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Abstract: With many conveniences afforded by advances in smartphone technology, developing
advanced data analysis methods for health-related information from smartphone users has become a
fast-growing research topic in the healthcare field. Along these lines, this paper addresses smartphone
sensor-based characterization of human motions with neural stochastic differential equations (NSDEs)
and a Transformer model. NSDEs and modeling via Transformer networks are two of the most
prominent deep learning-based modeling approaches, with significant performance yields in many
applications. For the problem of modeling dynamical features, stochastic differential equations
and deep neural networks are frequently used paradigms in science and engineering, respectively.
Combining these two paradigms in one unified framework has drawn significant interest in the deep
learning community, and NSDEs are among the leading technologies for combining these efforts. The
use of attention has also become a widely adopted strategy in many deep learning applications, and a
Transformer is a deep learning model that uses the mechanism of self-attention. This concept of a self-
attention based Transformer was originally introduced for tasks of natural language processing (NLP),
and due to its excellent performance and versatility, the scope of its applications is rapidly expanding.
By utilizing the techniques of neural stochastic differential equations and a Transformer model along
with data obtained from smartphone sensors, we present a deep learning method capable of efficiently
characterizing human motions. For characterizing human motions, we encode the high-dimensional
sequential data from smartphone sensors into latent variables in a low-dimensional latent space.
The concept of the latent variable is particularly useful because it can not only carry condensed
information concerning motion data, but also learn their low-dimensional representations. More
precisely, we use neural stochastic differential equations for modeling transitions of human motion
in a latent space, and rely on a Generative Pre-trained Transformer 2 (GPT2)-based Transformer
model for approximating the intractable posterior of conditional latent variables. Our experiments
show that the proposed method can yield promising results for the problem of characterizing human
motion patterns and some related tasks including user identification.

Keywords: smartphone sensors; human motion; deep learning; neural stochastic differential equa-
tions; transformer; GPT2

1. Introduction

Due to advancements in smartphone technology, a variety of sensors have become
available for smartphones, with accompanying applications to process information ob-
tained from embedded sensors. Modern sensors such as inertial measurement unit (IMU)
sensors in smartphones allow for more advanced data analysis and studies of user data. In
this paper, we intend to deal with healthcare-related data analysis problems utilizing smart-
phone sensors. More specifically, we consider the problem of characterizing the human
movements of walking, running, squats, and jumping jacks by means of a modern deep
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learning approach. Research on analyzing, characterizing, and recognizing human motion
has been conducted by many researchers in the healthcare-related fields [1–13]. In particu-
lar, machine learning [1,2,13] and deep learning [3–12] methods have been widely applied
to the analysis of human motion pattern and the recognition of activities. Wang et al. [1]
proposed the use of a Gaussian process for constructing dynamical models to characterize
human motion from captured motion data. It is capable of considering both dynamical and
observational mappings with small datasets. For analyzing human motion, Kim et al. [2]
proposed a model which consists of a variational autoencoder and a Gaussian process
for characterizing motion dynamics in latent space and novelty (e.g., fall) detection. It
treats noisy high-dimensional raw data as a low-dimensional latent feature, which repre-
sents characteristics of human dynamic walking data well. However, the work of Ref. [2]
depends on multiple sensors (e.g., smartphones on the wrist and leg), and the Gaussian
process-based model is less widely used compared to that of typical deep neural networks.
Kim et al. [3] analyzed IMU sensor data with two-stage latent dynamics modeling and
filtering (TS-LDMF), consisting of deep learning-based latent space modeling and nonlinear
filtering. It has the advantage of representing smooth trajectories on low-dimensional latent
space well for noisy sensor data (e.g., walking and running). However, the first-stage of
TS-LDMF relies on future observations to form the approximate posterior distribution
for latent variables. Uddin et al. [4] considered human activity recognition based on a
Long Short-Term Memory (LSTM) based model, referred to as Neural Structured Learning
(NSL), which distinguished among different human activities, including walking. The
proposed models show better performance than the typical deep learning model (e.g.,
Recurrent Neural Network (RNN), Convolutional Neural Network (CNN), and Deep Belief
Network (DBN)). For its excellent performance, this model utilized not only IMU sensor
data, but model input also contained ECG (electrocardiogram) data, which is difficult
to measure in daily life. Mukherjee et al. [5] proposed an ensemble model consisting of
CNN-Net, Encoded-Net, and CNN-LSTM to categorize human motion data from sensors.
In the ensemble, each model executes the role of classifier, and then the final prediction
result is obtained by means of majority voting. Since the method of [5] uses an ensem-
ble model of three different models, its performance is better than when using only one
methodology. While its performance is good, it may be time-consuming due to the need
to train and evaluate voting. Ronao et al. [6] adapted CNNs for human activity recog-
nition (HAR) using smartphone sensor data, and considered activities consisting of six
different motions. Here, the convolutional layer can extract valuable features without
any pre-processing (e.g., feature selection and feature hand-crafting) from raw data. The
work focused on the use of CNN for human activity recognition, whereas our concern is
with the use of the more advanced Neural Stochastic Differential Equation (SDE) [14] and
Transformer [15]. Jiang et al. [7] considered CNNs for recognizing human activity with
IMU sensors data and activity images. Here, the method of [7] considered images through
discrete Fourier Transform (DFT) as input to the model. By using the Deep Convolutional
Neural Networks (DCNN), it can extract discriminative features for activity recognition.
However, the work of [7] was only supported by some existing data from UCI, USC, and
SHO. Wang et al. [8] proposed a motion recognition method with a multi-layer perceptron
(MLP) network, which utilizes frequency domain features from a DFT. Here, the wavelet
transform analysis, which enables selection and analysis of a meaningful frequency band,
is also utilized for input to the model. It can offer additional information about motion
signals. In spite of its advantages, the proposed method is applied for only walking data.
Hence, performance cannot be guaranteed for other motions. Khan et al. [9] proposed a
human activity recognition framework, which is an attention-based multi-head model. The
model consists of three lightweight convolutional heads. Its feature extraction capability
was strengthened by means of the attention-based model. However, according to their
results, there exists room for further improvement in its capabilities for distinguishing
some activities. Augustinov et al. [10] proposed the attention-based Transformer model for
recognizing daily activities. The procedure is conducted on two levels. In the first level,
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the probability scores of activities are extracted, and then the Transformer-based model
classifies the activities in the second level. Compared to LSTM networks, their proposed
method outperforms the others. Despite its excellent performance, however, overfitting
may occur during training. Shi et al. [11] considered human activity recognition with a
residual multi-layer perceptron (Res-MLP), which contains linear layers and a Gaussian
error linear unit (GELU). For classifying six activities, data from smartphone gyroscopes
and accelerometers were utilized as inputs to the model. While it showed high performance
for the UCI-HAR dataset from UCI, it required an extra procedure for filtering noise out of
the raw data.

