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Abstract: With the increase in the amount of 3D point cloud data and the wide application of point
cloud registration in various fields, the question of whether it is possible to quickly extract the
key points of registration and perform accurate coarse registration has become a question to be
urgently answered. In this paper, we proposed a novel semantic segmentation algorithm that enables
the extracted feature point cloud to have a clustering effect for fast registration. First of all, an
adaptive technique was proposed to determine the domain radius of a local point. Secondly, the
feature intensity of the point is scored through the regional fluctuation coefficient and stationary
coefficient calculated by the normal vector, and the high feature region to be registered is preliminarily
determined. In the end, FPFH is used to describe the geometric features of the extracted semantic
feature point cloud, so as to realize the coarse registration from the local point cloud to the overall
point cloud. The results show that the point cloud can be roughly segmented based on the uniqueness
of semantic features. The use of a semantic feature point cloud can make the point cloud have a very
fast response speed based on the accuracy of coarse registration, almost equal to that of using the
original point cloud, which is conducive to the rapid determination of the initial attitude.

Keywords: point cloud segmentation; 3D feature extraction; local features; local domain selection;
regional semantic scoring

1. Introduction

With the development of 3D LIDAR [1,2], the 3D point cloud model has been widely
spread in various fields, and engineering, medicine, and other fields increasingly rely on
3D point cloud information. With the continuous upgrading of 3D scanning equipment
and technology, people can obtain low-cost and high-precision 3D object point clouds,
and point clouds have gradually become the main data format by which to express the
world. Point cloud registration plays a key role in 3D reconstruction, such as 3D model
reconstruction [3,4], real-time 3D modeling [5,6], and 3D positioning applications such as
UAV positioning [7,8] and mine positioning [9].

Point cloud registration mostly adopts the strategy of coarse registration first and then
fine registration [10-12]. Among many point cloud registration algorithms, the iterative closest
point (ICP) algorithm described by BESL and McKay [13] and Rusinkiewicz and Levoy [14]
can obtain better registration accuracy, which is an important registration method in the
precision registration algorithm. The iterative closest point (ICP) algorithm has been
improved many times. Agamenoni et al. [15] improved ICP by using probabilistic data
association in 2016, which can obtain better robustness. Yang et al. [16] proposed a method
of directly processing range data in 2002, and registered continuous views with sufficient
overlapping area to obtain accurate conversion between views. Ji et al. [17] proposed a row
hybrid least square method for point cloud registration in 2017. Shuntao et al. [18] used
the point pair with a smaller Euclidean distance as the point to be matched to improve
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the registration accuracy and convergence speed in 2018. Kamencay et al. [19] combined
the scale-invariant feature transform (SIFT) function with the k-nearest neighbor (KNN)
algorithm in 2019 to weight the iterative closest point (ICP) algorithm to reduce the error.
Yang et al. [20] weighted the sampled structured data in 2019, improving the registration
accuracy under the same level of downsampled data. It can be seen that ICP has high
requirements for the initial position of the point cloud, and the inaccuracy of coarse
registration may cause local minimum or non-convergence.

How to use the extracted feature points of 3D data for fast and effective registration is
a challenging problem. However, there is no consensus on the definition of feature points.
There are different feature extraction methods, and the registration schemes proposed
for different feature extraction methods are also very different. Bohm and Becker [21]
used feature points extracted by SIFT for label-free registration of point clouds in 2007.
Barnea and Filin [22] used three-dimensional Euclidean distance to pair the extracted key
points in 2008. Rusu et al. [23] obtained richer point features by analyzing the 16D local
feature histogram of each point in the point cloud in 2008, and selected persistent feature
points by counting the different distance measures between the histogram features of each
point and the average histogram of the point cloud. Experiments show that the algorithm
can deal with the noise of laser scanning well. Rusu et al. [24] greatly reduced the calculation
time while retaining most of the identification ability of PFH by caching the previously
calculated values and modifying the theoretical formula in 2009. Sipiran et al. [25] proposed
the Harris operator to detect points of interest in 3D meshes in 2011. Li et al. [26] proposed
an improved Harris” algorithm in 2018, which uses gradient changes to identify feature
points to eliminate pseudofeature points. Ye et al. [27] proposed a RANSAC algorithm in
the same year to eliminate the wrong matching in registration. Kleppe al et al. [28] used
conformal geometric algebra as a descriptor to extract feature points for feature registration
in 2018. Xian et al. [29] proposed a sift operator in 2019 to reduce the impact of scale factors
in a key point search. Lu et al. [30] proposed to use the key points selected by the mean
value of domain curvature for point cloud registration in 2020. Experiments show that
the algorithm has a faster calculation speed, higher registration accuracy, and better anti-
noise performance. Ye et al. [31] proposed the meta-PU point cloud upsampling network
in 2021. The results show that using this upsampling network can achieve significant
performance gains for point cloud classification. Zhou et al. [32] proposed an objective
point cloud quality index with structure-guided resampling (SGR) to automatically evaluate
the perceptually visual quality of 3D dense point clouds in 2022. Experiments show that
this method can realize the disentanglement of known information to a certain extent so
that the key points can be sampled more uniformly.

