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Abstract: This paper investigates the problem of formation fault-tolerant control of multiple quadro-
tors (QRs) for a mobile sensing oriented application. The QRs subject to faults, input saturation and
time-varying delays can be controlled to perform a target-enclosing and covering task while guaran-
teeing the state constraints will not be exceeded. A distributed formation control scheme is proposed,
using a radial basis function neural network (RBFNN)-based time-delay position controller and an
adaptive fault-tolerant attitude controller. The Lyapunov–Krasovskii approach is used to analyze the
time-varying delay. Barrier Lyapunov function is deployed to handle the prescribed constraints, and
an auxiliary system combined with a command filter is designed to resolve the saturation problem.
An RBFNN and adaptive estimators are deployed to provide estimates of disturbances, fault signals
and uncertainties. It is proven that all the closed-loop signals are bounded under the proposed
protocol, while the prescribed constraints will not be violated, which enhances the flight safety and
QR formation’s applicability. Comparative simulations based on application scenarios further verify
the effectiveness of the proposed method.

Keywords: time-varying formation; time-delay; RBFNN; fault-tolerant control; adaptive control;
state constraint

1. Introduction

Formation control technology, which is based on the theory of multi-agent systems
(MAS), enables multiple unmanned aerial vehicles (UAVs) to efficiently complete a shared
task and is widely used in aerial mapping, atmospheric environment monitoring and even
coordinated military missions [1–3].

As a typical small-scale UAV, quadrotor (QR) is qualified to be a formation platform for
a variety of applications due to its simple structure, strong maneuverability and hovering
capability [4], particularly for mobile sensing tasks, such as target-enclosing and covering,
which have been studied by several works so far. The main purpose of the former was
to control several mobile sensors to rotate around or above a detected target to obtain
detailed information from all angles [5–7]. The objective of the latter was to optimize the
deployment location of multiple sensors to achieve effective coverage of the interest area,
where the methods are mainly Voronoi partitioning-based [8,9], coverage cost function-
based [10], K-means-based [11] and reinforcement learning-based [12]. However, these
methods cannot be directly applied to small-scale aerial platforms due to the contradiction
between the complex location optimization algorithms and limited computing resources.
In this paper, a consensus-based formation controller was designed. The UAV’s movement
and placement can be directly and flexibly set by time-varying formation functions and
virtual leader trajectory, which ensures that the mobile sensing task, including the above
two, can be performed when the formation tracking is realized by QR members.
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With the expansion of formation technology applications, formation operation reliabil-
ity has become more prominent, with the fault-tolerant control (FTC) being one of the most
important factors. Due to the possibility of a topological chain reaction [13,14], a formation
composed of multiple interconnected individuals is more susceptible to malfunction effects
than a single system. In recent years, formation FTC has garnered considerable interest,
and typical methods can be categorized as either active or passive. In the active FTC design,
actuator faults are diagnosed, and parameters can be reconfigured online to achieve the
desired performance [15]. An iterative learning observer-based reconstructive-FTC protocol
for spacecraft formation was designed in [16]. A reinforcement learning-based data-driven
active FTC method for multiple QRs was studied in [17]. However, active FTC approaches
are also difficult to implement with small UAVs due to their complexity and high com-
putational requirements. In contrast, the passive FTC requires less computational power
due to its algorithm’s simplicity [18,19]. The actuator fault effect for multiple aircraft is
addressed in [20] using an adaptive H∞ scheme. A projection-based adaptive FTC protocol
was proposed in [21] for a group of UAV formation systems. In [22], a sliding mode-based
adaptive FTC scheme for a heterogeneous MAS is presented. Taking into account the
limited computing resources of QRs, the adaptive FTC method is adopted in this paper,
which is one of the state-of-the-art FTC methods.

Even though UAV formation FTC has made significant progress, there are still prob-
lems, obstacles and limitations to its practical application. The fact that practical engineering
systems have limitations is one of them. On the one hand, due to the hardware’s physi-
cal limitations, the control forces and torques generated by UAV actuators are naturally
constrained, also known as the saturation phenomenon, which may result in a decline
in performance [23]. In [24], anti-windup compensators are employed against input sat-
urations of a linear MAS. In [25], an auxiliary dynamic system is introduced to address
the saturation problem for multiple UAVs. On the other hand, due to safe operation or
system-specific requirements, certain UAV system states must be constrained. For example,
Some sensor payloads that directly attached to the UAV frame require that the UAV’s
attitude angular velocity be constrained within the sensor’s allowed range, and the pan-
tilt-zoom (PTZ) system used to stabilize optical sensors also has constraint requirements on
UAV’s attitude states [26]. Such consideration is crucial, particularly when actuator faults
exist and may result in constraints being violated. According to [27], the associated state
constraint problem for a second-order MAS was resolved using a combination of the barrier
function and sliding mode control technique. According to [28], motion and visibility
constraint problems for multiple robots were resolved by planning a feasible trajectory. By
employing performance function and error transformation, Ref. [29] solved the field of
view constraint problem for mobile robots formation. However, without modifying the
control structure, the methods in [27–29] cannot be applied to unconstrained scenarios.
Moreover, the aforementioned two types of constraints are typically studied separately and
have never been investigated simultaneously in the formation FTC domain.

In addition, due to the formation network’s limited communication capabilities, time
delays are unavoidable, which may reduce system performance [30,31]. Based on LMIs
theory, Ref. [32] solved the equality communication time delay problem for a group of
UAVs. By developing the Lyapunov–Krasovskii (L–K) function, Ref. [33] addressed time-
varying delay problem for a 2nd-order MAS. By applying generalized Halanay inequality,
Ref. [34] investigated the formation tracking control of 2nd-order MAS with time-varying
delays. However, the formation configuration cannot be adjusted dynamically in these
works, limiting the application scope. In addition, wind disturbance has a significant
impact on the movement of small UAVs in the real world, particularly when the modeling
is inaccurate. To circumvent this issue, the mainstream techniques typically include neural
networks estimators [35–37], nonlinear observers [38,39] and adaptive estimators [40,41],
etc. On the basis of the aforementioned factors, we neutralize the effect of disturbances,
uncertainties and time-varying communication delays and achieve precise control of time-
varying formations.
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In light of the aforementioned obstacles, we propose a novel QR formation FTC
framework for a mobile sensing oriented application. The main contribution of this work
is threefold. Firstly, based on a distributed adaptive FTC mechanism, the effect of time-
varying multiplicative and additive faults can be effectively compensated for each QR,
and the desired formation flight can still be achieved. Secondly, by applying the barrier
Lyapunov function (BLF) technique and designing an auxiliary system, the attitude states
of QRs can be constrained in the presence of input saturation, and our BLF analysis
can also be applied to unconstrained scenarios without modifying the control structure.
Compared to the methods in [27–29], the scope of application is expanded. Thirdly, the
time-varying delay of each QR is different. Only delayed neighbor information is needed to
realize formation flight; that is, the proposed protocol is distributed, and the time-varying
formation configuration can be flexibly designed to adapt to target enclosing, area covering
and other scenarios. Meanwhile, the disturbances and uncertainties are handled properly
by radial basis function neural network (RBFNN) and an adaptive estimator; the application
restrictions in real-word environments are relaxed compared to [32–34].

