
Citation: Zhao, X.; Li, D.; Li, H.

Practical Three-Factor Authentication

Protocol Based on Elliptic Curve

Cryptography for Industrial Internet

of Things. Sensors 2022, 22, 7510.

https://doi.org/10.3390/s22197510

Academic Editors: Christos Xenakis

and Thanassis Giannetsos

Received: 26 August 2022

Accepted: 29 September 2022

Published: 3 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Practical Three-Factor Authentication Protocol Based on Elliptic
Curve Cryptography for Industrial Internet of Things
Xingwen Zhao 1,2 , Dexin Li 1,2,* and Hui Li 1,2

1 State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China
2 School of Cyber Engineering, Xidian University, Xi’an 710000, China
* Correspondence: lidexin@stu.xidian.edu.cn

Abstract: Because the majority of information in the industrial Internet of things (IIoT) is transmitted
over an open and insecure channel, it is indispensable to design practical and secure authentication
and key agreement protocols. Considering the weak computational power of sensors, many scholars
have designed lightweight authentication protocols that achieve limited security properties. More-
over, these existing protocols are mostly implemented in a single-gateway scenario, whereas the
multigateway scenario is not considered. To deal with these problems, this paper presents a novel
three-factor authentication and key agreement protocol based on elliptic curve cryptography for IIoT
environments. Based on the elliptic curve Diffie–Hellman problem, we present a protocol achieving
desirable forward and backward secrecy. The proposed protocol applies to single-gateway and is
also extended to multigateway simultaneously. A formal security analysis is described to prove
the security of the proposed scheme. Finally, the comparison results demonstrate that our protocol
provides more security attributes at a relatively lower computational cost.

Keywords: industrial Internet of things; wireless sensor network; authentication and key agreement;
elliptic curve cryptography; forward secrecy

1. Introduction

The emerging industrial Internet of things (IIoT) is a typical application scenario for
wireless sensor network (WSN), where the IIoT is dedicated to affording the capacity to
construct innovative services and applications within the industrial automation scenario [1].
The IIoT emphasizes extremely low latency, high security, and the ability to handle massive
quantities of data [2]. Therefore, efficient authentication and key agreement mechanisms
should be designed for the IIoT infrastructure to ensure security and privacy. In this manner,
only authorized principals can access the IIoT resource, and these legal entities can interact
over the channel using the session key that they have negotiated.

Considering authentication protocols for sensors with a low computing power, the
literature [3,4] sacrifices security to build lightweight protocols, resulting in these schemes
being vulnerable to certain attacks. It is clearly found that schemes using only a hash
function, exclusive OR (XOR), and symmetric cryptography are unable to achieve forward
and backward secrecy. Ma et al. [5] claimed that the public key cryptography algorithm
was indispensable to achieve forward secrecy. After that, public key cryptography tech-
nology was widely implemented in authentication protocols, where using elliptic curve
cryptography (ECC) or bilinear pairings was able to help protocols achieve forward and
backward secrecy.

Figure 1 illustrates that a representative IIoT architecture usually consists of three cate-
gories of entities: industrial IoT sensing devices, an industrial central, and an engineering
expert [6], which, respectively, represent sensors, the gateway, and the user in WSNs. IIoT
sensing devices are leveraged to monitor the status of objects and gather data, which is
subsequently forwarded to a gateway via a wireless channel. A user is able to access the

Sensors 2022, 22, 7510. https://doi.org/10.3390/s22197510 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22197510
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8037-6769
https://orcid.org/0000-0001-7314-3748
https://doi.org/10.3390/s22197510
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22197510?type=check_update&version=2

Sensors 2022, 22, 7510 2 of 21

data collected by the gateway in real time. Sensors, in general, have low processing power,
limited computational capabilities, and restricted energy and storage capacity, whereas
gateways have a strong capacity for data processing [7].

Figure 1. Architecture for an IIoT.

1.1. Literature Review

Das [8] first presented a password and smart-card-based two-factor user authentication
protocol for WSNs using merely the hash function in 2009. Since then, some drawbacks to
this scheme have been discovered by scholars. The presented schemes [9–11] identified
some vulnerabilities in Das’s scheme [8], and they suggested various countermeasures to
overcome these flaws. In 2014, Turkanvoic et al. [12] proposed a novel user and mutual
authentication scheme for WSNs using only a hash function and XOR. These lightweight
schemes consumed relatively fewer resources but sacrificed security.

In order to achieve more security attributes, a public-key infrastructure was considered
in some schemes. In 2011, Yeh et al. [13] performed a cryptanalysis of Das’s scheme [8],
and they discovered that there was no mutual authentication and no protection against
an insider attack or forgery attack. As a result, they first implemented ECC to build the
authentication protocol to address the current existing weaknesses. Shi and Gong [14]
proposed a new ECC-based authentication protocol for WSNs in 2013, which addressed
the shortcomings of the scheme in [13] that lacked a key agreement and forward secrecy.
In 2016, Chang and Le [15] stated briefly that the scheme from Turkanovic et al. [12] suffered
from an impersonation attack, stolen smart card attack, stolen-verifier attack, and failed
to ensure backward secrecy, and they proposed an advanced scheme that used ECC to
overcome these flaws. In 2018, Li et al. [16] indicated that the protocol in [15] lacked a
proper mutual authentication and had other functionality defects. They [16] presented
a three-factor user authentication protocol for the IIoT that addressed the protocol’s [15]
shortcomings by utilizing ECC and symmetric cryptography. A majority of protocols,
however, are designed for a single-gateway scenario, ignoring how to implement them in a
multigateway scenario.

In 2016, Aim and Biwas [17] solved some security flaws in the scheme from Turkan-
voic et al. [12] and designed the first authentication protocols for a multigateway scenario.
Later, Das et al. [18] indicated that there were no efficient online sensor node registration
and password change phases in the literature [17], and they presented a new three-factor
user authentication scheme applied to the multigateway WSN architecture using AES
(Advanced Encryption Standard). In 2017, Wu et al. [19] demonstrated that the scheme
in [17] suffered from tracking attacks due to the constant pseudo-identity and previously
established session key that adversaries could calculate and presented a novel authen-
tication scheme for multigateway WSNs. Srinivas et al. [20] showed that the protocol
in [17] suffered from a stolen smart card attack, password guessing attack, and imperson-
ation attack. They proposed an authentication scheme for multigateway WSNs that could

Sensors 2022, 22, 7510 3 of 21

withstand all the above-mentioned attacks. In 2018, Wang et al. [21] discovered that the
scheme in [20] was still subject to offline password guessing attacks and node capture
attacks and could not protect the user’s anonymity. Therefore, they described efficient
countermeasures for these attacks. Since all the above-mentioned multigateway schemes
use lightweight cryptographic primitives, it is impossible to achieve forward and backward
secrecy. Accordingly, our scheme will solve this problem.

1.2. Network Model

Figure 2 demonstrates how the single-gateway model is implemented in our presented
IIoT protocol. After the user logs in, they send the message to the home gateway node
(HGWN). If the user can pass the authentication of the HGWN, the HGWN sends the
message to the sensor. After the sensor authenticates, it computes the session key and sends
a message to the HGWN. Finally, the HGWN sends a message to the user, who calculates the
session key to communicate with the sensor. Through two rounds of complete information
exchange, the user, HGWN, and sensor can realize mutual authentication.

Figure 2. Single-gateway model.

