) using f rontier(s), and then computes
f rontier(s + 1) using both f rontier(s) and val(s).

5. Post-Quantum Verifiable Delay Functions

In 2021, Jorge Chavez-Saab et al. [47] researched the problem of constructing post-
quantum secure verifiable delay functions, especially verifiable delay functions based
on super-singular isogeny. They propose an arithmetic structure specifically for homolo-
gous settings using succinct non-interacting arguments (SNARGs) [48] to achieve good
asymptotic efficiency. This isogeny-based verifiable delay functions has the advantages of
post-quantum security [49], quasi-logarithmic verification, and does not require a trusted
setup. Since the Eval algorithm for postquantum verifiable delay functions involves isogeny
walks on super-singular elliptic curves that can be publicly verified through a SNARG-
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based verification process. Formally, a verifiable delay function is composed of three
main algorithm:

Setup(λ, T) → pp = (ek, vk) takes a delay parameter T and a security parameter λ
as input and outputs public parameters pp composed of the evaluation key ek and the
verification key vk.

Eval(ek, x) → (y, π) takes the evaluation key ek and a certain input x as input and
calculates an output y and a possibly empty proof π.

The function involves computing walks of length T in the 2-isogeny graph of super-
singular curves on Fp2 , where p2 ≡ 9mod16 (which is required to apply Kong’s square
root algorithm [50]) and p = poly(T). Given a time delay parameter T, and the evaluator
needs to compute a walk of length T on the 2-isogeny graph, where the exact path is
determined by a string s and the path is not backtracking. Given the two v-invariant curves
vi and vi+1, they are 2-isogenous over Fp2 if and only if the modular polynomial Φ(vi, vi+1)
vanishes. For a fixed vi the next curve in the path can be calculated by finding the root of
Φ(vi, A). If A = vi−1 is a known root of Φ(A) = A3 + aA2 + bA + c then Φ(A) can rewrite
Φ(A) = (A− vi−1)(A2+ (a + vi−1)A + b + avi−1 + v2

i−1) and focus on finding the roots of the
quadratic factor. After the square root is calculated, the evaluator selects the symbol using
the input string, resulting in a definite traversal process.

Veri f y(vk, x, y, π) → {accept, reject} inputs verification key vk, a certain input x,
a output y and a proof π. If f (x) = y, output accept; Otherwise output reject.

Since the postquantum verifiable delay functions is constructed over SNARG, a deter-
ministic process and a fixed symbol are required for the SNARG verification process. For the
validation process, the evaluator keeps track the results of the evaluation and construct an
SNARG, and the values resulting from the evaluation process must be satisfied.

De-Feo et al. proposed a new verifiable delay function framework based on the
assumption of elliptic curve cryptography, and instantiated this framework using super-
singular elliptic curves and bilinear pairs. The structure of this verifiable delay function
is non-interactive in nature, and the output can be effectively verified without additional
proofs. However, the only secure way to instantiate a verifiable delay function requires
a trusted setup to perform a random isogeny traversal. In fact, this setup needs to start
with super-singular elliptic curves with unknown autohomomorphic rings. In order to
explain how to implement the proposed verifiable delay function on elliptic curves with
commutative self-homomorphic rings, Shani later used the idea of verifiable delay functions
based on isogeny and pairing proposed by De-Feo et al. to construct developed a verifiable
delay function based on isogeny without pairing. The scheme is a combination of a time-
lock puzzle and a trapdoor verifiable delay function.

However, neither scheme is quantum secure. Thus, Chavez-Saab et al. studied the
problem of constructing post-quantum secure verifiable delay functions, especially verifi-
able delay functions based on super-singular isogeny. They propose an arithmetic structure
specifically for homologous settings using SNARGs to achieve good asymptotic efficiency.
This isogeny-based verifiable delay function has the advantages of post-quantum security,
quasi-logarithmic verification, and does not require a trusted setup.

This verifiable delay function construction finds codomain curves, which are computed
from any three-point evaluation, so the problem in the verifiable delay function setting
could be regarded as a general problem. The precomputation time allowed in the setting
is given before learning the isogeny to be evaluated, suggesting that this verifiable delay
function construction uses a different isogeny for each input. This verifiable delay function
relies on a very weak assumption, so it is more secure. Starting from a public curve
means we do not need a trusted setup. Next, we analyze two security properties of post-
quantum verifiable delay functions based on super-singular elliptic curves: sequentiality
and soundness.