Notations : Let a⊗ b denote the Kronecker product of matrices a and b, and σmin(•)
and σmax(•) indicate the minimum and maximum singular value of a matrix. We denote
|•| as the absolute value of a real number, ‖•‖ the Euclidean norm of a vector and ‖•‖F the
Frobenius norm of a matrix.

2. Preliminaries and Problem Formulation
2.1. Basic Concepts on Graph Theory

An undirected graph G = {V , E ,W} represents the communication topology of the N
QRs, which contains a set of nodes V = {q1, q2, ..., qN}, a set of edges E ⊆

{
(qi, qj) : qi, qj ∈ V

}
and a weighted adjacency matrix W = [aij] ∈ RN×N . If agent i is connected by an
edge with agent j, that is (qi, qj) ∈ E , then aij = aji > 0. Otherwise aij = aji = 0,
and aii = 0 for all i ∈ Σ = {1, 2, ..., N}. The set of neighbors of node qi is defined by
Ni =

{
qj ∈ V : (qi, qj) ∈ E

}
. The out-degree of node qi is defined by Degout(qi) = ∑j∈Ni

aij.
The degree matrix of graph G is represented byD = diag{Degout(qi), i ∈ Σ}, and the Lapla-
cian matrix of graph G is represented by L = D −W . The undirected graph G is said to be
connected if a path exists between any two nodes qi, qj ∈ V , where the path represents a
series of diverse adjacent points from qi to qj. If qi can access information from the leader,
then the connection weight between them bi > 0. Otherwise bi = 0, and the matrix form is
B = diag{b1, b2, ..., bN}. Throughout this brief, the following assumption is made for the
communication topology.

Assumption 1. The undirected graph for N QRs is connected, and there exists at least one path
between the leader and follower.

2.2. Problem Formulation and Modeling

Consider a group of N QRs following a virtual leader labeled as 0, of which the
interaction topology is described by an undirected graph G; it is assumed that graph
G is connected. Taking practical factors into account, the dynamic model of QR can be
formulated by using Newton’s laws [42]:{

Ṗi = Vi

V̇i = −ge3 + Rit
Ti
mi

e3 + FiP(Pi, Vi, t)
(1)

{
Ȧi = RirΩi

Ω̇i = ∆FiFiA + J−1
i UiA + DiA

(2)

where i ∈ Σ, Pi = [Pi1, Pi2, Pi3]
T , Vi = [Vi1, Vi2, Vi3]

T and Ai = [φi, θi, ψi]
T are position,

velocity and attitude of the i-th QR in inertia frame, respectively. Ωi = [pi, qi, ri]
T repre-

sents the angular velocity in a body-fixed frame. In addition, mi and Ji = diag
{

Jxi, Jyi, Jzi
}
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represents the total mass and inertia matrix, respectively. Ti represents the total thrust,
e3 = [0, 0, 1]T and g represents the gravity constant, and FiP(Pi, Vi, t) = [ fi1, fi2, fi3]

T rep-
resents the lumped uncertainty term including disturbance and inaccurate modeling in
(1). FiA = −J−1

i S(Ωi)JiΩi − J−1
i KiDΩi, KiD = diag{Ki1D, Ki2D, Ki3D} represents the aero-

dynamic damping coefficient. UiA = [Ui1A, Ui2A, Ui3A]
T represent the control input torque.

Unknown time-varying function ∆Fi ∈ R3×3 and DiA represent parameter perturbation
and external disturbance in (2), respectively. Rit, Rir and S(Ωi) are shown below:

Rti =

cθi cψi sθi cψi sφi − sψi cφi sθi cψi cφi + sψi sφi

cθi sψi sθi sψi sφi + cψi cφ1 sθi sψi cφi − cψi sφ

−sθi cθi sφi cθi cφi

,

Rri =
1

cθi

cθi sφi sθi cφi sθi

0 cφi cθi −sφi cθi

0 sφi cφi

, S(Ωi) =

 0 −ri qi
ri 0 −pi
−qi pi 0

,

where s(∗) , sin(∗), c(∗) , cos(∗).
The model of input saturation is expressed as follows:

UikA =


Uik,H, i f UikAF > Uik,H

UikAF, i f Uik,L 6 UikAF 6 Uik,H

Uik,L, i f UikAF < Uik,L

(3)

where k = 1, 2, 3, UiAF(t) = [Ui1AF, Ui2AF, Ui3AF]
T ∈ R3 represents the control input free

from limits but subject to actuator faults, which are expressed as follows

UiAF(t) = Γi(t)UiAC(t) + δi(t) (4)

where δi(t) = [δi1, δi2, δi3]
T ∈ R3 and Γi(t) = diag{Γi1, Γi2, Γi3} ∈ R3×3 are time-varying

additive and multiplicative actuator faults, respectively. UiAC(t) ∈ R3 is generated by the
attitude controller to be designed.

Considering that most sensors and PTZ systems have constraint requirements for
rotational motion, the attitude states of QRs will be constrained and are defined as follows{

‖Ai‖ < Ci1(t)
‖Ωi‖ < Ci2(t)

(5)

where Cim(t) ∈ R, m = 1, 2 represents the time-varying constraints.
The formation center is regarded as the virtual leader, which is specified by P0 = 1

N ∑N
i Pi,

and its trajectory is Pd = [P1d(t), P2d(t), P3d(t)]T, which is piecewise 2nd-order differentiable.
The time-varying formation pattern is set by a vector ΛF(t) = [ΛT

1 (t), ΛT
2 (t), ..., ΛT

N(t)]
T

with the geometric center set as Λ0 = 1
N ∑N

1 Λi(t), where Λi = [Λi1(t), Λi2(t), Λi3(t)]T ,
i = 1, · · · , N, Λik(t) are 2nd-order differentiable functions defining the motion mode of i-th
QR with respect to the geometric center, k = 1, 2, 3. Based on consensus theory, we give the
following definition:

Definition 1. The formation tracking flight is said to be achieved when{
limt→∞(Pi − Pj) = ∆ij, ∀i, j ∈ Σ
limt→∞ P0 = Pd

(6)

where ∆ij = Λi −Λj.
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Except the communication delay τij(t) between i-th QR and j-th QR, this paper also
considers the self delay τii(t) of i-th QR caused by calculation or measurement. τij(t)
and τii(t) are generally regarded as uniform delay τi(t) in the MAS consensus control
problem [43].

Assumption 2. The time-varying delay has upper bound, that is, τi ≤ τM, i ∈ Σ.

2.3. Control Objective

As depicted in Figure 1, the objective of this work is to design a formation control
scheme for the QR mobile sensing platforms to perform the following tasks. The first one is
a covering task, in which the QRs can follow the virtual leader to track a moving target
and fully cover the target’s adjacent area to carry out sensing or surveillance. The second
task is target enclosing, in which the QRs can be controlled to gather and rotate above
the moving target to monitor or observe it. The detailed control objectives of proposed
formation control protocol are as follows:

• Consensus-based time-varying formation control protocol (10) is designed based on
the demands of the target-enclosing and covering tasks;

• Distributed adaptive FTC mechanism is deployed to compensate the fault signals (4);
• BLF and auxiliary system are designed to ensure that the constraint requirements

(5) of sensor payload will not be violated in the presence of input saturation (3);
• The influence of time-varying communication delay τi can be eliminated by the

L–K technique;
• The problem of uncertainties and disturbances in (1) and (2) can be neutralized RBFNN

(12) and adaptive estimators (49).