Although the above methods can obtain the key feature points of the point cloud well,
they have more or fewer problems with the speed of getting key points. When the point
cloud data is huge, its computing speed will also be doubled, which is not conducive to
the real-time processing of point cloud data, and the accuracy cannot reach the highest
level within a limited number of iterations. Moreover, it can be seen from the above that
the curvature estimation and normal of points are widely used in the feature extraction of
points. Therefore, this paper uses local semantic scoring to screen out the high feature area
composed of effective key feature points before extracting rich point feature information,
so as to avoid the redundancy of calculation and achieve a fast response.

In contrast to the above methods, this paper introduces the fluctuation coefficient and
stationary coefficient of local fields and proposes a key point extraction and coarse registra-
tion method based on the semantic scoring system. We conduct detailed experiments to
compare our method with state-of-the-art methods. Experiments show that the proposed
algorithm has better speed and accuracy on the basis of ensuring noise resistance.

After this introduction, the source of the point cloud data and the principle of the
method will be described in detail in the second Section 2. In Section 3, the effectiveness of
the algorithm is verified by experiments, and our findings are summarized in Section 4.
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2. Methods
2.1. Semantic Features

We focus on calculating points in the field near a laser point. The set of point P of
point P; in field R is defined as Vp:

Pee Vp <= Pi— P [<r. ¢y

2.1.1. Normal Vector Calculation

The normal vector is one of the important features of the point cloud, which is widely
used in various feature extraction algorithms such as PFH, FPFH, etc. Accurate normal
vector estimation plays a key role in many point cloud algorithms. Principal components
analysis (PCA) is a data analysis method, which is often used to calculate the normal vector
and curvature. Here, we need to use the normal vector to score the local area of a point
on the point cloud semantically. For any point P; = (x;,y;, zi)T in the point cloud P, the
covariance analysis is performed on the point P;; € V1’§i in its K field, and the calculated
covariance matrix E; is as follows:

1
Ei=+ Z;(:l (Py — Po) (Pyj — Po) ", Evi = Aoy, 2

where P, is the barycenter of the point P; neighborhood point, k is the number of P;
neighborhood points, and v; and A; represent the eigenvectors of E; and the eigenvalues
corresponding to the Eigen objects, respectively. Sort the feature A; values so that they

satisfy )tl(l) < /\52) < /\1(3), and then the direction v}l) of the feature vector corresponding
to /\1(1) is the direction with the smallest variance in the k-neighborhood of P;. Finally, the
(1)

normal vector 1?1 of P; is obtained by uniting v;

2.1.2. Adaptive Regional Scale

In the process of point cloud collection, different collection devices and the distance of
the collection point will cause a certain difference in the overall density of the point cloud,
and the density of different regions of the same point cloud is also different. In this paper,
FPS is used to sample the point cloud as a whole, and the local point cloud density of
the sampling point is calculated based on the minimum distance representation of spatial
Euclidean distance, and the average point density y, of the overall point cloud is roughly
estimated, where dis(p, q) represents point p and any point in the point cloud. The distance
of a point g—the minimum distance between point p and other points—is represented by
Dy, and Ny is the number of sampling points. We have

D, = min(dis(p,q)),qN: 1,2 ..., Np#gq
— ol Dy, '
i

®)

Here, we use the calculated y to determine the adaptive area scale of the point cloud p,
and to facilitate the selection of the Gaussian function bandwidth ¢ below. The schematic
diagram of the adaptive radius is shown in the following Figure 1. Selecting 2y, as the
initial search radius of point P can effectively avoid the secondary query of most points

to the field point. For all g; € VIEI,H” , we search for the point g,; and the next closest point

gn with the Euclidean distance closest to p; in V;f‘ ", The radius identification Sg (i,m,n) is
calculated according to Equation (4):

Dy (pi,qn)

Sr(i,m,n) = Dy (pi )

(4)
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Standard radius

Maximum radius

O Adaptive radius

Figure 1. Schematic diagram of adaptive radius selection.

If Sr(i,m,n) < B, and Dy(pi, qnm) < 1.5Dy(pi, qm), taking Dy (pi, qn) as the standard

radius of the point prefetching, we find the point cloud point in the specified range in VPP !
to determine the adaptive radius Ry, of the area, where N4 represents the range point that
satisfies the condition, and then the adaptive radius Ry, is calculated by Equation (5):

N,
Y% Dp(piraj)
Ry, = ]T/Dp(piﬁn) < Dp(Pi/qj) < 1'5Dp(pi/Qn)- ®)

When the points in the field do not meet the calculation requirements, the K-nearest
neighbor search is used to replace the field search with a radius of 2y, but this method
will cause the second repeated search of the area points and reduce the running speed.

2.1.3. Semantic Scoring and Classification

In order to obtain the key points of the point cloud faster, the semantic score is
used to classify the points. Compared with the simple rude method of using the surface
undulation degree, by using Gaussian curvature or average curvature to obtain key points,
this algorithm not only has an advantage in speed, but also semantically segments the
point cloud, which facilitates the search for each key point, and can be better integrated
into the subsequent algorithms and operations, bringing convenience to the processing of
the point cloud.

By using the angle as a parameter to measure the fluctuation coefficient, the points
in the local area of the semantic segmentation point are classified into the point set that
needs to be scored later, and the average value of the included angle is obtained as the

identification of this point:
0; = cos™ ( e ’ >
<] | (6)

— 71:9
g =t

In the formula, 6; represents the angle between the normal vector 77; of the sampling
point P; and the normal vector ;?] of a point P;; in the k field. The larger the point, the greater
the fluctuation of the area. We select the appropriate threshold Jy to divide the points in
the field into fluctuation points. We set V1§im and stationary point set Vlﬁin .