For the purpose of addressing smartphone sensor-based characterization of human
motions, we use a deep learning approach based on neural stochastic differential equa-
tions [14] and a Transformer model [15]. Neural stochastic differential equations and
modeling via Transformer networks are two of the most prominent deep learning-based
modeling approaches, with significant performance yields in many applications. For the
problem of modeling dynamical features, stochastic differential equations and deep neural
networks are frequently used paradigms in science and engineering, respectively. Combin-
ing these two paradigms in one unified framework has drawn significant interest in the
deep learning community, and neural stochastic differential equations [14] are among the
leading technologies for combining these efforts. In this paper, the neural SDE plays the
role of transition model in the generative component of the formulation. Recently, the use
of attention has become a widely adopted strategy in many deep learning applications,
and a Transformer [15] is a deep learning model that uses the mechanism of self-attention.
This concept of a self-attention based Transformer was originally introduced for tasks of
natural language processing (NLP), and due to its excellent performance and versatility,
the scope of its applications is rapidly expanding. The structure of Transformer consists of
an encoder block and a decoder block, which consist of a self-attention layer and a fully
connected layer. The encoder block converts the input features into a latent representation,
and the decoder block provides the outputs that meet the users’ desired purpose (e.g.,
prediction, classification, etc.). In this paper, our inference networks utilize a Transformer-
based auto-regressive model called Generative Pre-trained Transformer 2 (GPT2) [16],
which is a recently introduced enhanced auto-regressive version of the Transformer. GPT2
relies on the form of stacked decoder Transformer, which inputs a sequence of tokens and
applies embeddings for position and token, and then is followed by several decoder layers.
Each layer applies multi-head self-attention combined with a feedforward network, layer
normalization, and residual connections. By utilizing the techniques of neural stochastic
differential equations and a Transformer model along with data obtained from smartphone
sensors, we present a deep learning method capable of efficiently characterizing human
motions. For characterizing human motions, we encode the high-dimensional sequential
data from smartphone sensors into latent variables in a low-dimensional latent space. The
concept of the latent variable is particularly useful because it can not only carry condensed
information concerning motion data, but also learn their low-dimensional representations.

The paper is organized as follows: In Section 1, we briefly explain the rationale for
this paper, and introduce related works. In Section 2, we provide general concepts of
neural stochastic differential equations and the GPT2 Transformer model as main tools for
characterizing human motions based on smartphone sensor signals, and propose a modern
variational inference approach for solving the characterization problem. In Section 3, after
presenting the process for acquiring the data used in the experiments, we report on the
applicability of the proposed approach to smartphone sensor-based characterization of
human motions, and describe the results of the experiments. In the final Section 4, we
provide our discussion and conclusions.

2. Methods

As a framework for smartphone sensor-based characterization of human motions, we
present a latent dynamical model incorporating neural SDEs [14] and GPT2 [16], which is an
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enhanced auto-regressive version of the Transformer. Our approach yields low-dimensional
latent trajectories of human motions including walking and running by processing high-
dimensional raw data from smartphone sensors, as shown in Figure 1. In the following, we
derive the framework in a step-by-step manner after providing relevant preliminaries.

Figure 1. Neural stochastic differential equations and Transformer-based modeling.