.

Target adjacent area fully coverage Target enclosing

Figure 1. Depiction of the target-enclosing and covering task.

3. Main Results

The desired formation control scheme is proposed in Figure 2, which can be divided
into a RBFNN-based time-delay position controller (NTDPC) (outer-loop) and an adaptive
fault-tolerant attitude controller (AFTAC) (inner-loop). The inputs of outer-loop, including
time-delayed neighbor information (Pjτ , Vjτ)j∈Ni , time-delayed self information Piτ , Viτ
and time-delayed leader information Pdτ , ΛFτ are entered to NTDPC. In the mean time,
the lumped uncertainties FiP(Pi, Vi, t) are compensated by the RBFNN approximation
law. Then, the command attitude signals φiC, θiC and total thrust TiC are calculated from
the outputs of NTDPC. The inputs of inner-loop, including command attitude signals
φiC, θiC, ψiC, are transferred to AFTAC. Meanwhile, the external disturbances DiA, actuator
faults Γi, δi and model uncertainties ∆Fi are compensated by adaptive estimation laws.
Finally, the control inputs UiA and Tid are applied to i-th QR for formation flight. It should
be pointed out that the derivatives of φiC, θiC are obtained from Command Filter_1 for the
sake of reducing computational burden.



Sensors 2022, 22, 7497 6 of 22

Model 
Uncertainty
Estimator

Model 
Uncertainty

 !"

Input
Saturation
Model

Command
Attitude&Thrust 
Calculation

Unknown 
Disturbance
Estimator

Multiplicative 
Fault

EstimatorAdditive 
Fault

#"

Additive 
Fault

Estimator

$-th
Quadrotor

Position Model

Attitude 
Control

Position 
Control

%&' , ()' *"+', *"-' ."+ /"& , 0"&

Command
Filter_1

1"&2"3

Auxiliary
System_1

4"3

5"6Command
Filter_2

5"

 5"

7/"& , 70"&

Angular 
Velocity 
Control

2"8."96

:;"

Multiplicative 
Fault

;"

#"
."9)."9

<"&

Auxiliary
System_2

4"8
=."9

:#"

:>"9

?" @"

%" , A"

$-th
Quadrotor

Attitude Model

B"

>"C

 :!"

Time Delay
D"

%"', A"'

Model 
Uncertainty

!"+ %", A", E

Adaptive

RBFNN

AFTAC

(Inner-loop)

NTDPC

(Outer-loop)
:!"+ %", A" , E

Figure 2. Block diagram of proposed formation control scheme scheme.

3.1. RBFNN Approximation

Suppose an unknown smooth nonlinear function f (x) : Rm → R can be approximated
over a prescribed compact set ΣR ∈ Rm as follows

f (x) = W∗TΨ(x) + ε (7)

where Ψ(x) = [ψ1(x), · · · , ψl(x)]T : ΣR → Rl denotes the radial basis function vector, of
which the element is expressed as follows

ψk(x) = exp(− (‖x− ςk‖)2

µ2
k

), k = 1, · · · , l

where ςk ∈ Rm and µk ∈ R are the center and spread. ε ∈ R is the bounded RBFNN
approximation error on ΣR, that is, |ε| ≤ ε̄ with ε̄ is an unknown constant. W∗ ∈ Rl is the
ideal RBFNN weight vector expressed as follows

W∗ = arg min
Ŵ

{
sup
x∈ΣR

∣∣∣ f (x)− Ŵ TΨ(x)
∣∣∣}

where Ŵ represents the estimation of W∗.

3.2. Design of NTDPC

For i-th QR, the local tracking errors are defined as follows

eiP = ∑
j∈Ni

aij[Pi(t)− Pj(t)− ∆ij(t)] + bi(Pi(t)− Pd(t)− ∆i0(t)) (8)

eiV = ∑
j∈Ni

aij[Vi(t)− Vj(t)− ∆̇ij(t)] + bi(Vi(t)− Ṗd(t)− ∆̇i0(t)) (9)

where ∆ij = Λi −Λj, ∆i0 = Λi −Λ0.
Then the error dynamics of system (2) can be expressed in a compact form as follows{

ėP = eV

ėV = ((L+ B)⊗ I3×3)(UP + FP − en ⊗ P̈d − ∆̈Σ)
(10)
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where eP = [eT
1P, eT

2P, ..., eT
NP]

T , eV = [eT
1V , eT

2V , ..., eT
NV ]

T , UP = [UT
1P, UT

2P, ..., UT
NP]

T ,
UiP = −ge3 + Rti

Ti
mi

e3, FP = [FT
1P, FT

2P, ..., FT
NP]

T , ∆Σ = [∆T
10, ∆T

20, ..., ∆T
N0]

T ,
en = [1, 1, ..., 1]T ∈ Rn.

Assumption 3. The second derivatives of Pd and ∆Σ are bounded; there exists positive constants
PM and ∆M, such that ‖en ⊗ P̈d‖ ≤ PM and ‖∆̈Σ‖ ≤ ∆M.

To obtain the approximation of the lumped uncertainty FiP, we adopt an adaptive
RBFNN with time-delayed states Pi(t− τi) and Vi(t− τi) as inputs and approximation
value as output, which is expressed as

F̂iP = Ŵ T
i Ψi (11)

where Ŵi = diag
{

Ŵi1, Ŵi2, Ŵi3
}

is the current RBFNN weights estimation value of i-th
QR, Ψi = [ΨT

i1, ΨT
i2, ΨT

i3]
T , Ŵik ∈ Rlik , Ψik ∈ Rlik , k = 1, 2, 3.

Then FP can be expressed as

FP = W∗TΨ + ε (12)

where W∗ = diag
{

W∗
1 , W∗

2 , ..., W∗
N
}

, Ψ = [ΨT
1 , ΨT

2 , ..., ΨT
N ]

T , ε = [εT
1 , εT

2 , ..., εT
N ]

T with
εi = [εi1, εi2, εi3]

T , the approximation of FP is

F̂P = Ŵ TΨ (13)

where Ŵ = diag
{

Ŵ1, Ŵ2, ..., ŴN
}

.
In addition, the RBFNN weights estimation error is denoted as W̃ = W∗ − Ŵ .

Remark 1. In the light of Stone–Weierstrass approximation theorem [44], Ψ, W∗ and ε are bounded,
namely, ‖Ψ‖ ≤ ΨM, ‖W∗‖ ≤WM and ‖ε‖ ≤ εM, ΨM, WM and εM are positive numbers.

Now we design the control inputs UiP of i-th QR position subsystem (2) and update
laws of RBFNN weights Ŵi as:

UiP = −kPeiPτ − kVeiVτ − Ŵ T
i Ψi + ∆̈i0τ (14)

˙̂Wi = Πi(Ψ
∗
i (KPeiPτ + KVeiVτ)− KWŴi) (15)

where kP, kV > 0. ∆i0τ = ∆i0(t − τi), eiPτ = eiP(t − τi) and eiVτ = eiV(t − τi). KP, KV
and KW are positive design constants, Ψ∗i = diag{Ψi1, Ψi2, Ψi3}, Πi = diag{Πi1, Πi2, Πi3},
Πik = κik Ilik×lik is positive definite with κik > 0, k = 1, 2, 3.