Sensors 2022, 22, 7479 50f 18

We use the following formulas to obtain the scores of the two point sets:

Il 'pi — pj 112
Sryy = 2 wij, wij—a-exp{—] . (7)

. pevy (2:05cor?)
d

wjj is the Gaussian weight corresponding to the jth point in the field point set of the ith
sampling point, where a represents the peak value of the Gaussian function, and its value
determines the upper limit of the weight, which is taken as 1 here, || p; — p; || represents
the space Euclidean distance between the two points, which is a variable that affects the
weight distribution, and Tscor? is the bandwidth, which determines the difference of point
weights within the sampling point field. Considering the influence factors of the nearest
neighbors, the bandwidth value is consistent with the local point density 2Dp of the point
cloud. The point score calculation weighted by the Gaussian function of the field points
improves the influence of the nearest neighbors on the score, reduces the interference of
the far points on the score estimation, which fully takes into account the difference of the
influence of the field points, and improves stability and noise immunity when the field
radius is not properly selected.

Equation (8) is selected from the fluctuation coefficient Sr,, and stationary coeffi-
cient Srp, of each point to describe the point degree (Cg1), line degree (Cg2), and surface
degree(Cg3) within V:

Srpn Srb — ksrs Srpm

= = = 0 - . 8
Stom + Srp” 2T Sy + 51" T Srp + ST ®)

Cgl

Among these, Sr, = max(Sry,,, Srp, ), Sts represents the smaller coefficient of Srp,, and

Srp,- The value of K is % —-1<k< %, where kj is the ratio of Srg and Srj,, which is limited

by the tolerance oyjerance, and determines the boundary between the point degree (Cgy),

the line degree (Cgy), and the surface degree (Cg3). Here, the tolerance is generally set to

0.1 < oo1erance < 0.2, when ki < o, the value of kis k < % — 1. Finally, the labels (1, 2, 3)
in V}, are defined by Equation (9):

D* (Vlg) =arg drg[zﬂé] [Cgal. )

If Sry, = kSrs, Cgq1 will be less than the other two, the result of the D* (Vlﬁi) tag is 1.
Secondly, when Sryp,,, > Sr;,,, it behaves as a corner point. Conversely, Srp, > Srp,, stands
for D* (V3 ) =3.

In order to facilitate the selection of subsequent feature points, the points of all point
clouds are classified according to labels, and the point set P; of D* (V1’§l =d is defined
as Uy:

Pi€ Uy <= D*(V}) = d. (10)

When the priority of feature point selection is U; > Uy > Us, use the above calculation
to identify each point #; and the maximum value 6,,,, in the set U, set the judgment
threshold T, if ; > T, then mark P; as the point cloud feature point set, where T and the
relationship between the number of selected key points N is roughly judged, as shown in

Equation (11):
/ Omax 7(7‘*1")2
N = Size(Ua) / ¢ 27, N < Size(Uy). (11)
V2mo T

Here, y and o represent the average value and variance of the U; midpoint angle
identifier, and Size(U;) represents the number of U; midpoints. In order to obtain the
threshold T according to the required N more quickly, the original formula is changed to
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T = Size(Ua) [Omax 77(’”3)2 N. and th li Tavl i fE i T) i
f( )—WIT e 27 — N, and the nonlinear Taylor expansion of Equation f(T) is

as follows:

"(To)(T — To)? () (To)(T — To)"
FT) = f(To) + £/ (ro)(T — 1) 4 L TIT=TON - SR To)

We take the first two terms as the linear part of the function, set it to 0 to get
f(To) + f'(To)(T — Tp) = 0 and we use it as the approximate equation of the nonlinear
equation f(T) = 0, and obtain the iterative relationship as Equation (13), which helps to
converge faster to A suitable threshold T:

+ Ry (x). (12)

_ f(Ty)
Tn+1 =Ty — f/(Tn). (13)

When N > Size(Uy), the excess part is searched in the next feature set, which achieves
more precise quantity control than finding the threshold of a certain interval.

2.2. Coarse Registration Algorithm Based on Custom Semantic Feature Extraction

When performing high feature point registration, the high feature point sets from the
source point cloud and the target point cloud are recorded as P; = { p;|p; € P,i =1, 2,... N},
Qu= { q]-|q]- €Q,j=12 ..M }, where P and Q represent the source point cloud set and
target point cloud set, respectively, and N and M represent the number of two high feature
point sets, respectively. For any high feature point, this paper defines two metrics, namely
the point feature similarity and the point-to-point feature similarity between the source
point cloud and the target point cloud, and will satisfy a pair of two metrics at the same
time. High feature points are regarded as a set of successful matching pairs. The flow chart
of the registration method is shown in Figure 2.

Feature area extraction

source Semantic
point cloud : bSCO';ijng E);"gra;t RO
norma > ased on > ig > :
target extraction ada_ptive feature mg?clmng
point cloud regional areas
scale
Use the
Select the resulting Randomly
The source transformation transfor_mation select
point cloud matr:; n}atrlx U id matching
registered to @— corresponding to <—— peromngl <€¢— point pairs to
the target the minimum transformation estimate the
point cloud error within the and calculate an<formatio
specified number the registration e
of iterations error of the

feature region

Feature area registration
Figure 2. Point cloud registration method based on custom semantic feature extraction.