2.1. Preliminaries
2.1.1. Neural Stochastic Differential Equations

A stochastic differential equation can be formally understood as a noise-driven ordi-
nary differential equation in the sense that

dzt

dt
= µ(zt, t) + σ(zt, t)wt, (1)

where the forcing function wt is a stochastic process often modeled as white noise [17].
Using neural networks for the µ(zt, t) and σ(zt, t), one can construct so-called neural
stochastic differential equations [14]. Thus, for a fixed final time Tf > 0, one can describe
a stochastic process zt that continuously evolves over time with the framework of neural
SDEs. More specifically, neural SDEs are k-dimensional stochastic differential equations
describing the stochastic dynamics of zt in the following form [14]:

dzt = µθ(zt, t)dt + σθ(zt, t)dWt, 0 ≤ t ≤ Tf , (2)

where both µθ and σθ are neural networks, and W : [0, Tf ] → Rn is an n-dimensional
standard Brownian motion. Note that, in the above neural SDEs, neural networks µθ :
Rk × [0, Tf ] → Rk and σθ : Rk × [0, Tf ] → Rk×n are both collectively parameterized by θ
because they belong to the generative component described by the parameter θ. Here, k
is the dimension of latent state, and n is the number of noise sources. Throughout this
paper, we consider the k = 2 case for the convenience of visualization and characterization
with latent trajectories. Extension to the k = 3 case is straightforward, and when more
dimensions are needed for k (i.e., k ≥ 4), one can obtain an approximate visualization
with the help of dimension reduction tools such as PCA [18] and incremental PCA [19].
Following the concept of the Ito integral (e.g., [17]), the solution of the neural SDEs can be
represented as the continuous-time stochastic process zt that satisfies the integral equation

zt = z0 +
∫ t

0
µθ(zs, s)ds +

∫ t

0
σθ(zs, s)dWs (3)

with an initial condition z0. It is well known that neural stochastic differential equations
can be utilized for modeling dynamics in a variety of contexts [14]. Finite-dimensional
solutions to stochastic differential equations are rarely of closed-form [14], and need to
be approximated in many practical problems. We approximate the solutions to neural
stochastic differential equations using the Euler–Maruyama method [17].
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2.1.2. Transformer Model

Transformer [15] was originally introduced as a machine learning solution to language
translation tasks. Since its introduction as a novel solution to natural language processing,
it has exhibited successful performance across a number of application domains, and is
currently the network of choice for a majority of deep learning researchers. The main
structure of Transformer consists of an encoder and a decoder. The encoder transforms
a given sequence of input tokens into latent representations. The decoder generates an
output sequence in an auto-regressive manner. Since it proceeds auto-regressively, the
decoder takes all previously generated tokens as its own input at each step of an inference.
The attention mechanism adopted in most Transformers is the scaled dot-product attention,
which can quantify the correlation of input sequences. The scaled dot-product attention is
defined as

Attention(Q, K, V) = softmax

(
QK>√

dK

)
V, (4)

where Q, K, V are vectors of the queries, keys, and values, respectively. Q and K have a
common dimension, which is denoted by dK. GPT2 [16] is a recently introduced variant of
Transformer. It relies on the form of stacked decoder Transformer, which inputs a sequence
of tokens and applies embeddings for position and token, and then is followed by several
decoder layers. Each layer applies multi-head self-attention combined with a feedforward
network, layer normalization, and residual connections. Here, in this study, we use a
small GPT2 structure consisting of two layers and a single head, which turns out to be
sufficient for our purpose. Since the main concern of this paper is smartphone or mobile
applications, considering small sizes for the structure should suffice. The architecture of
the GPT2 Transformer used in this study is shown in Figure 2a.

(a) GPT2 (b) Neural SDE

Figure 2. The GPT2 and Neural SDE architectures used in this study.

2.2. Problem Formulation and Training
2.2.1. Generative Component: Neural SDEs and Decoder

In this subsection, we describe the generative component of the proposed framework,
where the neural SDE plays a critical role. The generative component involves a transition
network and a decoder network. The transition network represents a stochastic dynamical
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system for latent variables. For the transition network, we use a simplified neural SDE
model of Figure 2b, which modifies the most general neural SDE model

dzt = µθ(zt, t)dt + σθ(zt, t)dWt (5)

into the following form:
dzt = µθ(zt)dt + σθdWt. (6)

This modification is for the sake of convenience in visualization and interpretation. In
the simplified model, the drift term µθ(·) is a multi-layer perceptron (MLP) network [20]
taking zt as its only input, and the diffusion network is replaced by a parameter indicating
the noise magnitude σθ . The exact structure of the drift MLP network is specified in the
Appendix A. The decoder network is a measurement model for sensors (e.g., [21]), which
represents the conditional distribution of observations given the latent values. Note that,
here, our notation uses the parameter θ for all the parameters of the generative component,
which includes the drift neural network, the diffusion term, and the decoder network.

For the decoder representation, one may have several choices, for which reconstruction
(i.e., pθ(xt|zt)) [21,22] and prediction (i.e., pθ(xt+1|zt)) [23] are widely used. Training of
the reconstruction decoder has the obvious interpretation of maximizing likelihood of
observations. On the other hand, prediction is not only a powerful strategy for modern
unsupervised learning [24,25], but also a powerful conventional technique in signal pro-
cessing for compressing data. In this paper, we empirically found that the use of pθ(xt|zt)
or pθ(xt+1|zt) for the decoder yielded too much oscillation or smoothness, respectively,
in the resultant latent trajectories, and using their average (meaning pθ((xt + xt+1)/2|zt))
was just right for our purpose. For simplicity and convenience of notation, we write
(xt + xt+1)/2 as x̄t+1 throughout this paper. For the prior distribution of initial latent state,
we use p(z0) = N (µ0, σ2

0 I2). We obtain the starting mean vector of the latent sequence, µ0,
by performing a principal component analysis (PCA) with x−m:0 as the inputs, where m
is a small non-negative integer. In our experiments, we use m = 0 for simplicity, and in
this case, µ0(z0) is the PCA projection of x0 onto the two-dimensional latent space. For the
variance value of the prior distribution, we use σ2