Nevertheless, in traditional single-gateway WSNs, high-speed data streams are prone
to conflict during data aggregation, because the distance between edge sensors and the
gateway node is too far, which may cause an increased communication cost and reduced
performance. In this case, multigateway protocols are required, and Figure 3 shows the
model we used. This architecture is an extension of Figure 2. The user sends the authentica-
tion message to the HGWN. Following that, the HGWN checks the validity of the received
message. In the event that this procedure is successful, the HGWN sends a message to
the FGWN. The FGWN transmits a message to the HGWN after confirming the message’s
availability. Then, the HGWN checks the received message and delivers a message to
the user. Following steps 1–4, the mutual authentication is achieved between the user
and the FWGN. After that, user sends a message to the FGWN for further authentication.
After the verification is successful, the FGWN transmits a message to the sensor. Subse-
quently, the sensor computes the session key and delivers a message to the FGWN. Finally,
the user figures out the session key used for subsequent communication after confirming
the message that the FGWN sent to it.

Sensors 2022, 22, 7510 4 of 21

Figure 3. Multigateway model.

1.3. Motivations and Contributions

1. Intractable elliptic curve Diffie–Hellman problem (ECDHP) is applied to our proto-
col to guarantee the security of the session key. We extend our scheme to multigateway
WNSs while considering the limitations of single-gateway WSNs.

2. The random oracle model (ROM) [22] helps us get the formal proof of the presented
scheme. The result indicates that the probability of an adversary who can break the
proposed protocol is negligible.

3. Scyther, an automated security protocol verification tool [23], is used to simulate
and analyze the proposed protocol. The result demonstrates that the scheme is correct and
secure against many adversary models.

2. Preliminaries
2.1. Elliptic Curve Cryptography

ECC was initially proposed by Koblitz [24] and Miller [25] in the 1980s, and an intro-
duction to the basic knowledge of ECC is described in the following. Given a large prime
number p and a finite field Fp, let a set of elliptic curve points E over Fp be defined by the
equation: E(Fp) : y2 = x3 + a · x+ b mod p, where a, b ∈ Fp and ∆ = 4a3 + 27b2 6= 0 mod p.
All points on E(Fp) and the point O at infinity come from an additive Abelian group G of
order q, where P is the generator point of the group and n · P = P + P + . . . + P, where
n is an integer and n ∈ Z∗q . There are two corresponding mathematical problems in ECC
defined as follows:

1. The elliptic curve discrete logarithm problem (ECDLP): Figure 4 demonstrates points
distributed over an elliptic curve y2 = x3 − x + 2 in finite field F97. Selecting two
points Q and P in Figure 4, where Q, P ∈ F97 satisfy Q = kP, where k is between 0
and 96 at random. Given k and P, it is easy to figure out Q by a scalar multiplication
and addition rules. Nevertheless, given Q and P, it is difficult to calculate k.

2. The elliptic curve Diffie–Hellman problem (ECDHP): It is scarcely possible to find abP
when given aP ∈ Fp and bP ∈ Fp in polynomial time, where a and b are both between
0 and p− 1 at random.

Sensors 2022, 22, 7510 5 of 21

Figure 4. Points over the elliptic curve.

2.2. Threat Model

The proposed authentication and key agreement protocol was formally analyzed tak-
ing advantage of the Dolev–Yao threat model [26], which assumes that two communication
principals interact over an insecure and open channel. The following are the properties of
this model:

1. The used one-way hash function is unbreakable.
2. In a uniform protocol, an identical format is used by each entity that wishes to commu-

nicate.
3. An adversary can eavesdrop, intercept, replay, and even modify all the transmitted

messages over an open and insecure channel.

2.3. Fuzzy Extractor

Biometric features are adopted to improve security in many schemes. Due to the
uniqueness of biometric features, they can be effectively applied to authentication. Com-
pared with low-entropy passwords, biometric features also have the advantages of being
difficult to forge and not being easy to lose.

The fuzzy extractor was used to process the original biometric fingerprint, which
can eliminate subtle differences between biometric features extracted by the same user at
different points in time. A fuzzy extractor comprises two phases as follows Ref. [27]:

1. Probabilistic generation function Gen: The original biometric fingerprint BIOi is the
input of Gen, and then the process outputs biometric identification key data and
public parameter, namely Gen(BIOi)→ (σi, θi).

2. Deterministic reproduction procedure Rep: Using the public parameter θi and the
fingerprint BIOi reproduces key data σi, namely Rep(BIOi, θi)→ σi.

3. The Proposed Scheme

In this section, the detailed process of the proposed scheme is demonstrated. The pro-
posed scheme consists of the following phases: initialization phase, registration phase, user
login phase, authentication and key agreement phase, and user password update phase.

Sensors 2022, 22, 7510 6 of 21

3.1. Initialization Phase

All the parameters that are used in the proposed protocol are listed in Table 1. Dur-
ing the initialization phase, SA chooses an elliptic curve E over a prime finite field Fp,
a point P ∈ E(Fp) and a subgroup G of E(Fp), where G is an additive cyclic group of order
q. Then, the HGWN generates its private key and public key {kh, Kh}, where kh ∈ Z∗q
and Kh = khP. Consistent with the above procedure, the FGWN chooses its private
key and public key {k f , K f }, where k f ∈ Z∗q and K f = k f P. Finally, the hash function
h(·) : {0, 1}∗ → {0, 1}l is chosen to be used in the scheme, where l is the length of the
output length of the hash function.

Table 1. Symbol description.

Symbol Description

SA System administrator
Ui ith user node

SN j jth sensor node
SCi Smart card of Ui

HGWN Home gateway node
FGWN Foreign gateway node

IDi Identity of Ui
SIDj Identity of SN j
PW i Password of Ui
BIOi Biometric information of Ui
kh, Kh Private key and public key of HGWN
k f , K f Private key and public key of FGWN

rh, rhg, r f , r f g Random numbers
a, b, c, d Random numbers ∈ Z∗q

P A point on the elliptic curve
T1, T2, ..., T8 Timestamps

∆T Acceptable maximum transmission delay
SK Session key
h() One-way hash function
⊕ Exclusive-or operation
|| Concatenation operation

Gen() Fuzzy extractor probabilistic generation procedure
Rep() Fuzzy extractor deterministic reproduction procedure

3.2. Registration Phase

The registration phase is divided into a user registration phase and a sensor registration
phase. All the messages in this phase are transmitted via a secure channel.

3.2.1. User Registration Phase

The procedure is also shown in Figure 5.
Step 1: Ui selects their identity IDi and password PWi, and inputs biometric infor-

mation BIOi. The fuzzy extractor is used to compute biometric key data σi and public
parameter θi, namely Gen(BIOi)→ (σi, θi). SCi stores the public parameter θi in its memory.
Then, Ui figures out HIDi = h(IDi||σi) and HPWi = h(PWi||σi), and sends {HIDi, HPWi}
to the nearest HGWN via a secure channel.

Step 2: Upon receiving {HIDi, HPWi} from Ui, the HGWN generates a random number rh
and calculates Ai = h(HIDi||kh||rh)⊕ HIDi, Bi = h(HIDi||HPWi||rh), and Ci = HIDi ⊕ rh.
The HGWN stores {HIDi, rh} in its memory. Then, the HGWN sends {Ai, Bi, Ci} to Ui via
a secure channel.