Sequentiality. Any protocol that does not prescribe isogeny walk in some way is
insecure in terms of sequentiality. The evaluator can be asked to provide SNARG proof of
any large degree of isogeny and consider this to be a good proof of sequentiality even if
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the output is not unique. However, if the evaluator is free to choose the path, this does not
constitute a proof of sequential computation. The sequentiality of post-quantum verifiable
delay functions relies on isogeny shortcut problem of De Feo et al.. If no pair of random
algorithms A0 (running in total time poly(T, λ)) and A1 (running in parallel time less than
T) can win the following sequential game with non-negligible probability, then the post-
quantum verifiable delay functions based on super-singular elliptic curves is sequential.
The Setup must use secret randomness to choose the starting curve, and the Setup is
left with choosing isogeny and generators, both of which can use public randomness.
Furthermore,A0 allows for poly(T) computations, so it can compute isogeny on generators.
Therefore, setting aside the choice of starting curve, the Setup can be absorbed into A0,
which proves that the verifiable delay function of the post-quantum is sequential

Soundness. The soundness of post-quantum verifiable delay functions based on
super-singular elliptic curves completely depends on the SNARG proofs. Succinctness and
non-interactiveness are achieved by generating SNARG through a transform that acts on
any probabilistic checkable proofs. As long as the hash function is collision-resistant, it is
straightforward to prove that the soundness of the structure reduces to the soundness of
the original probabilistic checkable proofs. Therefore, the post-quantum verifiable delay
functions construction based on super-singular elliptic curves is sufficiently soundness.

6. Verifiable Delay Functions Applications

With the proposal of more and more verifiable delay function schemes, the application
of verifiable delay function in distributed systems is also well known. Next, as shown
in Figure 2, this paper introduces several particularly important applications. In Table 3,
the blockchain-related applications of verifiable delay functions are described.

Figure 2. Verifiable delay functions applications.

Computational Timestamping. Almost all know proof-of-stake [51] systems face the
problem of long-range attack [52]. In a proof-of-stake protocol, a group of stakeholders
has voting rights proportional to their stake at any time. Assume that the majority of
stakeholders have no reason to break the system, since the stakeholders themselves are
incentivized. However, when too many stakeholders sell their stake, they can collude to
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create a new longer system to replace history. An external timestamp mechanism [53] can
prove to the user that the true history of the system is much older.

Incremental verifiable delay functions can provide computational evidence that a
given version of the state system is older by proving that long-running verifiable delay
function computations has been performed on the true history after divergence from the
fraud history. This has the potential to detect long-range attack without relying on external
timestamping mechanisms. In 2019, Landerreche et al. [54] presented the first treatment
of non-interactive publicly verifiable timestamping schemes and a secure timestamping
scheme based on a verifiable delay function is proved. The timestamping scheme [55]
consists of sequence of verifiable delay function proofs linked to each other by a crypto-
graphic hash function, modeled as a sequence of random oracles. Add verifiable delay
functions to the sequence to increase the structure, thus preserving the safety guarantees of
the structure.

Table 3. Blockchain-related applications of verifiable delay functions.

Applications Solution Purpose

Timestamping

A verifiable delay function is
equivalent to a proof of the

passage of time, with the input
and output of a verifiable delay
function on-chain to prove the

history of a given block.

Mitigating long-range attacks.

Randomness Beacon

The time delay parameter T of
the verifiable delay function is
set long enough, and the latest
block header is used as part of
the input in the verifiable delay
function, and the final output is

the random beacon result.

Enhancing the security of public
verifiable random numbers.

Permissionless Consensus

Combine proofs-of-resource
with incremental verifiable
delay functions and use the

product of resource proved and
delay induced as a measure of

blockchain quality.

Solving nothing-at-stake attacks.

Proof of Replication

Decodable verifiable delay
functions generate multiple

puzzles, and then the solutions
of these puzzles are combined

with all replicas to generate new
replicas.

Preventing dynamic generation
of replicas.

Public Randomness Beacons. Verifiable delay functions are useful for methods of
obtaining random numbers from public sources. For example, constructing public random-
ness beacons [56] from stock prices, election audit or proof-of-work blockchains [57]. In the
stock market, a strong enough stock trader can change the random output of stock prices
by influencing the market trend, which greatly affects the fairness of the stock market [58].
The verifiable delay function can increase the security of public verifiable nonces by adding
a long enough delay to calculate the beacon, which helps ensure that malicious traders do
not have enough time to adjust the market. In a proof-of-work blockchain’s computational
puzzle solving, miners continuously mine and publish puzzles for monetary rewards. How-
ever, similarly powerful enough stock traders may manipulate stock prices, sufficiently
powerful miners may manipulate beacon results by refusing to publish blocks [59] that
produce unfavorable beacon outputs.
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In addition, the verifiable delay function can also add some random beacon schemes
involving multiple parties. For example, in “commit-and-reveal” [60], the attacker can wait
until the end of the reveal phase to decide whether to reveal his or her commitment. If the
following three conditions are met: discard the commit phase; integrate everyone’s input
at the end of the protocol and put it into the verifiable delay function instead of directly
as the result of a random number; set the time parameter T long enough and later than
the deadline for the last submission; then even the last-minute submitter has no way of
knowing the result of the random number.