0 = 0.22.
Owing to the Markov property [21] of the latent dynamics, the joint probability

distribution for the observations, x̄1:T+1, and the latent variables, z0:T can be factorized
as follows:

pθ(x̄1:T+1, z0:T) = p(z0)pθ(x̄1|z0)
T

∏
t=1

pθ(x̄t+1|zt)pθ(zt|zt−1), (7)

where p(z0), pθ(x̄t+1|zt), and pθ(zt|zt−1) stand for the probability distribution of the initial
latent variable, the conditional probability distribution for the decoder network, and the
conditional probability distribution for the transition network, respectively. Note that
the probabilistic model of Equation (7) is based on the key idea that the sequence of the
high-dimensional sequential observation, x̄1:T+1, can be explained by means of the lower-
dimensional sequence of the latent variables, z0:T , where the z0:T are generated via the
conditional distribution of the transition network, pθ(zt|zt−1), and the x̄1:T+1 are generated
via the conditional distribution of the decoder network, pθ(x̄t+1|zt). In this paper, the
decoder network is a multi-layer perceptron [20], the structure of which is provided in
the Appendix A. We will describe in greater detail how our problem as formulated can be
solved by variational inference [26].
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2.2.2. Variational Distributions

One can obtain the following factorization for the posterior pθ(z0:T |x1:T+1) based on
the previous factorization in Equation (7) [21]:

pθ(z0:T |x1:T+1) = pθ(z0|x1:T+1)
T

∏
t=1

pθ(zt|zt−1, xt+1:T+1). (8)

This factorization often leads us to approximate the posterior with the variational distribu-
tions qφ of the following form [21]:

qφ(z0:T |x1:T+1) = qφ(z0|x1:T+1)
T

∏
t=1

qφ(zt|zt−1, xt+1:T+1), (9)

in which the parameters of the approximate posterior distribution are denoted by φ. Al-
though the above factorization is useful for some purposes [21], the factors comprising the
right-hand side of Equation (9) are all conditioned on future information, which may not
be desirable in many practical situations. In this paper, we propose a different strategy, in
which we collect relevant information from a history of past and current observations and
use them as conditioning information for variational distributions. Based on the strategy,
the corresponding conditional probabilities become

qφ(z0:T |x0:T) = qφ(z0|x0)
T

∏
t=1

qφ(zt|x0:t). (10)

In the following Section 2.2.3, we explain how the true posterior distribution can be
adequately approximated by using variational inference with the qφ of the above strategy.

2.2.3. Training Based on Variational Approximation

This subsection describes the training of the parameters θ and φ with the variational
approximation strategy. As discussed, we approximate the true posterior distribution with
the variational distributions in the form of Equation (10). For the factors on the right-hand
side of the variational distribution in Equation (10), we use normal distributions with an
isotropic covariance matrix structure. That is, we use

qφ(zt|x0:t) = N (zt|µ(x0:t), σ2 I), t ∈ {0, · · · , T}, (11)

where N (z|µ, Σ) denotes the multivariate normal distribution with the mean vector µ and
the covariance matrix Σ. For finding the mean parameters of the multivariate Gaussians
qφ(zt|x0:t), t ≥ 0, we use a Transformer-based auto-regressive model, GPT2 [16]. The mean
parameters of qφ(zt|x0:t), t ∈ {0, · · · , T} are all obtained from the outputs of the single
GPT2 Transformer. In the training process, we find the parameters θ and φ simultaneously
by maximizing ELBO(θ, φ), the variational lower bound given as follows [27]:

log p(x̄1:T+1) ≥ ELBO(θ, φ)

= ∑T
t=0 Ezt∼qφ(zt |x0:t)[log pθ(x̄t+1|zt)]

−KL(qφ(z0|x0) ‖ p(z0))

−∑T
t=1 Ezt−1∼qφ(zt−1|x0:t−1)

[
KL(qφ(zt|x0:t) ‖ pθ(zt|zt−1)

]
.

(12)

The block diagram for our workflow example utilizing neural SDE, GPT2, and ELBO
maximization is shown in Figure 3. Overall, the training procedure can be summarized as
Algorithm 1. Note that, in the algorithm, we have optional “Contrast Model”-related terms,
the meaning of which will be specified in the Discussion section.
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Figure 3. Block diagram for neural SDE and a Transformer-based approach.

Algorithm 1 Training Procedure

1: Prepare Dataset D.

2: Define Optimizer and hyper-parameters.

3: Prepare Generative Model: pθ(x|z) and pθ(z).

4: Prepare Inference Model: qφ(z|x).

5: (Optional) Prepare Contrast Model: Cω(x, z).

6: while not converged do

7: Sample Data Points: x ∼ D.

8: Sample Latent Points: z ∼ qφ(z|x).

9: Compute Conditional Likelihood pθ(x|z) and KL divergence KL(qφ, p).

10: (Optional) Compute Contrastive Loss.

11: Evaluate Total Loss L(x; (θ, φ, (optional) ω)).

12: Estimate Monte Carlo Approximations to ∇θL,∇φL, and (optional) ∇ωL.

13: Update θ, φ, and (optional) ω using Optimizer.