Step 3: Upon getting {Ai, Bi, Ci} from HGWN, Ui stores {Ai, Bi, Ci, θi} into its own SCi.

Sensors 2022, 22, 7510 7 of 21

Figure 5. User registration phase.

3.2.2. Sensor Registration Phase

Sensor registration process is shown in Figure 6. SA assigns a unique identity to each
sensor node. SNj sends its own identity SIDj to the nearest HGWN via a secure channel
for registration. Then, the HGWN calculates Ags = h(SIDj||kh) and stores {SIDj, Ags} in
its memory. After that, the HGWN sends Ags to SNj via a secure channel. After receiving
Ags from the HGWN, SNj stores {SIDj, Ags} in its own memory.

Figure 6. Sensor registration phase.

3.3. User Login Phase

Ui inserts their smart card SCi to a terminal, and inputs identity IDi, password
PWi and biometric information BIOi. Then, the terminal reproduces the biometric key
data σi through the fuzzy extractor, namely Rep(BIOi, θi) → σi. The terminal computes
HIDi = h(IDi||σi), HPWi = h(PWi||σi), r′h = HIDi ⊕ Ci and B′i = h(HIDi||HPWi||r′h).
Subsequently, the terminal checks whether B′i

?
= Bi. If the equation is not held, at least

one parameter is incorrect, which leads to the login request being refused by the terminal
and no subsequent authentication process being performed. Otherwise, Ui’s login is
successful, and the terminal generates a random number a ∈ Z∗q , and a timestamp T1.
At last, the terminal computes Ah = Ai ⊕ HIDi, D1 = aP, D2 = aKh, M1 = HIDi ⊕
h(D2), M2 = SIDj ⊕ h(D2)⊕ Ah, and M3 = h(HIDi||Ah||D2||M1||M2||T1). This process
is demonstrated in Figure 7.

Sensors 2022, 22, 7510 8 of 21

Figure 7. User login phase.

3.4. Authentication and Key Agreement Phase

In this section, two cases are considered: authentication and key agreement in a home
region and a foreign region, respectively.

3.4.1. Authentication and Key Agreement in the HGWN

When a user and the sensor that they want to access are in the same region controlled
by the same HGWN, as illustrated in Figure 8, each entity will execute the following steps.

Step 1: Ui sends the login request message {M1, M2, M3, D1, T1} to the HGWN.
Step 2: After receiving {M1, M2, M3, D1, T1} from Ui, the HGWN checks whether

|T′1 − T1| < ∆T is satisfied, where T′1 is the current timestamp the HGWN acquired
and ∆T is the acceptable maximum transmission delay. If the inequality is not true,
namely T1 is not fresh, the HGWN aborts the current session. Otherwise, the HGWN
computes D′2 = khD1 and HID′i = M1 ⊕ h(D′2) to find rh stored in its own memory.
Subsequently, the HGWN calculates A′h = h(HID′i ||kh||rh), SID′j = M2 ⊕ h(D′2) ⊕ A′h,

and M′3 = h(HID′i ||A′h||D
′
2||M1||M2||T1), and checks whether M′3

?
= M3. The current ses-

sion is aborted if M′3 6= M3. Otherwise, the HGWN seeks Ags from its own memory
through SIDj, generates a random number rhg, a timestamp T2, and calculates M4 = rhg ⊕
h(Ags||T2), M5 = h(SIDj||rhg||Ags||D1||T2). Finally, the HGWN sends {M4, M5, D1, T2}
to SNj.

Step 3: When SN j receives {M4, M5, D1, T2} from the HGWN, SN j obtains the cur-
rent timestamp T′2 and verifies whether |T′2 − T2| < ∆T. If the inequality is not held,
then SN j terminates the current session. Otherwise, SN j figures out r′hg = h(Ags||T2)⊕

M4, M′5 = h(SIDj||r′hg||Ags||D1||T2), and examines whether M′5
?
= M5. The current ses-

sion is terminated if M′5 6= M5. Otherwise, SN j generates a random number b ∈ Z∗q ,
a timestamp T3, and figures out D3 = bP, D4 = bKh, SK = h(D1||D3||bD1), M6 =
h(SIDj||rhg||Ags||D4||T3), and M7 = h(SK||D1||D3). Lastly, SN j transmits {M6, M7, D3, T3}
to the HGWN.

Step 4: After getting {M6, M7, D3, T3} from SN j, the HGWN acquires the current
timestamp T′3 and verifies whether |T′3 − T3| < ∆T. If the verification fails, the HGWN
aborts the current session. Otherwise, the HGWN calculates D′4 = khD3, M′6 =

h(SIDj||rhg||Ags||D′4||T3), and checks whether M′6
?
= M6. If M′6 6= M6, the HGWN aborts

the current session. Otherwise, the HGWN generates a timestamp T4, calculates M8 =
h(HIDi||Ah||D1||D3||M7||T4), and dispatches {M7, M8, D3, T4} to Ui.

Sensors 2022, 22, 7510 9 of 21

Step 5: Upon receiving {M7, M8, D3, T4} from the HGWN, Ui obtains the current
timestamp T′4 and checks whether |T′4 − T4| < ∆T. If the verification fails, the current
session is rejected by Ui. Otherwise, Ui computes M′8 = h(HIDi||Ah||D1||D3||M7||T4)

and checks whether M′8
?
= M8. If M′8 6= M8, Ui aborts the current session. Otherwise, Ui

computes SK′ = h(D1||D3||aD3), M′7 = h(SK′||D1||D3), and verifies whether M′7
?
= M7.

If not, Ui declines to establish a session key with SN j. Otherwise, Ui and SN j share an
identical session key, and the authentication process is successfully completed.

Figure 8. Authentication and key agreement in the HGWN.

3.4.2. Authentication and Key Agreement in the FGWN

When a user requires access to a sensor that is in a foreign region and registered in
a FGWN, this phase can be completed with the assistance of the HGWN and the FGWN,
as illustrated in Figures 9 and 10.

Step 1: Ui computes the login request message {M1, M2, M3, D1, T1} as in the User
Login Phase Section and sends them to the HGWN.

Sensors 2022, 22, 7510 10 of 21

Step 2: After receiving {M1, M2, M3, D1, T1} from Ui, the HGWN obtains the current
timestamp T′1 and verifies T1’s validity, namely |T′1 − T1| < ∆T. If the verification fails, the
HGWN aborts. Otherwise, the HGWN calculates D′2 = khD1, HID′i = M1 ⊕ h(D′2) , A′h =
h(HID′i ||kh||rh), SID′j = M2⊕ A′h ⊕ h(D′2), and M′3 = h(HID′i ||A′h||D

′
2||M1||M2||T1). Sub-

sequently, the HGWN checks whether M′3
?
= M3. The current session is aborted if M′3 6= M3.

Next, if SIDj is not in the HGWN’s database, the HGWN broadcasts the target sensor’s
identity SIDj to the rest of the gateway nodes. If any FGWN finds SIDj in its database,
it will react to the HGWN and broadcasts its own public key K f in WSNs. Subsequently,
the HGWN generates a random number b ∈ Z∗q , timestamp T2, and computes D3 = bP,
D4 = bK f , (b + kh)K f , and M4 = h(SIDj||D3||(b + kh)K f ||T2). Finally, the HGWN dis-
patches {M4, D3, T2} to the corresponding FGWN.