2.2.1. Feature Similarity between Points

For a high feature point p; in the source point cloud and any point g; in the target
point cloud, its feature description vector is pirpry-s) = {a1,42,... 83},
9i(rPFH—0) = {b1,b2, ..., bsa}, of which the first 33 are FPFH features, and the 34th is
0 /\1(2)/ Al

the surface curvature calculated from the three eigenvalues A; 1.3). Feature o is

denoted as Equation (14):
A
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If there are too many feature points extracted by custom semantics because the en-
vironment is too monotonous, we use the feature description vector of the points to sort
the two point sets, filter out the points with higher characteristics, and then determine the
point pair.

The Euclidean distance of its features is expressed as

Drpra—o (pirqj) = (15)

If Depry_o (pi, qj) < €Feature, then we determine p; and g; as candidate corresponding
points, find npeure q; that minimize Drpry— (pi, 4;) in Qq, and add point pair (p;, q;) to
the corresponding candidate point set C;. After this step is completed, the high feature
point is completed. The initial matching between the feature points is followed by the
matching between the feature point pairs.

In order to avoid traversing all feature points every time during the screening process,
this paper uses K-dimensional tree (KD-Tree) [31] to search the range of K-dimensional data
and the nearest neighbors, which has the characteristics of fast speed. The feature vectors
of all the feature points of the cloud are, respectively, used as new dimension feature point
clouds p3, 434, and ¢34, which are divided by KD-Tree to speed up the search for nearby
points. Therefore, the flow chart of the feature matching is shown in Figure 3.

Feature point
set Py, Qg4

|

Computer
FPFH — o, p3%,

7>
M

KD-Tree
partition g3*

D(ptz4 qL34) < gFeature?

Corresponding point
uq))
Y
N
I Finish I

Figure 3. Feature matching process based on FPFH — ¢.
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2.2.2. Feature Similarity between Point Pairs
The candidate point set C; is denoted as C; = { (pir4)) ® pi € Pq; € Quk=1,2,... N3}.

For any p;1), p;,2) € P,, the distance between two adjacent points in the source point cloud is
d =|| pitk) — p;k2) .
The corresponding point found in the target point cloud should satisfy Equation (16):

qj € Qd N {y| H d/ —d ||< 8PmtDis}/ (16)

where: d' =|| qj(kl) — j(kZ) ||, the search range of q; displayed by the threshold ep;ssance-
Due to the overall invariance of the point cloud, the distance parameters d between
the point pairs must satisfy the above relationship, the parameter distance difference
D (pl-,q]-) =|| pi —q; || between the two matching points should also be consistent and
satisfy the following relationship, so that the candidate point set for secondary evaluation.
Among them, D’ (p;, q;) represents the difference of another pair of matching points,

‘D(pir q]) - Dl(pi/ q])’ < €MatchDis- (17)

Finally, the corresponding points that satisfy the above constraints will form the
corresponding point set required for registration.

2.3. Point Cloud Coarse Registration

Coarse registration estimates the rotation and translation matrix of the whole point
cloud based on the correct matching points selected from the corresponding point set so
that the rigid body of the source point cloud set changes to the coordinate system of the
target point cloud. Considering the influence of the error on the matching point pair, this
paper adopts SAC_IA to perform rough matching to increase the robustness of errors. The
process is as follows:

1.  Randomly select three points from the source feature cloud P;, and obtain three sets
of corresponding points for calculating the rotation and translation matrix V under
the condition that the above constraints are satisfied.

2. Use the matrix V to perform rigid body transformation on the source high-feature
point cloud sample set Py, and the obtained sample point cloud set is recorded as Pj;.

3. Forall points in the Py; point set, find the corresponding nearest points in the Q; point
set respectively. Calculate its Euclidean distance, and use it as the estimated deviation
E after accumulation.

4. Repeat the above three steps until the specified accuracy or the highest number of
cycles is reached, and the minimum deviation E,,;;, obtained in the cycle is obtained.
At this time, the corresponding rotation and translation matrix E,;j;, is V.

5. By using V,,i,, a rigid body transformation on the source point cloud S, calculate the
deviation Ef;y, from the target point cloud set T.

3. Results and Analysis
3.1. Datasets

In order to verify the feasibility of the proposed algorithm, the standard models of
“bunny” and “armadillo” in the 3D point cloud database of Stanford University are used
for preliminary analysis. The address of the model is http://graphics.stanford.edu/data/
3Dscanrep/ (accessed on 15 April 2022). The initial position of the point cloud is shown in
Figure 4. Armadillo_ source, and bunny_ Source are the source point clouds represented in
green. Armadillo_target, bunny_target is the transformed target point cloud represented
by the blue point cloud.
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(b)

Figure 4. Initial point clouds. (a) Armadillo. (b) Bunny.

After the preliminary experiment, in order to verify that the registration method
proposed in this paper is also applicable to the registration of complex outdoor scenes,
further evaluations were performed on the outdoor Semantic KITTI and Semantic3d
datasets. In this paper, we used a reduced model named marketsquarefeldkirch4, shown
in Figure 5b, which can be downloaded at http://www.semantic3d.net/ (accessed on
6 August 2022). Figure 5a shows the full 360-degree field of view of the employed automo-
tive LIDAR collected while the vehicle is driving on the road, and this model is available at
http:/ /www.semantic-kitti.org/index.html (accessed on 13 September 2022).

(a) (b)

Figure 5. Outdoor point clouds. (a) KITTI Odometry Benchmark Velodyne point cloud. (b) Market-
place reduced.