14: end while

3. Experiments

In our experiments, we address the problem of characterizing human motions with
smartphone sensor data and the proposed algorithm. For the problem formulation, we
model the transitions in latent space, decoders, and variational distributions with neural
SDEs [14], MLP [20], and GPT2 [16], respectively, and maximize the ELBO resulting from
the variational approximation. A schematic diagram for the main components of the
proposed method is shown in Figure 4.

Figure 4. A schematic diagram for the structure of the proposed method: Generative component
(neural SDE and MLP decoder) and inference component (GPT2).
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For the motions, we considered walking, running, squats, and jumping jacks in this
section. We believe the proposed algorithm to be applicable to more types of motions, and
we are planning to address its applicability in future follow-up research.

3.1. Data Collection

Before training for the proposed method, data collection was conducted, and an
overview of procedures for acquiring and processing sensor data is shown in Figure 5. We
considered four motions (walking, running, squats, and jumping jacks) for ten subjects.
For the motions of walking and running, we collected the data in a straight one-way path
at the Korea University R&D Center. The motion data for squats and jumping jacks were
collected in our lab. Information on the subjects is provided in Table 1.

Table 1. Profiles of the recruited subjects.

Subjects Gender Height (cm) Weight (kg)

Subject 1 M 175 80
Subject 2 M 172 67
Subject 3 F 163 68
Subject 4 M 164 62
Subject 5 M 188 75
Subject 6 M 174 65
Subject 7 M 167 56
Subject 8 M 171 74
Subject 9 F 164 70

Subject 10 F 158 57

Average 169.6 67.4

Figure 5. Configuration for acquiring and processing sensor data.

For the experiment, we performed the data collection procedures, and then trained a
model. First, we utilized the MATLAB Mobile [28] application, which was installed on a
smartphone (Apple iPhone XS Max [29]), to obtain gyroscope sensor data. As shown in
Figure 6, the smartphone was located on the left side of the leg, which is close to a trousers
pocket. In addition, the screen of smartphone was set to face outward. To obtain more
information from the sensors, the sampling rate for data collection was set at 30 Hz by
increasing the pre-determined default value (10 Hz) on MATLAB Mobile.
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Figure 6. Smartphone location used in the experiments.

The data collection procedure is as follows:

(a) A straight corridor (about 75 m) for walking and running motion and a place unob-
structed by people for the other motions (squats and jumping jacks) were chosen.

(b) A smartphone was placed on the left side of the subject’s left leg, in a location similar
to the trousers pocket.

(c) MATLAB Mobile was used for accessing built-in sensors on the iPhone with a
sampling rate of 30 Hz.

(d) Motions were executed by each subjects.
(e) During step (d), the raw sensor data were collected by the gyroscope sensor.
(f) After acquiring the sensor data, the data were automatically uploaded to a cloud

server provided by MathWorks, and the data were accessed via the computer used
to train the model.

Second, we conducted preprocessing to input the obtained data into a model and
used the deep learning framework, PyTorch [30], to implement and train the model. The
acquired raw gyro sensor signals were three-dimensional data, in x-, y-, and z-directions.
In addition to the raw sensor signals, we also considered magnitude information, resulting
in four-dimensional data. More detailed description of the sensor signals is provided
in Table 2. Furthermore, the data were normalized by means of z-scores. Details of the
hyper-parameters used in our experiments are provided in the Appendix A.

Table 2. Smartphone unit’s feature data set.

Notation Meaning

ωx, ωy, ωz Angular velocities around the x, y, z-directions, respectively

ωT
Square root of the sum of squares of angular velocities,√

ω2
x + ω2

y + ω2
z

3.2. Experimental Results

In this section, we describe the data details and experimental settings in order to
illustrate how the latent trajectories are obtained from the dynamic human motions of
walking, running, squats, and jumping jacks. The specific definitions concerning the
motions are as follows: Running and walking are distinguished by whether a point exists
during the action when both feet are simultaneously off the ground [31]. Squats are a
motion in which one stands with legs slightly apart, bends the knees to lower the hips, and
then returns to the original position [32]. Jumping jacks are performed by jumping from the
attention pose, with the feet spread and hands going overhead, and then returning to the
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original upright pose from the jump [33]. We collected a sensor dataset from ten subjects at
a frequency of 30 Hz, and for each subject, 80% of the data was used as training dataset,
and the remaining 20% was used for test datasets. To train the proposed model, we used
the AdamW optimizer [34], which is a modification of the widely used Adam optimizer,
and is known to improve weight decay. Most notably, the weight decay of the AdamW
optimizer can help decrease the chances of overfitting. For the batch size in the training
phase, we used B = 128. The observations of the input to the model are four-dimensional,
consisting of three normalized gyro outputs along with their normalized magnitude.

The results for the first subject are shown in Figures 7–10, in which we omit a few
steps of initial transients. The results of Figures 7–10 indicate that the proposed method
successfully transformed the high-dimensional sequences of noisy observation data from
the smartphone sensors to low-dimensional latent trajectories. For one motion, the latent
trajectories of the training and validation data with their common characteristics in fact
shared similar patterns in latent space, and were inherently different from other motions,
as is shown from their corresponding trajectories in the latent space. All the motions we
consider here in this paper contain repetitive sequences. The results of the latent trajectory
show that they all contain repetitive components. Furthermore, each motion has a different
frequency, e.g., the frequency of walking and running are about 1/30 steps and 1/20 steps,
respectively, and the latent trajectories represent these periodic properties. We collected the
latent trajectories of each motion for all subjects, and show them in Figure 11.