Step 3: Upon receiving {M4, D3, T2} from the HGWN, the corresponding FGWN
obtains the current timestamp T′2 and verifies whether |T′2 − T2| < ∆T. If not, the FGWN
terminates the current session. Otherwise, the FGWN computes D′4 = k f D3, D′4 + k f Kh,

and M′4 = h(SIDj||D3||D′4 + k f Kh||T2), and examines whether M′4
?
= M4 . the FGWN

terminates the current session if M′4 6= M4. Otherwise, the FGWN generates random
numbers c ∈ Z∗q , r f , a timestamp T3, and calculates D5 = cP, D6 = cKh, (c + k f)Kh,
A f = h(HIDi||k f ||r f), M5 = A f ⊕ h(D6), and M6 = h(SIDj||A f ||(c + k f)Kh||M5||T3).
Then, the FWGN transmits {M5, M6, D5, T3} to the HGWN.

Step 4: Upon getting {M5, M6, D5, T3} from the FGWN, the HGWN acquires the cur-
rent timestamp T′3 and verifies whether |T′3 − T3| < ∆T. If the verification fails, the HGWN
rejects the current session. Otherwise, the HGWN figures out D′6 = khD5, D′6 + khK f ,
A′f = M5 ⊕ h(D′6), and M′6 = h(SIDj||A′f ||D

′
6 + khK f ||M5||T3), and checks whether

M′6
?
= M6. If M′6 6= M6, the HGWN rejects the current session. Otherwise, the HGWN gen-

erates a timestamp T4, calculates M7 = A f ⊕ Ah, M8 = h(HIDi||SIDj||Ah||A f ||M7||T4),
and dispatches {M7, M8, T4} to Ui.

Step 5: After receiving {M7, M8, T4} from the HWGN, Ui gets the current times-
tamp T′4 and checks whether |T′4 − T4| < ∆T. If not, the current session is rejected
by Ui. Otherwise, Ui computes A′f = M7 ⊕ Ah, M′8 = h(HIDi||SIDj||Ah||A′f ||M7||T4)

and checks whether M′8
?
= M8. If M′8 6= M8, Ui rejects the current session. Otherwise,

Ui generates a timestamp T5 and computes D2 f = aK f , M9 = HIDi ⊕ h(D2 f), M10 =
h(HIDi||A f ||D2 f ||M9||T5), and delivers {M9, M10, T5} to the FGWN.

Step 6: After receiving {M9, M10, T5} from Ui, the FGWN obtains the current times-
tamp T′5 and checks whether |T′5 − T5| < ∆T is satisfied. If failed, the FGWN aborts the
current session. Otherwise, the FGWN computes D′2 f = k f D1, HID′i = M9 ⊕ h(D′2 f) ,

M′10 = h(HID′i ||A f ||D′2 f ||M9||T5), and checks whether M′10
?
= M10. The current session is

aborted if M′10 6= M10. Otherwise, FGWN generates a random number r f g, a timestamp T6,
and calculates M11 = r f g ⊕ h(A f s||T6), M12 = h(SIDj||r f g||A f s||D1||T6). Finally, FGWN
sends {M11, M12, T6} to SNj.

Step 7: When SNj receives {M11, M12, T6} from the FGWN, SNj obtains the current
timestamp T′6 and verifies whether |T′6 − T6| < ∆T. If not, SNj aborts the current session.
Otherwise, SNj computes r′f g = h(A f s||T6)⊕M11, M′12 = h(SIDj||r′f g||A f s||D1||T6), and

examines whether M′12
?
= M12. The current session is aborted if M′12 6= M12. Otherwise, SNj

generates a random number d ∈ Z∗q , a timestamp T7, and figures out D7 = dP, D8 = dK f ,
SK = h(D7||dD1), M13 = h(SIDj||r f g||A f s||D8||T7), and M14 = h(SK||D7). After that,
SNj transmits {M13, M14, D7, T7} to the FGWN.

Step 8: After getting {M13, M14, D7, T7} from SNj, the FGWN acquires the current
timestamp T′7 and verifies whether |T′7 − T7| < ∆T. If the verification fails, the FGWN
aborts the current session. Otherwise, the FGWN computes D′8 = k f D7, M′13 =

h(SIDj||r f g||A f s||D′8||T7), and checks whether M′13
?
= M13. If M′13 6= M13, the FGWN

Sensors 2022, 22, 7510 11 of 21

aborts the current session. Otherwise, the FGWN generates a timestamp T8, calculates
M15 = h(HIDi||A f ||D1||D7||M14||T8), and dispatches {M14, M15, D7, T8} to Ui.

Step 9: After receiving {M14, M15, D7, T8} from the FGWN, Ui obtains the current
timestamp T′8 and checks whether |T′8− T8| < ∆T. If not, Ui rejects the current session. Oth-

erwise, Ui computes M′15 = h(HIDi||A f ||D1||D7||M14||T8) and checks whether M′15
?
= M15.

If M′15 6= M15, Ui aborts the current session. Otherwise, Ui figures out SK′ = h(D7||aD7),

M′14 = h(SK′||D7), and verifies whether M′14
?
= M14. If the verification fails, Ui declines

to establish a session key with SNj. Otherwise, Ui and SNj share an identical session key,
and the authentication process is successfully completed.

Figure 9. Authentication and key agreement phase 1 in the FGWN.

Sensors 2022, 22, 7510 12 of 21

Figure 10. Authentication and key agreement phase 2 in the FGWN.

3.5. User Password Update Phase

Ui inserts their smart card SCi into the terminal, and enters identity IDi, password
PWi, and biometric information BIOi. Then, the terminal reproduces the biometric key
data Rep(BIOi, θi) → σi and reads secret parameter Ci = HIDi ⊕ rh in SCi to calculate
HIDi = h(IDi||σi), HPWi = h(PWi||σi), and r′h = HIDi ⊕ Ci. Next, the terminal checks

Bi
?
= h(HIDi||HPWi||r′h). If the equation is not held, this update request is rejected. Oth-

erwise, this request is acknowledged, and the subsequent phase is performed. In the
update phase, Ui enters a new password PWnew

i . Subsequently, the terminal computes
HPWnew

i = h(PWnew
i ||σi) and updates Bnew

i = h(HIDi||HPWnew
i ||r′h) in SCi.

Sensors 2022, 22, 7510 13 of 21

4. Security Analysis
4.1. Formal Security Proof

The security of our protocol is proved under the ROM.

4.1.1. Formal Security Model

The security of the presented protocol dependent on the CK model [28].
Participants: In this model, the adversary A controls the communication between

all participants. For the single-gateway scenario, there are three types of participants in
this protocol P: the user U, the gateway HGWN, and the sensor SN. Each principal has
a large number of instances, which are usually treated as the actions of specific protocols
run by each principal. Ui, HGWNk, and SN j represent the ith instance of U, kth instance of
HGWN, and jth instance of SN in P separately. Moreover, I denotes any other instance.

Queries: The interaction between A and the protocol principals occurs merely through
oracle queries, which simulate A ’s capabilities to break P in a real attack. A is allowed to
execute the following queries.

Execute(Ui, HGWNk, SN j): A uses this query to simulate a passive attack, and they
can obtain the entire transcript as a result of the conversation among U, HGWN, and SN.

Send(Ii, m): It models an active attack of A , who forges a message m and sends it
to instance Ii. Subsequently, Ii returns the processing outcomes of the message m to A
according to P. If the message m is invalid, the query is ignored.

SKReveal(Ii): This query simulates that A can obtain session key SK of any com-
pleted session.