Combining (14) and (15), we have

ėV = ((L+ B)⊗ I3×3)(−kPePτ − kVeVτ + W̃ TΨ + ε− en ⊗ P̈d + ∆̈Στ − ∆̈Σ) (16)

where ePτ = eP(t− τi), eVτ = eV(t− τi) and ∆Στ = ∆Σ(t− τi).

Lemma 1. Under Assumption 1, G = (L + B) ⊗ I3×3 is positive definite [45], so
‖∆P‖ ≤ ‖eP‖σ−1

min(G) and ‖∆V‖ ≤ ‖eV‖σ−1
min(G) [44], in which ∆P and ∆V are formation

tracking errors, ∆P = P− en ⊗ Pd − ∆Σ with P = [P1, P2, ..., PN ]
T , ∆V = ∆̇P.

Lemma 2. According to [46], we can conclude that the following inequality is always valid:

τ−1
0 [h(t)− h(t− τ)]TU[h(t)− h(t− τ)] ≤

∫ t

t−τ
ḣT(ξ)Uḣ(ξ)dξ ≤

∫ t

t−τ0

ḣT(ξ)Uḣ(ξ)dξ (17)

where t > 0, h(t) ∈ Rn and τ(t) ∈ [0, τ0] are arbitrary differentiable vector and scalar functions,
respectively, and τ0 > 0. U = UT is an arbitrary positive definite constant matrix.
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Theorem 1. Under Assumptions 1-3, with the control law (14) and update law (15), the time-
varying formation tracking for N QRs position systems (2) subject to time-varying delays and
uncertainties can be achieved if the positive design constants KP = 4M2τ2

Mkv, KV = 4M2τ2
Mkp,

K0 = 4M2τ2
MkPkV and kP, kV , KW , M1, M2 are chosen appropriately to make the symmetric

matrix M be positive definite, which is

M =


kPKV − 2M2τ2

Mk2
P 0 0 0 0

0 kV KP −M1τ2
M − KV σmax(G−1)− 2M2τ2

Mk2
V 0 0 0

0 0 M1 − 2M2τ2
Mk2

P −2M2τ2
MkPkV − KV

2 ΨM

0 0 0 M2(σmin(B−1)− 2τ2
Mk2

V ) − KP
2 ΨM

0 0 0 0 KW − 2M2τ2
MΨ2

M

 (18)

where B = GTG.

Proof. Consider the Lyapunov–Krasovskii candidate function as V(t) = V1(t) + V2(t) +
V3(t) + V4(t) with

V1(t) =
1
2

KPeT
V G−1eV +

1
2

K0eT
PeP + KVeT

PG−1eV (19)

V2(t) = M1τM

∫ t

t−τM

(ξ − t + τM)ėT
P(ξ)ėP(ξ)dξ (20)

V3(t) = M2τM

∫ t

t−τM

(ξ − t + τM)ėT
V(ξ)B−1ėV(ξ)dξ (21)

V4 = tr
{

W̃ TΠ−1W̃
}

(22)

where Π = diag{Π1, Π2, ..., ΠN}.
Taking the time derivative of V1 and V4 we have

V̇1 + V̇4 =(KPeT
V + KVeT

P)G
−1ėV + K0eT

PeV + eT
VKV G−1eV + tr

{
W̃ TΠ−1 ˙̃W

}
=(KPeT

V + KVeT
P)(−kP∆eP − kPeP − kV∆eV − kVeV) + K0eT

PeV

+ (KPeT
V + KVeT

P)H + eT
VKV G−1eV + tr

{
W̃ TKWŴ

}
+ tr

{
W̃ TΨ

[
(KPeT

V + KVeT
P)− (KPeT

Vτ + KVeT
Pτ)
]}

=(KPeT
V + KVeT

P)(−kP∆eP − kPeP − kV∆eV − kVeV) + KWWMtr‖W̃‖F

+ (KPeT
V + KVeT

P)H + K0eT
PeT

V + eT
VKV G−1eV − KW‖W̃‖2

F

+ tr
{

W̃ TΨ
[
(KPeT

V + KVeT
P)− (KVeT

P + KV∆eT
P + KPeT

V + KP∆eT
V)
]}

(23)

where ∆eP = ePτ − eP, ∆eV = eVτ − eV and H = ε− en ⊗ P̈d + ∆̈Στ − ∆̈Σ.
By Lemma 2, we obtain the time derivatives of V2 and V3 as follows

V̇2 = M1τ2
M ėT

P(t)ėP(t)−M1τM

∫ t

t−τM

ėT
P(ξ)ėP(ξ)dξ

≤ −M1∆eT
P∆eP + M1τ2

MeT
V(t)eV(t)

≤ −M1‖∆eP‖2 + M1τ2
M‖eV‖2

(24)
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and

V̇3 =M2τ2
M ėT

V(t)B−1ėV(t)−M2τM

∫ t

t−τM

ėT
V(ξ)B−1ėV(ξ)dξ

≤−M2∆eT
V B−1∆eV + M2τ2

M ėT
V(t)B−1ėV(t)

≤−M2σmin(B−1)‖∆eV‖2 + M2τ2
M(−kP∆eP − kPeP − kV∆eV − kVeV

+ W̃ TΨ + H)T(−kP∆eP − kPeP − kV∆eV − kVeV + W̃ TΨ + H)

≤−M2σmin(B−1)‖∆eV‖2 + 2M2τ2
M‖W̃‖2

FΨ2
M + 2M2τ2

M(−kP∆eP − kPeP

− kV∆eV − kVeV + H)T(−kP∆eP − kPeP − kV∆eV − kVeV + H)

≤−M2σmin(B−1)‖∆eV‖2 + M2τ2
M(2k2

P‖∆eP‖2 + 4k2
PeT

P∆eP

+ 4kPkV∆eT
V∆eP + 4kPkVeT

V∆eP + 4kPkVeT
VeP + 2k2

P‖eP‖2

+ 4kPkV∆eT
VeP + 2k2

V‖∆eV‖2 + 4k2
VeT

V∆eV + 2k2
P‖eV‖2

+ 2H2
M + 2‖W̃‖2

FΨM + 4HT(−kP∆eP − kPeP − kV∆eV − kVeV))

(25)

where HM = 2∆M + PM + εM. By applying (23)–(25) we obtain

V̇ = V̇1 + V̇2 + V̇3 + V̇4 ≤ −eT Me + eTz + Θ = −Ve(e) (26)

where e =
[
‖eP‖, ‖eV‖, ‖∆eP‖, ‖∆eV‖, ‖W̃‖F

]T , z = [0, 0, 4kPHM, 4kV HM, WMKW ]T , and
Θ = 2M2τ2

M H2
M, M are defined by (18). If M is positive definite, then Ve(e) > 0, and

‖e‖ ≥ −‖z‖+
√
‖z‖2 + 4σmin(M)Θ

2σmin(M)
(27)

Thus, e is uniformly ultimately bounded (UUB) according to [47]. Moreover, eP, eV
are bounded stable referring to the definition of e, and following Lemma 1, the formation
tracking errors ∆P and ∆V are also UUB. So, the desired position control for formation
flight can be realized by control law (14) and RBFNN update law (15).