3.2. Point Cloud Registration Results
3.2.1. Generation Parameters Analysis

The parameters required for semantic feature point extraction and point cloud registra-
tion of the two datasets are shown in Table 1. The parameter # 44, is the number of the re-
quired feature similarity between the corresponding points, which determines the accuracy
of the registration points and the number of iterations. The parameter € y1,¢chpis, €partDis
determines the accuracy of the secondary evaluation of the point pair, and the atmosphere
represents the distance between the corresponding matching points of the source point
cloud and the target point cloud, the threshold of the angle difference, and the distance
threshold that needs to be reached between the corresponding point pairs. When these
four parameters are small, higher matching accuracy can be obtained, but the operation
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rate will be reduced, and it may not be able to adapt to the registration situation with noise.
In order to balance the influence of these three and obtain the best registration effect, we
take 7 Features € MatchDiss €PartDis @s 3, 0.3pp and 4D). The parameter dg is the threshold that
affects the fluctuation coefficient in the semantic scoring area, which controls the number
of stationary points and fluctuation points, whereas the parameter oryj,4c. represents the
use of the above point classification, which represents the boundary tolerance of feature
point scoring. When the parameter dy is larger, the selection criteria of its feature points
will be more stringent, which can reduce the number of feature points, but will blur its
regional features. The parameter oy, is used to reduce the interference of the far point
on the scoring results. In order to have a better experimental effect, 0ycor is taken as 17.
The registration error adopts the nearest Euclidean distance, and the influence of different
parameters on it is tested on the two datasets. In the experiment, we specified the range
of 0p1erance to be 0.1 to 0.2, with an interval of 0.01, the range of Jy to be 14 to 18, with an
interval of 1. In order to make the experimental results robust to noise, the two initial point
clouds shown in Figure 4a were used, and all he points in armadillo_source are subjected
to noise processing with a standard deviation of 1.25%p;,. The experimental results are
shown in Figure 6. Surface fitting is performed by cosine series binary order 4 interpolation.
This experiment shows that in a certain area (that is, 07yjerance) is in the range of 0.13 to 0.16
and Jyp is in the range of 14.5 to 17.5. The parameters have little effect on the algorithm,
and the registration error is between 0.11 and 2.57. The error reaches a minimum value
when the value is around (0.15,17). Therefore, in subsequent experiments, we specify the
parameters 0yjerance and dp as 0.15 and 17.

Table 1. Parameter setting for experimental datasets.

Procedure

Parameter Descriptor Value

Semantic feature points extraction

Threshold for point set

Regional point cloud
egrona’ pomn ot % volatility coefficient

17

segmentation ) .
and scoring Gaussian weight
Oscor bandwidth in point 2Dy
set scoringata
High feature o Tolerance of feature point 015
point extraction Tolerance extraction boundary '

Point cloud registration

Feature similarity

NFeature threshold for 3
corresponding points
Correspondence The distance threshold of
matching € MatchDis the corresponding point 0-3up

The maximum search
€PartDis distance of the 4D,
corresponding point pair

3.2.2. Semantic Feature Point Extraction

As shown in Figure 7, the left side uses the 3D-Harris algorithm, the parameter is set
to the normal vector estimation radius 1.5, and the key point estimates the feature corner
points obtained by searching for the nearest neighbor radius 2, which are identified and
distinguished by the red point cloud. On the right side are the key points obtained by the
algorithm based on semantic scoring. It can be clearly seen that it has a good display of
the area around the points with obvious features, which is conducive to the subsequent
separate processing of the feature point cloud. By extracting its regional features, its
running speed is significantly improved compared to the method of extracting the features
of the whole point cloud.

For the initial point cloud shown in Figure 4a, this method is adopted, and the final
registration map is shown in Figure 8.
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Figure 6. Registration error of different parameters.
Qw
(a) (b)

Figure 7. Feature point extraction. (a) 3D-Harris extraction. (b) Text semantic extraction.

3.3. Evaluation of the Proposed Method
3.3.1. Time Performance

The registration experiments were carried out on a computer with a CPU Intel Core
i5-5200U @2.2GHz, a hardware environment of 4G memory, and a software environment
of the Windows 10 operating system, and code programming was performed in Visual
Studio 2015 by using the C++ programming language and PCL library. Table 2 reflects
the time required for each step of point cloud feature extraction and registration in the
two datasets. From the time consumption table, we can see that the method has high time
efficiency in registration, and can perform fast feature extraction and registration in the
case of a large number of point clouds. The reason why this method has super high time
efficiency for point cloud registration is that the simple and effective small-scale neighbor
point collection is used to replace complex or large-scale feature extraction, and taking the
method of extracting aggregated feature points instead of source point cloud to reduce the
time cost of feature point extraction and registration.
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Figure 8. Point cloud register of armadillo.

Table 2. Time performance of the proposed method.