Resource Efficient Blockchains. When the blockchain [61] is forked, the consensus
participants will choose to mortgage assets on different forked chains to participate in the
block generation for their own interests, so that the forked chain may always exist and
there will be more and more forks. Seriously endanger the consistency of the system and
the consumption of resources. However, resource-efficient mining suffers from nothing-at-
stake attacks. Intuitively, since mining is not computationally expensive, miners can easily
try to produce many individual forks.

To prevent nothing-at-stake attacks [62], random beacons are used to select a new
leader at intervals. At the same time, a verifiable delay function can also be used to increase
the security of random beacons in the consensus protocol that uses random beacons to
select a new leader. Most of the random number schemes used by these protocols remain
secure only when there is a majority of honest participants. Utilizing a verifiable delay
function can improve the participation of any honest party.

In addition to the electoral scheme, Cohen proposes to combine proof of resources [63]
with an incremental verifiable delay function and use the product of proven resources and
induced delay as a measure of blockchain [64,65] quality. This scheme prevents nothing-
at-stake attacks by simulating the proof-of-work mining process. The timing of mining
blocks is unpredictable, and each miner competes with each other to be the first to mine a
block. The difference from the proof-of-work [66] is that this scheme does not actually need
to consume too much time resources for parallel computing, and only has certain space
resources when entering mining.

Proof of Data Replication. Proof of data replication [67–69] is a special type of proof of
storage of data that allows a client to verify that it has a unique replica of some data stored
on an untrusted server, even if the data is readily available from a public storage source.
Proof of data replication is meant to prove that the server has a replica of the data, not that
it owns the data. Boneh et al. proposed to provide a publicly verifiable solution using a
decodable verifiable delay function that is asymmetric in time. The decodable verifiable
delay function prevents the server from dynamically computing the client’s replica when
challenged to prove that it correctly stored a replica of the data.

Gritti proposes a publicly verifiable proof of data replication scheme using verifiable
delayed functions, and explains the scheme in detail along with a security proof. Given a
unique replicator identifier id. Then the server divides the file into b-bit sized file blocks
Bi and calculate Bid = Bi(i||id) where H is a collision-resistant hash function H : {0, 1} →
{0, 1}b and i ∈ {1, . . . , n}. The output value yi can be obtained by taking the calculated Bid
as part of the Eval algorithm input of the decodable verifiable delay function. The server
stores all yi and the client continuously randomly selects i to challenge the server to return
yi. If the server can respond to the corresponding result to the client within the specified
time and the client can obtain Bi by decoding yi in a very short time to complete the
verification. If the server does not respond to the client correctly, yi must be calculated in T
steps, but this calculation cannot be completed within the specified time.

Verifiable delay functions are widely used in blockchains. However, verifiable delay
functions based on finite groups of unknown order are insecure against an adversary with
access to a quantum computer. Quantum computers can easily compute the order of a
group using Shor’s algorithm, making it easy to break the application of verifiable delay
functions in blockchains. In addition, the post-quantum secure verifiable delay function
based on supersingular elliptic curves needs to be verified by SNARG, and the structure
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is in its infancy and can only be limited to the field of elliptic curves. Therefore, it is an
open problem to develop a verifiable delay function that has a simple structure in quantum
computers and can be safely applied to blockchain.

7. Conclusions and Perspectives

Verifiable delay function is a basic and important tool in the field of cryptography,
and it has been widely used in distributed systems. This article firstly introduces the
types of verifiable delay functions, and describes the construction schemes of different
kinds of verifiable delay functions in detail. Secondly, in the algebraic assumption scheme,
verifiable delay function schemes based on finite abelian groups of unknown order and
super-singular elliptic curve cryptography scheme are introduced respectively, both of
which are not quantum secure. Thirdly, the unique verifiable delay functions and the
continuous verifiable delay functions based on tree-structure assumptions are introduced.
The continuous verifiable delay function achieves effective verification of the output of
each intermediate iteration through continuous iteration, and can efficiently incorporate
proofs of final computation. Fourthly, this paper presents a postquantum secure verifiable
delay function scheme based on super-singular isogeny, And the security analysis of the
verifiable delay function is carried out. Finally, the application of verifiable delay function
in different aspects of the blockchain is summarized.

Verifiable delay functions have been extensively studied, and the research results
obtained cover various branches of verifiable delay function research. However, the ap-
plication of the verifiable delay function in the existing research results has not been fully
integrated into the blockchain, and the application in the blockchain still needs further
research. We hope that this work will stimulate new practical applications of verifiable
delay functions in blockchains and continue to investigate theoretically optimal verifiable
delay function constructions in the future.
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