Remark 2. In matrix M, kp, kv, KP, KV and KW are control and adaptive parameters, and K0,
M1 and M2 are constants to be selected. τM is the upper bound of time delays. Except τM, all of
the above parameters are adjustable to ensure the solvability of M. Besides, one can see that all of
the diagonal elements of M are positive when τM being a certain value. Therefore, M is solvable in
Theorem 1.

3.3. Design of AFTAC

The command attitude AiC(t) = [φiC, θiC, ψiC]
T and total thrust TiC of i-th QR can be

obtained from UiP = [Ui1P, Ui2P, Ui3P]
T , which is derived as

TiC = mi

√
U2

i1P + U2
i2P + (Ui3P + g)2

φiC = arcsin(Ui1PsinψiC−Ui2PcosψiC
m−1

i Ti
)

θiC = arctan(Ui1PcosψiC+Ui2PsinψiC
Ui3P+g )

(28)

where ψiC is a free variable and can be set to ψiC = 0 for simplicity.

Remark 3. It is feasible to ensure Ui3P + g is constantly positive to avoid singularity because Ui3P
is bounded by selecting suitable gain constant kP, kV and Ŵ T

i Ψi, ∆̈i0τ is in a cetain range when
calculating θiC in (28).

To deploy the attitude control scheme, the following assumptions and lemma need to
be made:
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Assumption 4. There exists a 2nd order differentiable continuous bound Cid(t) ∈ R of command
attitude AiC within the constraint Ci1, namely, ‖AiC(t)‖ 6 Cid(t) < Ci1(t). The initial state of
the attitude subsystem needs to be within the constraints Cim, m = 1, 2, which is the (3−m)-th
order differentiable.

Assumption 5. The actuators will not completely fail during operation, and the fault signals
Γik(t) and δi(t) change continuously within certain ranges, that is, 0 < Γik,min ≤ Γik(t) ≤ Γik,max,
tr
(
Γ̇T

i Γ̇i
)

6 Ξi < ∞, where Γik,min, Γik,max are known constants with k = 1, 2, 3, and
‖δi(t)‖ 6 δi < ∞, ‖δ̇i(t)‖ 6 δi0 < ∞.

Assumption 6. The model uncertainty factor ∆Fi(t) and its derivatives and unknown distur-
bances DiA are bounded, which are expressed as tr

(
∆FT

i ∆Fi
)
6 Ξi < ∞, tr

(
∆ḞT

i ∆Ḟi
)
6 Ξi,

‖DiA‖ 6 DiA, DiA > 0 ∈ R can be unknown.

Lemma 3. By [48], we know that the following inequality holds:

0 ≤ |ρ| − ρtanh(
ρ

λ
) ≤ λκ0 (29)

where λ > 0, ρ ∈ R are arbitrary numbers, κ0 = 0.2785.

The attitude tracking error of i-th QR is zi1 = Ai − AiC, of which the dynamic can be
derived as

żi1 = Rir(zi2 + αi)− ȦiC (30)

where zi2 = Ωi − αi is angular velocity tracking error, αi is the command filtered signal of
designed virtual control law αiC, in which the command filter limits the magnitude, rate
and bandwidth of αiC and is shown in Figure 3.

  

!"# $"%
&

2'"%$"%
2'"%$"%

1

(

1

(

!"

)!"

*+,-./034 5.6./47 8+/4 5.6./47

Figure 3. Framework of the command filter, with ωiB and ξiB being design constants, i ∈ Σ.

In order to deal with the constraints on the attitude states, we adopt the tan-type BLF
as follows

Vi1B =
C2

i1
π

tan

(
πzT

i1zi1

2C2
i1

)
(31)

where Ci1 = Ci1 − Cid. It is easy to see that when ‖zim‖ → Cim, then VimB → ∞; thus,
‖zim‖ < Cim holds if and only if VimB is bounded, m = 1, 2.

Remark 4. When there is no attitude constraint on i-th QR, then Cim → ∞; thus, Cim → ∞,
m = 1, 2, and we have

lim
Cim→∞

VimB =
1
2

zT
imzim (32)

that is, our BLF analysis method is also available for the unconstrained circumstance.
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For simplicity of notation, define νim = zim

cos2
(

πzT
imzim

2C2
im

) , m = 1, 2 and take the derivative

of Vi1B with respect to time, and we have

V̇i1B =
2Ci1Ċi1

π
tan

(
πzT

i1zi1

2C2
i1

)
+ νT

i1
(

Rir(zi2 + αi)− ȦiC
)
−
(

Ċi1
Ci1

)
νT

i1zi1 (33)

The designed virtual control law αiC is shown as below

αiC = R−1
ir

(
− Ki1α

zi1

zT
i1zi1

C2
i1

π
sin

(
πzT

i1zi1

2C2
i1

)
cos

(
πzT

i1zi1

2C2
i1

)
+ Ki1αEi1 − Ki1Czi1 + ȦiC −

K2
i1α

2
νi1

)
(34)

where µi1 is a positive small constant, Ki1α > 2Ki1C > 0, Ki1α is a design parameter, and

Ki1C =
√
( Ċi1

Ci1
)2 + εi1C with the small constant εi1C > 0.

Remark 5. To make V̇i1B be negative definite, the terms −
(

Ċi1
Ci1

)
νT

i1zi1, νT
i1 ȦiC, K2

i1α
2 νT

i1νi1 in (33)

will be canceled by terms −Ki1Czi1, ȦiC, −K2
i1α
2 νi1 in (34), respectively. Noticing that

−Ki1ανT
i1

zi1

zT
i1zi1

C2
i1

π
sin

(
πzT

i1zi1

2C2
i1

)
cos

(
πzT

i1zi1

2C2
i1

)
= −Ki1α

k2
i1α

π
tan

(
πzT

i1zi1

2C2
i1

)
,

this will generate the negative definite BLF-form term in (33).

The auxiliary system Ei1 is designed as

Ėi1 =

{
−Ki1EEi1 −κi1Ei1 + γi1E∆αi, i f ‖Ei1‖ > Ei1

0, i f ‖Ei1‖ 6 Ei1
(35)

where Ei1 ∈ R3, Ei1 > 0 is a small constant, Ki1E > 1, γi1E > 0 are design constants,

κi1 =
|νT

1 Rir∆αi1|+ 1
2 γ2

i1E∆αT
i ∆αi

‖Ei1‖2 , ∆αi = αi − αiC.

Remark 6. When saturation occurs, the auxiliary system will respond to it. Otherwise, ∆αi = 0,
then Ėi1 = −Ki1EEi1; thus, Ei1 will converge into ‖Ei1‖ 6 Ei1, after which, if saturation occurs
again, Ei1 can be reset so that ‖Ei1‖ > Ei1. Then, the auxiliary system can be made responsive again.

As can be seen from (33),

2Ci1Ċi1
π

tan

(
πzT

i1zi1

2C2
i1

)
=

2Ċi1
Ci1

C2
i1

π
tan

(
πzT

i1zi1

2C2
i1

)
<

2Ki1CC2
i1

π
tan

(
πzT

i1zi1

2C2
i1

)
.