Semantic Feature Points Extraction (ms) Point Cloud Registration Tota(ls")l"lme
Regional Point Feature Point One Iteration Number of
Cloud . .
. Extraction (ms) Iterations
Segmentation
Armadillo 3139 2034 1.2 1022 6.4
Bunny 536 358 0.2 94 0.9

3.3.2. Comprehensive Analysis of Time Cost and Accuracy of the Proposed Method

The registration error is defined as the sum of the closest point distances between the
point cloud to be registered and the target point cloud, and the time cost is defined as the
time required to achieve the required registration error within the specified 10,000 iterations.
We conducted ablation experiments to evaluate the impact of the custom semantic extrac-
tion and PFP_SAC proposed in this paper on the registration result. Table 3 presents
method comparisons for the ablation study. The FPFH feature determines the persistent
feature points and performs point cloud registration on them, which fully reflects the time
consumption and registration accuracy of the original algorithm, which is convenient for
comparing the advantages and disadvantages of the experimental results of the follow-
ing new methods. The search radius of the FPFH of the method remains the same, and
the number of feature points to be registered in the third, fourth, and fifth methods is
the same. The 10 research results are averaged to obtain the comparison results shown
in Table 4. Experiments show that the two parts of the method proposed in this paper
are generally effective in independent experiments. When combined, the new method
can obtain satisfactory registration results faster and can achieve better results when the
number of point clouds is large. The reason that the semantic feature extraction has higher
registration accuracy compared with other feature extractions is that the points extracted
by the semantic features are distributed in its high feature area, and the resulting clustering
effect is helpful for the subsequent point cloud registration.
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Table 3. Comparison of methods for ablation studies.
Persistent Feature Point Extraction Point Feature Extraction Registration
Method 1 FPFH FPFH SAC_IA
Method 2 Custom semantics FPFH SAC_IA
Method 3 FPFH FPFH PFP_SAC_IA
Method 4 Harris FPFH PFP_SAC_IA
Method 5 Custom semantics FPFH PFP_SAC_IA
Table 4. Performance comparison.
Armadillo Bunny
Registration Error ~ Time Cost (s) Numb.er of Registration Error Time Cost (s) Numb'er of
Iterations Iterations
Method 1 0.068749 430.8 65 1.77 x 10715 10.67 28
Method 2 0.0989533 601.3 164 2192 x 10713 3.71 94
Method 3 0.303254 56.9 10,000 1.024 x 10715 3.51 3552
Method 4 1.09559 24.5 10,000 3.170 x 105 4.47 10,000
Method 5 0.0989533 6.4 164 2192 x 10-13 0.93 94

3.3.3. Registration Robustness Analysis
Robustness to Noise

To verify the robustness of the proposed method to noise, we added Gaussian noise
with standard deviations of 1.25%, 50%, 85%, and 125% to the random number points
in the Data A point cloud set, respectively. Figure 9 reflects the effect of different noises
on registration accuracy. It can be seen from the figure that even under the influence of
Gaussian noise as high as 1.25 times the point density, the method proposed in this paper
can achieve high coarse registration accuracy. This experiment shows that the method in
this paper has strong robustness to changing noise.

0.5 -

1.25%pp
N o
S 04- 20%pp
o 85%pp
—
Q — o,
£ 03- 125%pup
o
o]
2 024
E /
B
A 0.1

0.0

I 2 I ' I - I L I =
0.00 0.02 0.04 0.06 0.08 0.10
The percent of noise points

Figure 9. Noise robustness analysis.

Robustness to Randomly Varying Point Density

In order to evaluate the influence of the variation of the point density caused by
the pulse frequency or distance of the laser on the method proposed in this paper, the
point cloud shown in Figure 4a was randomly downsampled to 1/18 of the original
number of points, 9, 4/9, 8/9 to form point clouds with random density changes for
verification. Figure 10 shows the effect of different point densities on the registration error.
It can be seen that the proposed method still has good accuracy after randomly removing
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8/9 points, which shows the robustness of the method in this paper to the randomly
changing point density.

0.6 -

05L |[——Dboth point clouds

04

0.3 |

02

Distance differences

0.1+

0.0 I . 1 . 1 : 1 . L . I
0.0 0.2 0.4 0.6 0.8 1.0

The ratio of decimation
Figure 10. Robustness to varying point density.

3.4. Outdoor Scene Application

In order to verify that the method proposed in this paper is also suitable for high-
challenging outdoor scenes, the point cloud image collected by the vehicle radar shown in
Figure 5a is used for evaluation. Figure 11a is the initial pose map of the point cloud to be
registered, and the registration result is shown in Figure 11b.

(a) (b)

Figure 11. KITTI odometry benchmark velodyne point cloud. (a) Initial pose. (b) Registration
rendering.

Then we performed the method evaluation in urban point clouds and selected
172,974 points in the point cloud image shown in Figure 5b for preliminary simulation.
After that, these points were appropriately rotated to obtain the initial image of the point
cloud to be registered, as shown in Figure 12. The method proposed in this paper is used
to register it. Due to the change in the model, we also slightly changed the parameter 5y
and set it to 19. As shown in Figure 13, when the number of iterations reaches 4251, the
corresponding error was 0.06 Among them, Figure 14a,b corresponded to the renderings
produced by 588 iterations and 1412 iterations, respectively. The previous experimental
results did not further select high feature points. It can be seen that even when the features
of the points are repeated many times, the method has good registration progress. After
that, the overall point cloud is registered, and the final effect is shown in Figure 15.
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Finally, we compared the method proposed in this paper with the classical P2P-ICP
and P2L-ICP based registration methods. To reflect the impact of the number of high
feature points on this method, we set the number of high feature points for the two scenes
to 800 and 1500, respectively. The FPFH search radius is 0.5 and 0.3, respectively. The
results are shown in Table 5. We can see that the method proposed in this paper still has
a faster response speed on the basis of ensuring better registration accuracy in complex
outdoor scenes, and the effect is most obvious in dense point clouds.