SSReveal(Ii): This query can be asked of an incomplete session and receives the
internal state in return.

Corrupt(Ii): This query can help A obtain the private key of Ii, which is usually used
to simulate the forward secrecy of protocols. A can obtain the private key of U, HGWN,
and SN.

Test(Ii): A asks this query to a fresh instance. Then, A can continue to ask other
queries, as long as the tested session remains fresh. In other words, if Ii has been asked
SSReveal(Ii), SKReveal(Ii), or Corrupt(Ii), both Ii and its partner cannot be asked by a
Test query.

Test(Ii) query is used to evaluate the semantic security of a session key. Only one
test query is allowed to be executed during the whole game. To answer the test query, we
imagine a challenger who flips a coin to define a bit b. If there is no session key established
for instance Ii, then ⊥ is returned. If the query has already been asked, then it outputs
the same answer as above. Otherwise, if b = 1, Ii returns the real session key. If b = 0, Ii

returns an entirely random string of the same length as the session key. The final output of
Test(Ii) is a bit b′, which is the guessing value of b. The adversary wins this game if and
only if b′ = b.

4.1.2. Security Proof

Suppose A is the adversary who can break protocol P in polynomial time. qhash
and qsend refer to the number of hash query oracles and send query oracles, respectively.
AdvECDHP

P (t) represents the advantage of an adversary who can resolve the intractable
ECDHP in polynomial time. Now, the advantage of A that breaks the semantic security of
our authentication and key agreement (AKA) protocol is defined:

AdvAKA
P (A) ≤

q2
hash
2l +

qsend

2l−1 + 2AdvECDHP
P (t) (1)

Proof. Game i (i = 0, 1, 2, 3, 4) is used to perform the whole procedure of P. The event WGi
signifies that A guesses the bit b correctly to win the game.

Sensors 2022, 22, 7510 14 of 21

Game 0: In the random oracle model, the real attack on P is modeled, and the following
formula can be obtained:

AdvAKA
P (A) = |2 Pr[WG0]− 1| (2)

Game 1: A carries out Execute queries to model an eavesdropping attack. Even if we
take Execute queries into consideration, the probability of an adversary who can win the
game has not increased.

Pr[WG1] = Pr[WG0] (3)

Game 2: Hash oracles are added to the foundation of Game 1 by Game 2. This game
models the active attack, and A attempts to trick a legitimate principal into accepting
the modified message. When the collision happens between the constructed information
and the real authentication information, A gets the secret information and wins the game.
According to the birthday paradox, the maximum probability of the hash oracle collision is
q2

hash
2l+1 , and we have:

|Pr[WG2]− Pr[WG1]| ≤
q2

hash
2l+1 (4)

Game 3: Send queries are added. This game models the active attack, and A attempts
to trick a legitimate principal into accepting the modified message. Therefore, we have:

|Pr[WG3]− Pr[WG2]| ≤
qsend

2l (5)

Game 4: In this game, A asks Execute queries eavesdropping on all exchanged
messages {M1, M2, M3, D1, T1}, {M4, M5, D1, T2}, {M6, M7, D3, T3}, and {M7, M8, D3, T4}.
A executes Corrupt(Ii) to obtain the private key of this entity, where I is equal to U,
HGWN, and SN successively, and thus A can obtain all the private keys. SKReveal(Ii)
can be executed in this game. It will answer an SK if the target instance has formed an
SK. A executes SSReveal(Ii) to get the internal state of an incomplete session. In order
to compute the session key, A has to resolve the intractable ECDHP to get a or b from
D1 = aP or D3 = bP. Let AdvECDHP

P (t) be the advantage of A , who can resolve the
ECDHP in polynomial time. As a result, we get:

|Pr[WG4]− Pr[WG3]| ≤ AdvECDHP
P (t) (6)

At the end of Game 4, all the queries are simulated, so what A can do is to guess the
bit b to win the game after performing Test query. Now, we have the following:

Pr[WG4] =
1
2

(7)

According to Equations (2)–(7), we can obtain Equation (1). It indicates that the
adversary has negligible advantage in winning the game. Therefore, our protocol is secure
under the random oracle model.

4.2. Formal Verification Using Scyther

Scyther is a tool for the formal analysis of security protocols under the perfect cryp-
tography assumption, in which it is assumed that all cryptographic functions are perfect.
In this section, we formally analyze the security of the proposed protocol based on Scyther
in the HGWN and FGWN. The results in Figures 11 and 12 illustrate that the scheme is
correct and secure against many adversary models under the Scyther security checks.

Sensors 2022, 22, 7510 15 of 21

Figure 11. Simulation result in HGWN.

Figure 12. Simulation result in FGWN.

Sensors 2022, 22, 7510 16 of 21

4.3. Informal Security Analysis
4.3.1. Mutual Authentication

In the home region, the HGWN authenticates Ui by relying on M3 = h(HIDi||Ah||D2||
M1 ||M2||T1), where D2 is possessed by Ui and can be recovered by the HGWN from
D1 and its private key kh. Ui authenticates the HGWN using Ah contained in M8 =
h(HIDi||Ah||D1||D3||M7 ||T4), which can only be calculated by Ui and HGWN. Any other
principals cannot obtain Ah. The HGWN verifies SNj dependent on M6 = h(SIDj||rhg||Ags||
D4||T3), where D4 is possessed by SNj and can be recovered by the HGWN from D3 and
kh. SNj verifies the HGWN using Ags contained in M5 = h(SIDj||rhg||Ags||D1||T2), which
can be calculated by the HGWN and stored in SNj’s memory. Ui can verify the legitimacy
of SK using M7.

In the foreign region, there is a similar process as above. The HGWN authenti-
cates Ui by relying on the secret parameter D2 only shared by both parties. Ui au-
thenticates the HGWN using Ah contained in M8 = h(HIDi||SIDj||Ah||A f ||M7||T4).
The FGWN and HGWN implement mutual authentication using (b + kh)K f and (c +
k f)Kh, respectively, which are both the secret parameters and can only be computed by
themselves and verified by the other party. The FGWN authenticates Ui dependent on
M10 = h(HIDi||A f ||D2 f ||M9||T5), where D2 f is possessed by Ui and can be retrieved
by the FGWN from D1 and its private key k f . Ui authenticates the FGWN by relying
on A f contained in M15 = h(HIDi||A f ||D1||D7||M14||T8), which can be calculated by
the FGWN and retrieved by Ui. SNj verifies the FGWN using A f s contained in M12 =
h(SIDj||r f g||A f s||D1||T6), which can be only calculated by the FGWN using k f and stored
in SNj’s memory. The FGWN verifies SNj dependent on M13 = h(SIDj||r f g||A f s||D8||T7),
where D8 is possessed by SNj and can be retrieved by the FGWN from D7 and k f . Ui can
verify the legitimacy of SK using M14.

4.3.2. Session Key Agreement

SK = h(D1||D3||bD1) = h(D1||D3||aD3) = h(aP||bP||abP) is established between Ui
and SNj in the home region. Similarly, in the foreign region, Ui and SNj share a common
session key SK = h(D7||dD1) = h(D7||aD7) = h(dP||adP). The established SK can be used
for subsequent communication between Ui and SNj.

4.3.3. Forward and Backward Secrecy

Forward secrecy is used to guarantee that previously established session keys remain
secure in the event that the long-term private keys are compromised. Identically, backward
secrecy affords the guarantee that a session key that will be established in the future remains
secure even if the long-term private keys are compromised.