Besides, νT
i1Ki1αEi1 6

K2
i1α
2 νT

i1νi1 +
1
2 ET

i1Ei1. Set K∗i1 = Ki1α − 2Ki1C, then we have

V̇i1B 6 −K∗i1
C2

i1
π

tan

(
πzT

i1zi1

2C2
i1

)
+ νT

i1Rirzi2 +
1
2

ET
i1Ei1 +

∣∣∣νT
i1Rir∆αi

∣∣∣ (36)

The Lyapunov function for this step is constructed as

V∗i1 = Vi1B +
1
2

ET
i1Ei1 (37)
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Taking the time derivative of (37) and notice that

ET
i1γi1E∆αi 6

γ2
i1E
2

∆αT
i ∆αi +

1
2

ET
i1Ei1 (38)

then we have

V̇∗i1 6 −K∗i1
C2

i1
π

tan

(
πzT

i1zi1

2C2
i1

)
− (Ki1E − 1)ET

i1Ei1 + νT
i1Rirzi2 (39)

where νT
i1Rirzi2 will be compensated later.

Similarly, the BLF for m = 2 is

Vi2B =
C2

i2
π

tan

(
πzT

i2zi2

2C2
i2

)
(40)

where Ci2 = Ci2 − αi > 0, and ‖αi‖ < αi
The dynamics of the angular velocity tracking error zi2 is derived as

żi2 = ∆F iFiA + J−1
i (∆UiA + UiAF) + DiA − α̇i (41)

where ∆UiA = UiA −UiAF. According to (4), the following inequality holds:

‖UiA −UiAF‖ 6 ‖UiA‖+ ‖Γi‖‖UiAC‖+ ‖δi‖ 6 ‖U iA‖ (42)

where ‖UiA‖ is the given input, ‖UiAC‖ is produced by our desired control law and ‖Γi‖
and ‖δi‖ are known from Assumption 5; thus, U iA can be determined. Define UiAC as

UiAC = Γ̂−1
i Φi (43)

where Γ̂i is the estimation of the multiplicative fault Γi, Φi will be designed later. Notice that

J−1
i UiAF = J−1

i (ΓiUiAC + δi)

= J−1
i δi + J−1

i

(
Γ̂iΓ̂
−1
i Φi − Γ̂iΓ̂

−1
i Φi + ΓiUiAC

)
= J−1

i δi − J−1
i Γ̃iUiAC + J−1

i Φi

(44)

where Γ̃i = Γ̂i − Γi is the estimation error of multiplicative fault Γi. Then, the desired
control law Φi is designed as

Φi =− δ̂i + Ji

(
− Ki2Czi2 − cos2

(
πzT

i2zi2

2C2
i2

)
RT

irνi1 + α̇i − ∆F̂iFiA −
K2

i2Φ
2

νi2 + Ki2ΦEi2

− D̂iA tanh
(

νi2
µi2

)
− Ki2Φ

zi2

zT
i2zi2

C2
i2

π
sin

(
πzT

i2zi2

2C2
i2

)
cos

(
πzT

i2zi2

2C2
i2

)) (45)

where εi2C > 0, µi2 > 0 are small constants, Ki2Φ > 0 is a design parameter and

Ki2Φ > 2Ki2C with Ki2C =
√
( Ċi2

Ci2
)2 + εi2C, D̂iA is the estimation value of disturbances’

upper bound DiA.
The update law for ∆F̂i, δ̂i, Γ̂i and D̂iA are constructed as

∆ ˙̂Fi = γiAFiAνT
i2 − βiA∆F̂i (46)

˙̂δi = κi1 J−T
i νi2 − ηiδ̂i (47)



Sensors 2022, 22, 7497 13 of 22

˙̂Γik =

{
0, i f Γ̂ik = Γ̂ik,min, and, χik(t) < 0
χik(t), else

(48)

˙̂DiA = ξiA

(
νT

i2 tanh
(

νi2
µi2

)
− λiAD̂iA

)
(49)

where χik(t) = κi2νT
i2 J−1

i UiAC − ΥiΓ̂ik, k = 1, 2, 3, γi2 > 0, βi2 > 1, ηi > 1, κi1 > 0, κi2 > 0,
Υ > 1, ξiA > 0, λiA > 0 are design constants.

Similarly, auxiliary system Ei2 is designed as

Ėi2 =

{
−Ki2EEi2 −κi2Ei2 + γi2EU iA, i f ‖Ei2‖ > Ei2

0, i f ‖Ei2‖ 6 Ei2
(50)

where κi2 =
‖νT

i2 J−1
i ‖‖U iA‖+ 1

2 γ2
i2E‖U iA‖2

‖Ei2‖2 , Ki2E > 1, γi2E > 0 are design parameters and Ei2 > 0
is a small constant.

Set K∗i2 = Ki2Φ − 2Ki2C, similarly as (36), and we can obtain

V̇i2B 6− K∗i2
C2

i2
π

tan

(
πzT

i2zi2

2C2
i2

)
+ νT

i2DiA +
1
2

ET
i2Ei2 − νT

i2D̂iA tanh
(

νi2
µi2

)
− νT

i2∆F̃T
i FiA − νT

i2 J−1
i Γ̃iUiAC +

∣∣∣νT
i2 J−1

i ∆UiA

∣∣∣− νT
i1 J−1

i zi2 − νT
i2 J−1

i δ̃i

(51)

where ∆F̃i = ∆F̂i − ∆Fi and δ̃i = δ̂i − δi are estimation errors of model uncertainty and
additive fault, respectively. The Lyapunov candidate function for this step is derived as

V∗i2 = V∗i1 + Vi2B +
1
2

ET
i2Ei2 +

1
2γi2

tr
(

∆F̃T
i ∆F̃i

)
+

1
2ξiA

D̃2
iA +

1
2κi1

δ̃T
i δ̃i +

1
2κi2

tr
(

Γ̃T
i Γ̃i

)
(52)

where D̃iA = D̂iA − DiA. Taking the time derivative of V∗i2 and observing that

−λi1D̃iAD̂iA = −λiAD̃iA
(

D̃iA + DiA
)
6 −λiA

2
D̃2

iA +
λiA
2

D2
iA (53)

νT
i2DiA − νT

i2D̂iA tanh
(

νi2
µi2

)
+ νT

i2D̃iA tanh
(

νi2
µi2

)
6

3

∑
k=1

(
|νik2|DiA − DiAνik2 tanh

(
νik2
µi2

))
6 3κ0DiAµi2 (54)

{
− ηi

κi1
δ̃T

i δ̂i 6 −
ηi

2κi1
δ̃T

i δ̃i +
ηi

2κi1
δ

2
i

− 1
κi1

δ̃T
i δ̇i 6 − 1

2κi1
δ̃T

i δ̃i +
1

2κi1
δ

2
i0

(55)