Figure 12. Partial outdoor point cloud registration initial position.

(a) (b)

Figure 14. The registration effect corresponding to (a) 588 iterations and (b) 1412 iterations.
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rd
Figure 15. Registration of the whole point cloud.
Table 5. Performance comparison in outdoor scenes.
KITTI Odometry Benchmark Velodyne Marketplace
Registration Error Time Cost (s) Registration Error Time Cost (s)
P2P-ICP 0.00508164 27 23 291
P2L-ICP 0.00045351 21 103 276
4PCS 0.0791283 17 0.0415829 53
Our method 0.00492884 15 0.0253817 37

4. Conclusions

Fast coarse registration is a prerequisite for pose estimation, 3D scene reconstruction,
and map localization. Aiming at the problems of slow registration of large-scale point
clouds and a large amount of computation, a fast registration method of key regions based
on semantic scoring is proposed. The important contribution of this paper lies in a new
matching strategy that uses FPFH features for the registration of new feature point clouds
formed by semantic feature points. Various experiments are conducted to evaluate the
registration accuracy of the proposed method in various point cloud datasets and the
robustness to different noise influences. Experiments show that the proposed method
can have a faster running rate and higher registration accuracy under the premise of
ensuring noise robustness, and can achieve a better matching effect for coarse registration.
However, because FPFH is used as the feature of semantic feature points for matching, it
does not necessarily have the best fit with this method, and further research is needed on
the representation of point features. In addition, in-depth research on point clouds will be
conducted in the future to study the remarkable effects that neural networks can produce
in point clouds.

Author Contributions: Conceptualization, ].W.; methodology, ] W.; software, ].W.; validation, ] W.,
EY. and Z.X. (Zhang Xiao); formal analysis, EY.; investigation, F.C. and T.P.; resources, F.C., T.P. and
Z.X. (Zhi Xiong); data curation, EC. and Z.X. (Zhi Xiong); writing—original draft preparation, ] W.;
writing—review and editing, J W., Z.X. (Zhang Xiao) and FY.; visualization, ] W.; supervision, EY.
and Z.X. (Zhang Xiao); project administration, FY.; funding acquisition, EY. and Z.X. (Zhang Xiao).
All authors have read and agreed to the published version of the manuscript.

Funding: Supported by the Opening Project of Cooperative Innovation Center for Nuclear Fuel Cycle
Technology and Equipment, University of South China (2019KFZ04) and Program of Science and
Technology Commissioners of Hunan Province (2021GK5049).

Institutional Review Board Statement: Not applicable.



Sensors 2022, 22, 7479 17 of 18

Informed Consent Statement: Not applicable.

Data Availability Statement: Our code and dataset have been released at: https://github.com/
Wujn1016/Semanti_Extraction (accessed on 22 August 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Han, M,; Zhou, B.; Qian, K.; Fang, F. 3Dlocalization and Mapping of Outdoor Mobile Robots Using a LIDAR. J. Huazhong Univ.
Ence Technol. 2015, 43 (Suppl. 1), 315-318. [CrossRef]

2. Gézero, L.; Antunes, C. An Efficient Method to Create Digital Terrain Models from Point Clouds Collected by Mobile Lidar
Systems. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-1/W1, 289-296. [CrossRef]

3. Va, G.; Ghgb, B.; Sb, G.; Rb, T. Recognising Structure in Laser Scanner Point Clouds. In Proceedings of the ISPRS Working Group
VIII/2: Laser Scanning for Forest and Landscape Assessment, Freiburg, Germany, 3-6 October 2004.

4. Pu, S; Vosselman, G. Knowledge Based Reconstruction of Building Models from Terrestrial Laser Scanning Data. ISPRS J.
Photogramm. Remote Sens. 2009, 64, 575-584. [CrossRef]

5. Cho, S.; Cho, K. Real-Time 3D Reconstruction Method Using Massive Multi-Sensor Data Analysis and Fusion. J. Supercomput.
2019, 75, 3229-3248. [CrossRef]

6. Lovi, D.; Birkbeck, N.; Cobza, D.; Jgersand, M. Incremental Free-Space Carving for Real-Time 3D Reconstruction. Master’s Thesis,
University of Alberta, Edmonton, AB, Canada, 2011.

7. Yue, M.A.; Wei, Z.C.; Wang, Y. Point Cloud Feature Extraction Based Integrated Positioning Method for Unmanned Vehicle. In
Proceedings of the 2014 International Conference on Applied Mechanics and Mechanical Automation (AMMA 2014), Macau,
China, 20-21 May 2014.

8. Pierzcha, A.M.; Giguere, P; Astrup, R. Mapping Forests Using an Unmanned Ground Vehicle with 3D LiDAR and Graph-SLAM.
Comput. Electron. Agric. 2018, 145, 217-225. [CrossRef]

9.  Herbert, H.E; Ray, M.D. Self-Contained Mapping and Positioning System Utilizing Point Cloud Data. Canada Patent Application
No. CA2347569C, 14 May 2021.