The proposed protocol uses the ECDHP to achieve forward and backward secrecy.
In the home region, Ui and SNj share a common session key SK = h(aP||bP||abP), which
is related to the random numbers a and b generated by Ui and SNj, respectively. In the
foreign region, Ui and SNj share a common session key SK = h(dP||adP), which is related
to the random numbers a and d generated by Ui and SNj, respectively. If all the long-term
private keys of Ui, HGWN, FGWN, and SNj are compromised by an adversary, since the
adversary has to resolve the intractable ECDHP to get abP or adP from aP, bP, or aP, dP,
respectively, the previous or future session key is still secure. Consequently, forward and
backward secrecy can be guaranteed.

4.3.4. User Anonymity and Untraceability

In the proposed protocol, the real identity IDi cannot be acquired by the adversary
from the interaction messages. In the home region, there is only the legitimate gateway
node who, in possession of private key kh, can calculate D2 to recover Ui’s pseudonym
HIDi and sensor’s identity SIDj. Simultaneously, considering the one-way nature of the
hash function, it is difficult for the adversary to acquire HIDi from M3, M8 and SIDj from
M5, M6, respectively. In the foreign region, the adversary without gateway node’s private

Sensors 2022, 22, 7510 17 of 21

key cannot compute D2 to recover HIDi. Likewise, considering the one-way nature of
hash function, the adversary is unable to get HIDi from M3, M8, M10, M15. As a result,
user anonymity can be achieved. In addition, because of the login request message being
updated at each session round, the adversary is unable to trace a specific user. Therefore,
the user’s untraceability is guaranteed.

4.3.5. Illegal Login Detection

A user needs to input their identity, password, and biometric information to complete
login, and if the terminal declines this session, at least one of these three items is incorrect.
In our protocol, when the incoming information is invalid, the identification parameter
Bi cannot be recovered correctly, which leads to the login request being aborted by the
terminal. This mechanism guarantees the system can check illegal login requests quickly.

4.3.6. Stolen Smart Card Attack

The secret parameters {Ai, Bi, Ci, θi} are stored in Ui’s smart card, where Ai = h(HIDi
||kh||rh) ⊕ HIDi, Bi = h(HIDi||HPWi||rh), Ci = HIDi ⊕ rh, and θi is generated by
Gen(BIOi). If Ui’s smart card is lost and obtained by the adversary, then the adversary
can get {Ai, Bi, Ci, θi}, but they are still unable to acquire the correct identity, password,
and biometric key data. The adversary cannot compute a correct HIDi through Ci with-
out rh. The biometric key data σi also cannot be recovered correctly without a real BIOi.
Furthermore, even in this case, there is no chance for an adversary to get the password.
As a result, the login request message M1, M2, M3 cannot be figured out without the correct
HIDi. Our protocol can be resistant to stolen smart card attack.

4.3.7. Replay Attack

The timestamp mechanism is used to guarantee the freshness of transmitted messages
in our scheme. When the message is exchanged, the node first checks whether the time
difference between the received timestamp and its own timestamp is within the acceptable
maximum delay allowed by the system. Expired messages will be rejected. As a result,
the protocol is capable of defending against replay attack.

4.3.8. Privileged Insider Attack

During the registration phase, user transmits {HIDi, HPWi} to the HGWN via a
secure channel. It is assumed that an internal malicious privileged node who executes
privileged insider attack in order to get user’s password PWi after getting {HIDi, HPWi}.
However, the obtained values are hash values consisting of password and biometric key
data. Considering the one-way nature of the hash function, it is intractable for the privileged
node to extract PWi from HPWi. Therefore, our protocol can be resistant to privileged
insider attack.

4.3.9. Desynchronization Attack

In the proposed protocol, the user does not store the same secret values with the gate-
way node. All participants in the protocol are not required to update any information when
a session is accomplished. Accordingly, the protocol can resist a desynchronization attack.

4.3.10. Impersonation Attack

In our protocol, in order to forge a user, a valid login request {M1, M2, M3, D1, T1} is
necessary. Nevertheless, the adversary has no capacity to figure out the true M1, M2, M3, D1
without the correct HIDi, SIDj, Ah, D2. As a result, the adversary fails to impersonate a
legitimate user.

In addition, when the fake gateway node receives the correct login request, it cannot
retrieve the true D2 without the real private key. Therefore, the adversary is also unable to
impersonate a legitimate gateway node.

Sensors 2022, 22, 7510 18 of 21

Moreover, if the adversary wants to forge a sensor node, they need to recover rhg
and generate M5, M6, which all depend on Ags that is only computed by the HGWN and
stored in the sensor’s memory. Consequently, this scheme is protected against a sensor
impersonation attack.

5. Performance and Security Comparison

In order to illustrate the balance between the security and usability of our protocol,
the comparative consequences of the security and overhead of our scheme with other
associated schemes are as follows, where Case-1 and Case-2 represent the protocol designed
in the home region and the foreign region, respectively. According to [17,29–31], all
operations were implemented in MATLAB on a four-core, 3.2 GHz computer with 8 GB
of memory.

5.1. Security Features Comparison

The statistics of the security attributes that each scheme can satisfy are summarized
in Table 2, where X represents that this literature can satisfy this corresponding secu-
rity attribute in Table 2, whereas × represents that it cannot achieve. All the indicators
listed in Table 2 were achieved by our scheme. Moreover, none of the studies in the
literature [13,17–20] has the capability to achieve forward and backward secrecy. How-
ever, the implementation of ECC in our scheme enables ours to accomplish forward and
backward secrecy.

Table 2. Security comparison.

Security Properties [13] [17] [18] [19] [20] Ours

Mutual authentication × X X X X X
Session key agreement X X X × × X
Forward and backward secrecy × × × × × X
User anonymity X × × × × X
Untraceability property × × X × × X
Illegal login detection × X X × X X
Stolen smart card attack × × X X X X
Replay attack X X X X X X
Insider attack X X X × X X
Desynchronization attack × × X X × X
Impersonation attack × × X × X X

5.2. Communication Cost Comparison

In order to calculate the communication cost, we assumed that the identity, random
number, hash digest, ECC point, and timestamp were 160 bits, 160 bits, 160 bits, 320
bits, and 32 bits, respectively. Additionally, the symmetric encryption/decryption using
AES-128 required 128 bits for a 128-bit plaintext block. We evaluated the communication
overhead between our protocol and other relevant protocols [13,17–20] during the login and
authentication phases according to the overall quantity of transmitted messages. Table 3
shows the comparison results. Compared with [19], the transmitted number of messages
was identical to our scheme, and there were similar communications costs as ours, but our
scheme met more security attributes. As we can see, in order to compare with previous
protocols [13,17–20], we chose SHA-1 [32] as the hash function. However, to achieve more
security, we recommend using SHA-256 [32] as the hash function.

Sensors 2022, 22, 7510 19 of 21

Table 3. Communication cost comparison.