{
− Υi

κi2
tr
(
Γ̂T

i Γ̃i
)
6 − Υi

2κi2
tr
(
Γ̃T

i Γ̃i
)
+ Υi

2κi2
∑3

k=1 Γ2
ik,max

1
κi2

tr
(
Γ̃T

i Γ̇i
)
6 1

2κi2
tr
(
Γ̃T

i Γ̃i
)
+ 1

2κi2
Ξi

(56)

then we have

V̇∗i2 6−
2

∑
m=1

K∗im
C2

im
π

tan

(
πzT

imzim

2C2
im

)
− βiA − 1

2γiA
tr
(

∆F̃T
i ∆F̃i

)
− λiA

2
D̃2

iA −
2

∑
m=1

(KimE − 1)ET
imEim + Si

− Υi − 1
2κi2

tr
(

Γ̃T
i Γ̃i

)
− ηi − 1

2κi1
δ̃T

i δ̃i +
1

2κi2
Ξi +

ηi
2κi1

δi
2
+

1
2κi1

δ
2
i0 +

Υi
2κi2

3

∑
k=1

Γ2
ik,max

(57)

where Si =
βi2

2γi2
Ξi2 +

1
2γi2

Ξi2 +
λiA

2 D2
iA + 3κ0DiAµi2.

Now, denote Si = Si +
1

2κi2
Ξi +

Υi
2κi2

∑3
k=1 Γ2

ik,max + ηi
2κi1

δ
2
i +

1
2κi1

δ
2
i0, si = min(K∗im,

βiA − 1, ξiAλiA, 2(KimE − 1), Υi − 1, ηi − 1), where m = 1, 2, si > 0. From (57), we have

V̇∗i2 6 −siV∗i2 + Si (58)
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Theorem 2. Under the Assumptions 4–6, with the adaptive estimation laws (46)–(49) and control
laws (43), (45), the attitude subsystem (3) of i-th QR subject to input saturation (3), actuator faults
(4) and state constraints (5), possesses the following properties:

i. The attitude state constraints (5) of i-th QR will not be exceeded during formation flight.
ii. The attitude and angular velocity tracking error will exponentially converge into the set

‖zim‖ 6
√

2Si
si

, m = 1, 2.
iii. The estimation errors Γ̃i, δ̃i, ∆F̃i, D̃iA and the closed-loop signals Eim will be bounded,

m = 1, 2.

Proof. By (58), we have V∗i2 6
(

V∗i2(0)−
Si
si

)
e−sit + Si

si
; thus, V∗i2 has upper bound, which

means the BLF is bounded. Besides,

‖zim‖2 6
2C2

im
π

tan−1

(
π

C2
im

(
V∗i2(0)−

Si
si

)
e−sit +

π

C2
im

Si
si

)
<

2C2
im

π

π

2
= C2

im (59)

then we get ‖zim‖ < Cim, m = 1, 2. Due to Ai = zi1 + AiC and Ωi = z2 + αi, we have
‖Ai‖ 6 ‖zi1‖ + ‖AiC‖ < Ci1 − Cid + Cid = Ci1 and ‖Ωi‖ 6 ‖zi2‖ + ‖αi‖ < Ci2 − αi +
αi = Ci2; hence, during formation flight, no violation of attitude state constraints will
occur. Additionally,

1
2

zT
imzim 6

C2
im
π

tan

(
πzT

imzim

2C2
im

)
6

(
V∗i2(0)−

Si
si

)
e−sit +

Si
si

(60)

where m = 1, 2, which indicates that zim will exponentially converge into ‖zim‖ 6
√

2Si
si

,
and the estimation errors and closed-signals mentioned above will also be bounded.

4. Simulations

To demonstrate the effectiveness of the proposed scheme, some comparative simula-
tions were carried out, which were programmed via Matlab 2016a and performed on a PC
with a 4-core Intel i7-4980HQ@2.8 GHz CPU and 16 GB of RAM. The application scenario
of using 5 QRs to enclose and cover a moving ground target is considered. Suppose a target
is detected at t = 0s and moving along Tg = [15sin(0.026t), 15cos(0.026t), 0]T . Meanwhile,
the QRs will follow the virtual leader to fly right above the target and cover its adjacent
area to monitor or sense. Then, the QR formation will converge towards its center at T1,
start spinning at T2 and lower the altitude at T3 to enclose the target closely. The target’s
adjacent area is defined as a circular area with the radius being 3.5 m and centered on
the target. The coverage area of i-th QR is centered on [Pi1, Pi2, 0] , with the radius being
Pi3tan θS

2 , and θS = 50◦ represents the angle of view of the sensor payload. The trajectory of
the virtual leader is set as Pd = (1− e−2t)Tg + [0, 0, (5 + ht)(1− e−0.3t)]T , with ht =

2
π atan

(T3 − t(i)) − 1. The formation function is designed as ΛF = [ΛT
1 , ΛT

2 , ΛT
3 ]

T , where

Λi = At[cos(ωt(t − T2) +
(4i+1)π

10 ), sin(ωt(t − T2) +
(4i+1)π

10 ), 0]T , with At = 1
π arctan

(5(−t(i) + T1)) + 0.5, ωt =
ω0
π [arctan(50(t− T2)) +

π
2 ] and ω0 = 0.8(rad/s). The topology

graph is shown in Figure 4, which is undirected and connected, with the weights being
a12 = a21 = 1, a23 = a32 = 1, a34 = a43 = 1, a45 = a54 = 1 and b1 = b5 = 1.

Remark 7. In practical applications, the motion information of some non-cooperative targets may
not be directly obtained. In this case, the estimated motion information can be obtained by other
means and used for formation control, but it is not within the scope of this study. More details can
be seen in [49,50]. (ΛF, Pd) can be designed carefully according to different sensing tasks, sensor
performances and quality-of-service policies. The (ΛF, Pd) chosen in this paper is a basic example to
demonstrate the effectiveness of the proposed method.
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Virtual leader

Figure 4. The communication topology graph.

With reference to a physical product, the parameters of the QRs are set as mi = 0.856 (kg),
Ji = diag{0.02351, 0.02351, 0.04701} and KiD = diag{0.003, 0.003, 0.003}. The time-varying
delays are set as τ1 = 0.025 + 0.01sin(0.15t) (s), τ2 = 0.03 + 0.0125sin(0.15t) (s) and
τ3 = 0.035 + 0.015sin(0.15t) (s). The initial conditions are P1 = [0, 17.64, 0]T (m),
P2 = [−2.5, 15.83, 0]T (m), P3 = [−1.56, 12.88, 0]T (m), P4 = [1.54, 12.86, 0]T (m),
P5 = [2.51, 15.8, 0]T (m), Ai = 0 (rad), and Vi = 0 (m/s), Ωi = 0 (rad/s). The con-
straints on attitude state Ai is Ci1 = ‖AiC‖+ 0.065 (rad) and the angular velocity state Ωi is
constrained by Ci2 = 13π

36 (rad/s). The control input saturation of attitude controller is set as
UiAmax = [0.4, 0.4, 2]T (Nm), UiAmin = [−0.4,−0.4,−2]T (Nm). The position controller pa-
rameters are kP = 4.9, kV = 6.85, KP = 0.0024, KV = 0.0036, KW = 0.001725, κik = 1824
(k = 1, 2, 3). The attitude controller parameters are Ki1α = Ki2Φ = 3.9, µi1 = µi2 = 0.0012.
The adaptive laws parameters are ξiA = 8.5, λiA = 0.022, κi1 = 0.31, ηi = 1.52, κi2 = 0.7,
Υi = 0.85. The design constant of command filter are ωiB = 22, ξiB = 1.6. The parameters
for RBFNN are lik = 10 and the initial weights are set randomly, where k = 1, 2, 3. The
lumped uncertainty terms of position subsystem are given as