As mentioned, we considered four motions (walking, running, squats, and jumping
jacks) for characterizing motions in the latent space. These motions share some properties,
and after performing our characterization process, we obtained the following two interpre-
tations with regard to resultant latent trajectories. (1) Repetitiveness in latent space: The
motions of walking, running, squats, and jumping jacks are all repetitive, and accordingly,
the resultant latent trajectories show that they all contain repetitive aspects. (2) By compar-
ing the sensor trajectories in the time domain with their corresponding latent trajectories,
one can see that these motions have different frequencies in the time domain, while their
resultant frequencies in the latent space remain almost the same with their corresponding
frequencies. These motions should be interpreted differently from each other, which is
clearly shown from their corresponding trajectories in the latent space. This indicates that,
in a sense, our latent trajectories acquire distinguishable features while maintaining the
original time domain frequencies of their sensor signals.

Figure 7. Observations from sensors and corresponding latent sequences for walking.
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Figure 8. Observations from sensors and corresponding latent sequences for running.

Figure 9. Observations from sensors and corresponding latent sequences for squats.

Figure 10. Observations from sensors and corresponding latent sequences for jumping jacks.
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(a) Walking.

(b) Running.

(c) Squats.

Figure 11. Cont.
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(d) Jumping jacks.

Figure 11. Latent trajectories of walking, running, squats, and jumping jacks for all subjects.

In addition, we further investigated whether the proposed method is safe from over-
fitting. In the investigation, we explored the resultant learning curves obtained during the
training phase. An exemplar set of learning curves is provided in Figure 12 for the consid-
ered set of motions. A usual criterion for overfitting is that the occurrence of overfitting
is confirmed when the loss value we seek to minimize for the dataset of validation stops
decreasing at some point, and thereafter, the loss value tends to increase. Based on this
criterion, one can see that the resultant learning curves of Figure 12 are safe from overfitting.

(a) Learning curves for walking. (b) Learning curves for running.

(c) Learning curves for squats. (d) Learning curves for jumping jacks.

Figure 12. Learning curves for (a) walking, (b) running, (c) squats, and (d) jumping jacks.



Sensors 2022, 22, 7480 15 of 24

The GPT2 Transformer we used for the inference network yielded the feature heat maps
as a valuable by-product, which can serve as an explanatory AI capacity. In Equation (4),
the attention weight Wattn = softmax(QK>/

√
dK), where Wattn is the size of RT×T and

the sequence length T = 90, from self-attention indicates the concentration of temporal
information in the inputs. In our experiments, the GPT2 Transformer has two layers,
consisting of an attention and feedforward network. The feature heat maps of Figure 13
show some of the resultant attention weights in the first layer of the GPT2 Transformer
trained for walking, running, squats, and jumping jacks. The horizontal axis indicates the
time steps of the attention weight, which is equal to the sequence length. As for the vertical
axis, which indicates the length of the attention layer input, we consider the time span
[50, 90) to avoid distraction from remote past inputs. They show that running movements
are the most inherently periodic during the observed duration.

Finally, we believe that, since the proposed algorithm can characterize repetitive
human motions efficiently, it could be used practically in the areas of fitness and healthcare
as well as characterizing daily activities of walking and running. For example, one could
build a program for exercise and physical fitness, where latent trajectories play the role of
guiding into a better motion. In addition, the practical use could be extended further for
the general area of customized healthcare services such as personalized healthcare support
program and rehabilitation therapy.

(a) Walking. (b) Running.

(c) Squats. (d) Jumping jacks.

Figure 13. Heatmaps observed in the first embedding layer of the GPT2 Transformer used for the
inference network.

4. Discussion and Conclusions
4.1. Discussion

In this paper, we considered the problem of characterizing dynamic human motions
with wearable sensors, specifically, built-in gyroscope sensors on a smartphone. The main
rationale for the approach used in this paper is that the high-dimensional sensor signals
acquired from the sensors can be represented as lower-dimensional trajectories on a latent
space. The main deep learning tool for our characterization is combining neural differential
equations and a self-attention model. Since the high-dimensional signals observed in our
experiments are originally from intrinsically low-dimensional human motions, and since
neural differential equations and self-attention models have recently undergone notable
advancement and have been widely applied, the rationale and methods seem reasonable
and timely. We proposed a novel approach based on neural SDEs [14], GPT2 [16], and
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variational approximation [21] to characterize dynamic human motions as determined in
a low-dimensional latent feature space. The latent trajectories we obtained by means of
the proposed method turn out to be sufficiently unique for each considered subject. Thus,
our proposed method can be valuable for distinguishing people from their motion data
as measured by smartphone sensors. We will further discuss some related topics in the
following section.

4.1.1. User Identification

As mentioned, the main goal of the proposed method is characterizing human motions
of walking, running, squats, and jumping jacks from smartphone sensor signals. In this
subsection, we consider the problem of extending the main goal of characterizing human
motion to enhancing user identification ability by learning latent variables so that they
should carry more individually salient features. As a tool for achieving this extended goal,
an additional loss term is introduced, which can reflect contrasts among users. Thus, to
distinguish the latent variables of different users, a contrast loss term compares the latent
variables of different users. The exact definition of the contrast loss term, Cω,φ, is as follows:

Cω,φ =

−∑a,b 6=a ∑t

[
Ez(a)∼qφ(z(a) |x(a))

[
log(σ(Cω(x(a)

t , z(a)
t ))

]
+Ez(b)∼qφ(z(b) |x(b))

[
log(σ(1− Cω(x(a)

t , z(b)t )))
]]

.