Scheme Number of Messages Communication Cost (bits)

[13] Case-1 2 1504
[17] Case-1 4 2528

Case-2 5 3008
[18] Case-1 3 2784

Case-2 6 4704
[19] Case-1 4 2688

Case-2 8 4480
[20] Case-1 4 2368

Case-2 7 3904
Ours Case-1 4 2848

Case-2 8 4416

5.3. Computation Cost Comparison

Table 4 lists the approximate required computational time of various cryptographic op-
erations, which were used as a comparative standard. Table 5 compares the computational
overhead of our scheme and other relevant schemes during the login, authentication, and
key agreement phases. The total cost of the proposed scheme increased slightly. Neverthe-
less, most of the cost was calculated on the gateway side with strong computational power
rather than the resource-limited sensor side. Accordingly, integrated with both security
and communication cost, our protocol was relatively secure with an acceptable overhead.

Table 4. Execution time of various cryptographic operations.

Symbol Description Approximate Computation Time (s)

Th Hash function 0.00032
Tecm ECC point multiplication 0.0171
Teca ECC point addition 0.0044
Tsym Symmetric encryption/decryption 0.0056
Tf e Fuzzy extractor function 0.0171

Table 5. Computational cost comparison.

Protocols User HGWN FGWN Sensor Total
(s)

[13] Case-1 4Th + 2Tecm + 1Teca 4Th + 6Tecm + 3Teca - 3Th + 2Tecm + 2Teca 0.20092
[17] Case-1 7Th 8Th - 5Th 0.00640

Case-2 8Th 1Th 7Th 5Th 0.00672
[18] Case-1 9Th + 1Tf e + 1Tsym 5Th + 2Tsym - 3Th + 1Tsym 0.04494

Case-2 10Th + 1Tf e + 2Tsym 0 5Th + 2Tsym 4Th + 1Tsym 0.05118
[19] Case-1 9Th 11Th - 4Th 0.00768

Case-2 11Th 7Th 7Th 4Th 0.00928
[20] Case-1 10Th 14Th - 7Th 0.00992

Case-2 14Th 6Th 17Th 6Th 0.01376
Ours Case-1 9Th + 1Tf e + 3Tecm 8Th + 2Tecm - 5Th + 3Tecm 0.16094

Case-2 12Th + 1Tf e + 4Tecm 8Th + 6Tecm + 2Teca 10Th + 7Tecm + 2Teca 5Th + 3Tecm 0.38780

6. Conclusions

In this paper, we designed an authentication protocol based on ECC using three factors,
applied to the IIoT environment. The proposed scheme was appropriate for single-gateway
scenarios, and we also extended it to multigateway scenarios. Furthermore, forward
and backward secrecy was realized in our scheme utilizing the intractable ECDHP. The

Sensors 2022, 22, 7510 20 of 21

formal security analysis under the ROM indicated that the proposed protocol was able
to satisfy semantic security. We simulated our scheme using the formal verification tool
Scyther, and the result showed that our scheme was secure. The informal security analysis
proved our protocol was capable of satisfying most common security properties. Finally,
compared with other representative protocols, the comparative results of security attributes,
communication, and computation cost in Tables 2, 3 and 5 clearly showed that our protocols
could achieve many security attributes at a reasonable computation cost.

Author Contributions: Conceptualization, X.Z. and D.L.; methodology, X.Z. and D.L.; software, D.L.;
validation, X.Z. and D.L.; formal analysis, X.Z. and D.L.; investigation, X.Z. and D.L.; resources, X.Z.,
D.L., and H.L.; writing—original draft preparation, X.Z. and D.L.; writing—review and editing, X.Z.,
D.L., and H.L.; supervision, X.Z. and H.L.; project administration, X.Z. and H.L.; funding acquisition,
X.Z. and H.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
grant 61732022, the Shaanxi Innovation Team Project under grant 2018TD-007, and the Natural
Science Foundation of Shaanxi Province under grant 2019ZDLGY12-09.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors gratefully acknowledge the anonymous reviewers for their valuable
comments.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

IIoT Industrial Internet of things
WSNs Wireless sensor networks
XOR Exclusive OR
ECC Elliptic curve cryptography
ECDHP Elliptic curve Diffie–Hellman problem
ECDLP Elliptic curve discrete logarithm problem
AES Advanced Encryption Standard
HGWN Home gateway node
FGWN Foreign gateway node
ROM Random oracle model
AKA Authentication and key agreement
SHA-1 Secure Hash Standard 1
SHA-256 Secure Hash Standard 256

References
1. Farag, H.M.; Österberg, P.; Gidlund, M. Congestion Detection and Control for 6TiSCH Networks in IIoT Applications. In

Proceedings of the 2020 IEEE International Conference on Communications, ICC 2020, Dublin, Ireland, 7–11 June 2020; pp. 1–6.
2. Sisinni, E.; Saifullah, A.; Han, S.; Jennehag, U.; Gidlund, M. Industrial Internet of Things: Challenges, Opportunities, and

Directions. IEEE Trans. Ind. Inform. 2018, 14, 4724–4734. [CrossRef]
3. Far, H.A.N.; Bayat, M.; Das, A.K.; Fotouhi, M.; Pournaghi, S.M.; Doostari, M. LAPTAS: lightweight anonymous privacy-preserving

three-factor authentication scheme for WSN-based IIoT. Wirel. Netw. 2021, 27, 1389–1412.
4. Choudhary, K.; Gaba, G.S.; Butun, I.; Kumar, P. MAKE-IT—A Lightweight Mutual Authentication and Key Exchange Protocol for

Industrial Internet of Things. Sensors 2020, 20, 5166. [CrossRef] [PubMed]
5. Ma, C.; Wang, D.; Zhao, S. Security flaws in two improved remote user authentication schemes using smart cards. Int. J. Commun.

Syst. 2014, 27, 2215–2227. [CrossRef]
6. Sun, D. Security and Privacy Analysis of Vinoth et al.’s Authenticated Key Agreement Scheme for Industrial IoT. Symmetry 2021,

13, 1952. [CrossRef]
7. Kumari, S.; Khan, M.K.; Atiquzzaman, M. User authentication schemes for wireless sensor networks: A review. Ad Hoc Netw.

2015, 27, 159–194. [CrossRef]

http://doi.org/10.1109/TII.2018.2852491
http://dx.doi.org/10.3390/s20185166
http://www.ncbi.nlm.nih.gov/pubmed/32927788
http://dx.doi.org/10.1002/dac.2468
http://dx.doi.org/10.3390/sym13101952
http://dx.doi.org/10.1016/j.adhoc.2014.11.018

Sensors 2022, 22, 7510 21 of 21

8. Das, M.L. Two-factor user authentication in wireless sensor networks. IEEE Trans. Wirel. Commun. 2009, 8, 1086–1090. [CrossRef]
9. Nyang, D.; Lee, M. Improvement of Das’s Two-Factor Authentication Protocol in Wireless Sensor Networks. Cryptology ePrint

Archive. 2009. Available online: https://eprint.iacr.org/2009/631 (accessed on 1 October 2022.)
10. Vaidya, B.; Makrakis, D.; Mouftah, H.T. Improved two-factor user authentication in wireless sensor networks. In Proceedings of

the IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications, Niagara Falls, ON,
Canada, 11–13 October 2010; pp. 600–606.

11. He, D.; Gao, Y.; Chan, S.; Chen, C.; Bu, J. An Enhanced Two-factor User Authentication Scheme in Wireless Sensor Networks. Ad
Hoc Sens. Wirel. Netw. 2010, 10, 361–371.