F1P = [sin(0.2P11 + V11), sin(0.1P12 + V12), sin(0.15P13 + V2
13)]

T

F2P = [sin(0.15P21 + V21), 0.9sin(0.2P22 + V22), sin(0.1P23 + V2
23)]

T

F3P = [sin(0.1P31 + V31), sin(0.2P32 + V32), 0.8sin(0.1P33 + V2
33)]

T

F4P = [sin(0.12P41 + V41), sin(1.6P42 + V42), sin(0.1P43 + V2
43)]

T

F5P = [sin(0.18P51 + V51), sin(1.2P52 + V52), 0.7sin(0.12P53 + V2
53)]

T

(61)

Besides, the external disturbances of the attitude subsystem containing stable, periodic
and aperiodic components are set as follows

‖D1A‖ = 0.015(sin(t + 3.4) + cos(e0.1tt + 6.2)) + 0.01cos(5t + 1.2) + 0.18

‖D2A‖ = 0.015(cos(t + 5.7) + cos(e0.1tt + 5.9)) + 0.01cos(5t + 4.3) + 0.2

‖D3A‖ = 0.015(sin(t− 2.4) + cos(e0.1tt + 4.2)) + 0.01cos(5t + 0.6) + 0.22

‖D4A‖ = 0.015(cos(t− 1.6) + cos(e0.1tt + 5.1)) + 0.01cos(5t + 0.9) + 0.26

‖D5A‖ = 0.015(sin(t + 1.8) + cos(e0.1tt + 3.3)) + 0.01cos(5t + 1.7) + 0.24

(62)

The time-varying multiplicative and additive actuator fault signals are considered
as follows 

Γ1 = diag{0.7, 0.85, 0.77}+ diag{0.3, 0.15, 0.23}e−t

Γ2 = diag{0.8, 0.75, 0.85}+ diag{0.2, 0.25, 0.15}e−t

Γ3 = diag{0.69, 0.75, 0.82}+ diag{0.31, 0.25, 0.18}e−t

Γ4 = diag{0.73, 0.8, 0.81}+ diag{0.27, 0.22, 0.19}e−t

Γ5 = diag{0.82, 0.78, 0.86}+ diag{0.18, 0.22, 0.14}e−t

(63)
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δ1 = [0.1, 0.1,−1.3]T(1− e−t) + [0, 0.05sin(0.27t), 0.5]T

δ2 = [0.15, 0.1, 1]T(1− e−t) + [0, 0.05cos(0.27t)(1− e−0.05t),−0.5]T

δ3 = [−0.1, 0.1,−1.2e−0.05t]T(1− e−t) + [0, 0.05sin(0.27t)e−0.03t, 0.7e−0.05t]T

δ4 = [−0.15, 0.1, 0.8]T(1− e−t) + [0, 0.055sin(0.2t)(1− e−0.05t),−0.6]T

δ5 = [0.12, 0.12, 0.7]T(1− e−t) + [0, 0.045cos(0.15t)(1− e−0.07t),−0.4]T

(64)

with Γ̂ik = 1, δ̂ik = 0, i, k = 1, 2, 3 as the initial estimation values.
The simulation results of trajectory, position, attitude, attitude constraints, angular

velocity constraints, control inputs, RBFNN, disturbance estimation, multiplicative fault
estimation and additive fault estimation are demonstrated in Figures 5–14, respectively.
The trajectory and position snapshots of QRs and a moving target are illustrated in Figure 5.
It can be seen that the QRs can successfully form the desired formation pattern ΛF and track
the desired trajectory Pd, thereby achieving the full coverage and close-range enclosing.
Figure 6 shows the position tracking errors with and without RBFNN. In the case of
with RBFNN, the tracking errors converge to the neighborhood of zero rapidly under the
influence of lumped uncertainties. The effectiveness of RBFNN is demonstrated by the fact
that tracking error cannot be reduced to near zero and continues to oscillate in the absence
of RBFNN. Figure 7 demonstrates the robust learning ability of RBFNNs, convergence
of approximation errors takes only a few seconds and oscillation at the beginning is
caused by randomly selected initial weights. Figure 8 depicts the tracking performance of
AFTAC, which, despite initial misalignments, tracks the command signal exceptionally well.
Furthermore, Figures 9 and 10 show the norm of attitude ‖Ai‖ and norm of angular velocity
‖Ωi‖ always satisfy the predefined constraints Ci1 and Ci2 during the whole process. In
Figure 9, the unconstrained AFTAC in [51] is compared under identical conditions, and
the parameters of the comparison AFTAC are adjusted to achieve relatively good tracking
performance. One can observe that the comparison AFTAC tracks the command signal
closely throughout the whole process, but it cannot guarantee the state constraints will
always be met; the constraints are occasionally exceeded, particularly when the command
signal changes rapidly. The comparison results demonstrate that the specific system states
can be constrained within a certain range to meet safety or sensor payload requirements,
which is an advantage of our method. Figure 11 depicts the input signals of QRs, which
contain large spikes at the beginning, T1 and T2. These spikes are effectively filtered out by
input saturation, where the actuator’s limitations are fully reflected. As demonstrated by
the proof of Theorem 2, the upper bound of external disturbance and actuator fault signals
are effectively estimated in Figures 12–14.
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Figure 5. Trajectory, position snapshots and coverage areas of Quadrotors (QRs) and a moving target
with T1 = 35s, T2 = 40s, T3 = 45s.
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Figure 6. Comparison of position tracking errors with and without radial basis function neural
network (RBFNN).
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Figure 7. RBFNN approximation errors on 3 axes.
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Figure 8. Attitude signals of QRs.
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Figure 9. ‖Ai‖, ‖AiC‖ and constraints Ci1, i = 1, 2, 3, 4, 5.
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Figure 10. ‖Ωi‖, ‖αi‖ and constraints Ci2, i = 1, 2, 3, 4, 5.
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5. Conclusions

This article presents a distributed formation control scheme for a group of QRs subject
to constraints and time-varying delays. The proposed scheme consists of NTDPC for posi-
tion control and state-constrained AFTAC for attitude regulating. In NTDPC, an adaptive
RBFNN is utilized to compensate the lumped uncertainties, and a Lyapunov–Krasovskii
analysis is applied to handle the time-varying delay. Based on the backstepping tech-
nique, AFTAC employs a tan-type BLF to handle the state constraints, an auxiliary system
combined with a command filter to deal with input saturation and adaptive estimators
to compensate fault signals and disturbances. To determine the efficacy of the proposed
method, comparative simulations were conducted. We demonstrate that the proposed
method can be applied for a mobile sensing task; the formation tracking errors are UUB; the
estimation errors of actuator faults, uncertainties, and disturbances are also bounded; and
the predefined constraints will never be violated during formation flight. However, the cur-
rent method has some limitations, such as symmetric state constraints and a fixed network
topology. Additional research will yield asymmetric state constraints and a mechanism for
switching topologies.
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