(13)

In this equation, (a) in the superscript means that the term is defined for user a. With the
above defined contrast loss term minimized, one can expect that the resultant network
can better distinguish latent variables from different users. This contrast network is im-
plemented by as an MLP [20], and the parameter ω represents the weights of the network
computing the contrast term. To ascertain the effects of the contrast term, we perform
simulations in which training is conducted with the additional contrast loss term included.
The training results for the four motions are reported in Figure 14, which show that users’
corresponding latent sequences are indeed distinguishable from each other. These results
can serve as a different type of signature that can characterize users by their individual
motion patterns.

4.1.2. Optimized Initial Latent States

In this subsection, the problem of how to find the initial latent state more accurately
is dealt with. As mentioned in Section 2, the starting point of the latent sequence, z0, was
obtained by a performing principal component analysis (PCA) with x−m:0 as the inputs,
where m is a small non-negative integer. Since an initial latent state cannot be directly
observed, using a dimension reduction technique like PCA is more or less a trade-off
needed for normal situations. This section addresses cases in which we have relatively
more abundant observations for estimating initial latent states. For related work on data
assimilation, one may refer to [35], where the authors study how to obtain the latent initial
conditions of a dynamical system under incomplete information. We proceed similarly to
find the initial latent state more accurately. More specifically, given the observations x−T0 :0
from time −T0 up to the initial time 0, we make use of the strategy of inferring the latent
state that can best reproduce an observed time series. Here, we assume that observations
for negative time steps {−T0, · · · ,−1} are available as extra data for estimating initial
latent states. This strategy is accomplished by minimizing the discrepancy between the
observations x−T0 :0 and their estimated values via a gradient descent method to find the
best z∗−T0

. Figure 15 shows that the optimized initial latent state relying on z∗−T0
can be

placed near the normal latent trajectories, whereas the results of the PCA initialization stay
away from the trajectories during a few initial steps.
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(a) Latent trajectories of subjects 1–10 for walking.

(b) Latent trajectories of subjects 1–10 for running.

(c) Latent trajectories of subjects 1–10 for squats.

(d) Latent trajectories of subjects 1–10 for jumping jacks.

Figure 14. Training results when the additional contrast loss term is included for user identifica-
tion ability.
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(a) Walk. (b) Run.

(c) Squats. (d) Jumping jacks

Figure 15. Initial latent state estimation with (blue colored) and without (red colored) optimization
over z∗−T0

. zproposed
0 is the initial state estimation obtained by the proposed optimization method,

while zq
0 is the result following the procedure of Section 2. Note that black dotted lines are the latent

trajectories obtained for a test data set.

4.1.3. Other Related Topics: Characterizing Multiple Motions, Normal Latent Region, and
Motion Switching

In this subsection, we consider the tasks of extending the proposed method for charac-
terizing multiple motions, normal latent region, and motion switching. Since characterizing
general motion switching can be challenging, we deal with the extension with focus on
walking and running. Covering multiple motions in the formulation for latent trajectories
may yield additional flexibility [36]. For this task, multiple trajectories of walking and
running were trained together, with the aim of characterizing them on the same shared
latent space. When handling multiple motions, we simply collect all the motion data and
conduct pre-processing to acquire z-scores for all motion types. Then, instead of learn-
ing the weights of the proposed network separately for each type of motion, we train
the network with all the data. Since our network is equipped with neural SDEs and the
GPT2 as powerful transition and inference components, the trained network is expected
to efficiently handle the observations from multiple motions. Furthermore, by using an
additional contrast loss term in training, we increase its capacity to learn multiple motions
with an enhanced ability for distinguishing different motions. Figure 16 shows the latent
trajectories for walking and running motions resulting from the use of a common latent
space for these motions. One can see in the figure that, in the latent space, walking is
characterized by a low frequency, while running exhibits a higher frequency.
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(a) Walking (top row) & running (bottom row) for subjects 1–5.

(b) Walking (top row) & running (bottom row) for subjects 6–10.

Figure 16. Motions represented in shared latent space R2.

Once the training stage is completed, we can find the latent regions for considered
motions based on the training results. For the task of finding the latent region for walking
and/or running, we use a straightforward extension of the proposed approach via a kernel
density estimation (e.g., [37]). More specifically, we simply collect some latent patterns that
appeared during the training stage, and use them for conducting non-parametric density
estimation for each motion via a tool of scipy [38].

Figures 17 and 18 show the resultant density contours of the latent patterns for walking
and running, respectively.

Figure 17. Latent regions found by kernel-based density estimation for walking.
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Figure 18. Latent regions found by kernel-based density estimation for running.

The capacity about whether a given data point belongs to the normal latent region
(see Figure 19), and when a significant deviation or an abnormal trajectory occurs, can
issue an alarm to users. With this capacity in mind, we find a distribution for normal
latent patterns which are derived from the union of walking and running observation
data. Figure 19 shows how relevant contours for the normal latent patterns in R2 appeared
in the experiments. Since the trajectory deviating from the normal latent region can be
quickly noticed, this capacity may be utilized for detecting motion changes. For the task of
showing the contours of the density, we utilized a readily available matplotlib function,
matplotlib.pyplot.contour [39]).