12. Turkanovic, M.; Brumen, B.; Hölbl, M. A novel user authentication and key agreement scheme for heterogeneous ad hoc wireless
sensor networks, based on the Internet of Things notion. Ad Hoc Netw. 2014, 20, 96–112. [CrossRef]

13. Yeh, H.; Chen, T.; Liu, P.; Kim, T.; Wei, H. A Secured Authentication Protocol for Wireless Sensor Networks Using Elliptic Curves
Cryptography. Sensors 2011, 11, 4767–4779. [CrossRef]

14. Shi, W.; Gong, P. A New User Authentication Protocol for Wireless Sensor Networks Using Elliptic Curves Cryptography. Int. J.
Distrib. Sens. Netw. 2013, 9, 730831 . [CrossRef]

15. Chang, C.; Le, H. A Provably Secure, Efficient, and Flexible Authentication Scheme for Ad hoc Wireless Sensor Networks. IEEE
Trans. Wirel. Commun. 2016, 15, 357–366. [CrossRef]

16. Li, X.; Peng, J.; Niu, J.; Wu, F.; Liao, J.; Choo, K.R. A Robust and Energy Efficient Authentication Protocol for Industrial Internet of
Things. IEEE Internet Things J. 2018, 5, 1606–1615. [CrossRef]

17. Amin, R.; Biswas, G.P. A secure light weight scheme for user authentication and key agreement in multi-gateway based wireless
sensor networks. Ad Hoc Netw. 2016, 36, 58–80. [CrossRef]

18. Das, A.K.; Sutrala, A.K.; Kumari, S.; Odelu, V.; Wazid, M.; Li, X. An efficient multi-gateway-based three-factor user authentication
and key agreement scheme in hierarchical wireless sensor networks. Secur. Commun. Netw. 2016, 9, 2070–2092. [CrossRef]

19. Wu, F.; Xu, L.; Kumari, S.; Li, X.; Shen, J.; Choo, K.R.; Wazid, M.; Das, A.K. An efficient authentication and key agreement scheme
for multi-gateway wireless sensor networks in IoT deployment. J. Netw. Comput. Appl. 2017, 89, 72–85. [CrossRef]

20. Srinivas, J.; Mukhopadhyay, S.; Mishra, D. Secure and efficient user authentication scheme for multi-gateway wireless sensor
networks. Ad Hoc Netw. 2017, 54, 147–169. [CrossRef]

21. Wang, D.; Li, W.; Wang, P. Measuring Two-Factor Authentication Schemes for Real-Time Data Access in Industrial Wireless
Sensor Networks. IEEE Trans. Ind. Inform. 2018, 14, 4081–4092. [CrossRef]

22. Bellare, M.; Rogaway, P. Random Oracles are Practical: A Paradigm for Designing Efficient Protocols. In Proceedings of the
Proceedings of the 1st ACM Conference on Computer and Communications Security, CCS’93, Fairfax, VA, USA, 3–5 November
1993; pp. 62–73.

23. Cremers, C.J.F. The Scyther Tool: Verification, Falsification, and Analysis of Security Protocols. In Proceedings of the 20th Interna-
tional Conference, CAV 2008, Princeton, NJ, USA, 7–14 July 2008; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2008; Volume 5123, pp. 414–418.

24. Koblitz, N. Elliptic Curve Cryptosystems. Math. Comput. 1987, 48, 203–209. [CrossRef]
25. Miller, V.S. Use of Elliptic Curves in Cryptography. In Proceedings of the Advances in Cryptology—CRYPTO ’85, Santa Barbara,

CA, USA, 18–22 August 1985; Lecture Notes in Computer Science; Williams, H.C., Ed.; Springer: Berlin/Heidelberg, Germany,
1985; Volume 218, pp. 417–426.

26. Dolev, D.; Yao, A.C. On the security of public key protocols. IEEE Trans. Inf. Theory 1983, 29, 198–207. [CrossRef]
27. Dodis, Y.; Reyzin, L.; Smith, A.D. Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data. In

Proceedings of the Advances in Cryptology—EUROCRYPT, Interlaken, Switzerland, 2–6 May 2004; Lecture Notes in Computer
Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3027, pp. 523–540.

28. Canetti, R.; Krawczyk, H. Analysis of Key-Exchange Protocols and Their Use for Building Secure Channels. In Proceedings of the
EuroCrypt, Innsbruck, Austria, 6–10 May 2001; Pfitzmann, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; Volume 2045,
pp. 453–474.

29. Srinivas, J.; Das, A.K.; Kumar, N.; Rodrigues, J.J.P.C. Cloud Centric Authentication for Wearable Healthcare Monitoring System.
IEEE Trans. Dependable Secur. Comput. 2020, 17, 942–956. [CrossRef]

30. Challa, S.; Das, A.K.; Odelu, V.; Kumar, N.; Kumari, S.; Khan, M.K.; Vasilakos, A.V. An efficient ECC-based provably secure
three-factor user authentication and key agreement protocol for wireless healthcare sensor networks. Comput. Electr. Eng. 2018,
69, 534–554. [CrossRef]

31. Lee, C.; Chen, C.; Wu, P.; Chen, T. Three-factor control protocol based on elliptic curve cryptosystem for universal serial bus mass
storage devices. IET Comput. Digit. Tech. 2013, 7, 48–56. [CrossRef]

32. Dang, Q.H. Secure hash standard. In US Doc/NIST FIPS Publication 180-4; NIST: Gaithersburg, MD, USA, 2015.

http://dx.doi.org/10.1109/TWC.2008.080128
https://eprint.iacr.org/2009/631
http://dx.doi.org/10.1016/j.adhoc.2014.03.009
http://dx.doi.org/10.3390/s110504767
http://dx.doi.org/10.1155/2013/730831
http://dx.doi.org/10.1109/TWC.2015.2473165
http://dx.doi.org/10.1109/JIOT.2017.2787800
http://dx.doi.org/10.1016/j.adhoc.2015.05.020
http://dx.doi.org/10.1002/sec.1464
http://dx.doi.org/10.1016/j.jnca.2016.12.008
http://dx.doi.org/10.1016/j.adhoc.2016.11.002
http://dx.doi.org/10.1109/TII.2018.2834351
http://dx.doi.org/10.1090/S0025-5718-1987-0866109-5
http://dx.doi.org/10.1109/TIT.1983.1056650
http://dx.doi.org/10.1109/TDSC.2018.2828306
http://dx.doi.org/10.1016/j.compeleceng.2017.08.003
http://dx.doi.org/10.1049/iet-cdt.2012.0073

	Introduction
	Literature Review
	Network Model
	Motivations and Contributions

	Preliminaries
	Elliptic Curve Cryptography
	Threat Model
	Fuzzy Extractor

	The Proposed Scheme
	Initialization Phase
	Registration Phase
	User Registration Phase
	Sensor Registration Phase

	User Login Phase
	Authentication and Key Agreement Phase
	Authentication and Key Agreement in the HGWN
	Authentication and Key Agreement in the FGWN

	User Password Update Phase

	Security Analysis
	Formal Security Proof
	Formal Security Model
	Security Proof

	Formal Verification Using Scyther
	Informal Security Analysis
	Mutual Authentication
	Session Key Agreement
	Forward and Backward Secrecy
	User Anonymity and Untraceability
	Illegal Login Detection
	Stolen Smart Card Attack
	Replay Attack
	Privileged Insider Attack
	Desynchronization Attack
	Impersonation Attack

	Performance and Security Comparison
	Security Features Comparison
	Communication Cost Comparison
	Computation Cost Comparison

	Conclusions
	References