Figure 19. Normal latent regions found by kernel-based density estimation for the data from walking
and running.

Finally, we conducted simulations to check whether the resultant model covers charac-
terizing motion switching. First, we trained the network with multiple demonstrations of
walking and running. In the test stage, the motions of the first subject were intentionally
switched from walking to running, or from running to walking, and we obtained corre-
sponding trajectories following the proposed framework (see Figure 20). The bottom row
of Figure 20 shows motion switching in the latent space, where it computed the moving
average of the latent trajectories with the rolling window size of five steps. Overall, the
results of Figures 16–20 show that our framework can also cover the problem of handling
multiple motions and motion switching.
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(a) Walk2run: Sensor data (z-scores). (b) Run2walk: Sensor data (z-scores).

(c) Walk2run: Latent trajectories. (d) Run2walk: Latent trajectories.

Figure 20. Motion switching represented in observation and latent space. Sub-figures (c,d) show
motion switching (black solid lines) together with latent trajectories of walking (blue dotted lines)
and running (red dotted lines).

4.2. Conclusions

In this paper, we investigated the problem of smartphone sensor-based human motion
characterization with neural stochastic differential equations and a transformer model. We
utilized built-in gyroscope sensors of a single iPhone XS Max unit tied on near the left
trousers pocket. From the unit sensors, we obtained the angular velocities along the x-, y-,
and z-axes, and computed their total magnitude. We normalized the xyz angular velocities
and the magnitude, respectively, and utilized them as our input features. The human
motions involved in our investigations include walking, running, squats, and jumping
jacks. For the characterization of the motions, we proposed a novel approach consisting of
neural SDE-based latent dynamics modeling and GPT2-based variational approximation.

The novelty of the proposed approach can be summarized as follows: Networks
for sequential inference are often implemented with accumulated observations from the
present and future. In contrast to such inference models, ours is based on a history of
past and current observations for variational distribution, which should be practical in
applications. Our inference model uses GPT2, which is more advanced than conventional
recurrent network-based models. Our approach makes use of transforming the sequences
of high-dimensional observations into a latent space along with decoding for the average
of reconstruction and prediction. The dimensionality of the latent space is 2, which is
a convenient choice for characterization and visualization. The results shown in two-
dimensional latent space are capable of efficiently capturing the characteristics of users’
dynamic motion patterns. We formulated the transition of the latent generative component
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with neural SDE, which can handle stochastic dynamical features in the latent space.
We also considered an optimization for obtaining more accurate initial latent state when
relevant observations are available for the optimization. We presented further related
discussion on how to enhance user identification ability by learning latent variables so that
they should carry more individually salient features. For the enhancement, an additional
loss term capable of reflecting contrast among users was introduced. The results when
the contrastive loss term was added showed the differences in user-specific patterns more
clearly in the latent space. After addressing how to obtain a latent region for normal
motions, we also discussed how to store multiple motions in the latent space, and how to
find motion switching among multiple motions.

One of the important issues that should be addressed in future studies concerns
the practical possibility of implementing the proposed method in current smartphone
systems. We believe that, since the proposed method addresses the practical needs like
motion characterization in a latent space and user identification, deploying the trained
networks into a smartphone would have much practical value. We also believe that its
implementation and operation in real-time are all possible. Important related works
remain to be conducted on further aspects such as comparison studies and more extensive
experiments. We believe that they will uncover strengths and weaknesses of the proposed
approach more clearly, and enable further refinements of multiple aspects of this approach.
Examining different types of data structures and different types of human motions are
important topics, for which more research is needed, in light of the important applications
of this area of research for health care, fitness, and user-device interaction.
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Appendix A. Details about Architecture and Hyper-Parameters

As mentioned, we used a small GPT2 structure consisting of two layers, a single
head and an embedding size of 16, which turned out to be sufficient for our purposes.
We found that, when the embedding size is further increased, the resultant performance
worsens. Since the main concern of this paper is smartphone or mobile applications,
considering small sizes for the structure should suffice. The detailed architecture of the
GPT2 Transformer used for the study is shown in Figure 2a. In addition, the detailed
structure of the neural SDE used for the study is provided in Figure 2b. For the drift
network of the neural SDE, we used MLP with two hidden layers. Each hidden layer
consists of a total of 32 hidden units with LipSwish activation functions. We have chosen
32 hidden units and the LipSwish activation function, following the practice of [14]. In this
paper, the decoder network is a two-layer MLP network with H = 256 hidden nodes in each
layer. Note that it is a slightly smaller size compared to those typically used in large-scale
Transformers. Again, since we are concerned with smartphone or mobile applications,
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choosing H = 256 should be sufficient. Finally, a sequence length of T = 90 has been chosen
so that the sequence includes several periods of considered repetitive motions.

Table A1. Hyper parameters.

Name Symbol Value

Batch size B 128
Sequence length T 90
Embedding size E 16
Latent dimensions k 2
GPT2 number of layers – 2
GPT2 number of heads – 1
Drift MLP sizes – [32,32]
Initial diffusion std σθ 0.2
Initial state std σ0 0.2
Decoder MLP sizes – [256,256]
Learning rate λ 0.001
KL loss scale β 1.0
Contrast loss scale γ 100.0
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