10. Salvi, J.; Matabosch, C.; Fofi, D.; Forest, ]. A Review of Recent Range Image Registration Methods with Accuracy Evaluation.
Image Vis. Comput. 2007, 25, 578-596. [CrossRef]

11.  Guo, Y.; Bennamoun, M.; Sohel, F,; Min, L.; Wan, J. 3D Object Recognition in Cluttered Scenes with Local Surface Features: A
Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 2270-2287. [CrossRef] [PubMed]

12.  Restrepo, M.L; Ulusoy, A.O.; Mundy, J.L. Evaluation of Feature-Based 3-d Registration of Probabilistic Volumetric Scenes. ISPRS J.
Photogramm. Remote Sens. 2014, 98, 1-18. [CrossRef]

13.  Besl, PJ.; Mckay, N.D. Method for Registration of 3-D Shapes. In Proceedings of the Sensor Fusion IV: Control Paradigms and
Data Structures, ROBOTICS91, Boston, MA, USA, 14-15 November 1991; Volume 1611, pp. 586-606. [CrossRef]

14. Rusinkiewicz, S.; Levoy, M. Efficient Variants of the ICP Algorithm. In Proceedings of the Third International Conference on 3-D
Digital Imaging and Modeling, Quebec City, QC, Canada, 28 May-1 June 2001. [CrossRef]

15. Agamennoni, G.; Fontana, S.; Siegwart, R.Y.; Sorrenti, D.G. Point Clouds Registration with Probabilistic Data Association. In
Proceedings of the IEEE/RS] International Conference on Intelligent Robots & Systems, Daejeon, Korea, 9-14 October 2016.

16. Yang, C.; Medioni, G. Object Modeling by Registration of Multiple Range Images. Image Vis. Comput. 2002, 10, 145-155. [CrossRef]

17. Ji,S,; Ren, Y,;Ji, Z; Liu, X.; Hong, G. An Improved Method for Registration of Point Cloud. Opt.—Int. J. Light Electron Opt. 2017,
140, 451-458. [CrossRef]

18. Liu, S.; Gao, D.; Wang, P.; Guo, X; Xu, J.; Liu, D.-X. A Depth-Based Weighted Point Cloud Registration for Indoor Scene. Sensors
2018, 18, 3608. [CrossRef] [PubMed]

19. Kamencay, P; Sinko, M.; Hudec, R.; Benco, M.; Radil, R. Improved Feature Point Algorithm for 3D Point Cloud Registration. In
Proceedings of the 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), Budapest, Hungary,
1-3 July 2019.

20. Yang, Y,;Li, H; Yang, J.; Zhong, D. Structured Down-Sampling and Registration Method for 3D Point Cloud of Indoor Scene. In
Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6-9 October 2019.

21. Bohm, J.; Becker, S. Automatic Marker-Free Registration of Terrestrial Laser Scans Using Reflectance Features. In Proceedings of
the 8th Conference on Optical 3D Measurement Techniques, Zurich, Switzerland, 9-12 July 2007; pp. 338-344.

22. Barnea, S; Filin, S. Keypoint Based Autonomous Registration of Terrestrial Laser Point-Clouds. ISPRS ]. Photogramm. Remote Sens.
2008, 63, 19-35. [CrossRef]

23.  Rusu, R.B.; Marton, Z.C.; Blodow, N.; Beetz, M. Persistent Point Feature Histograms for 3D Point Clouds. In Intelligent Autonomous
Systems 10; IOS Press: Amsterdam, The Netherlands, 2008; pp. 119-128. [CrossRef]

24. Rusu, R.B.; Blodow, N.; Beetz, M. Fast Point Feature Histograms (FPFH) for 3D Registration. In Proceedings of the 2009 IEEE
International Conference on Robotics and Automation, Kobe, Japan, 12-17 May 2009; pp. 3212-3217. [CrossRef]

25. Sipiran, I.; Bustos, B. Harris 3D: A Robust Extension of the Harris Operator for Interest Point Detection on 3D Meshes. Vis.

Comput. 2011, 27, 963. [CrossRef]


https://github.com/Wujn1016/Semanti_Extraction
https://github.com/Wujn1016/Semanti_Extraction
http://doi.org/10.13245/j.hust.15S1075
http://doi.org/10.5194/isprs-archives-XLII-1-W1-289-2017
http://doi.org/10.1016/j.isprsjprs.2009.04.001
http://doi.org/10.1007/s11227-019-02747-3
http://doi.org/10.1016/j.compag.2017.12.034
http://doi.org/10.1016/j.imavis.2006.05.012
http://doi.org/10.1109/TPAMI.2014.2316828
http://www.ncbi.nlm.nih.gov/pubmed/26353066
http://doi.org/10.1016/j.isprsjprs.2014.09.010
http://doi.org/10.1117/12.57955
http://doi.org/10.1109/IM.2001.924423
http://doi.org/10.1109/ROBOT.1991.132043
http://doi.org/10.1016/j.ijleo.2017.01.041
http://doi.org/10.3390/s18113608
http://www.ncbi.nlm.nih.gov/pubmed/30355993
http://doi.org/10.1016/j.isprsjprs.2007.05.005
http://doi.org/10.3233/978-1-58603-887-8-119
http://doi.org/10.1109/ROBOT.2009.5152473
http://doi.org/10.1007/s00371-011-0610-y

Sensors 2022, 22, 7479 18 of 18

26.

27.

28.

29.

30.

31.

32.

Qi, L.; Xiang, H.; Shuanggao, L.; Zhengping, D. Feature Extraction from Point Clouds for Rigid Aircraft Part Inspection Using an
Improved Harris Algorithm. Meas. Sci. Technol. 2018, 29, 115202. [CrossRef]

Ye, Q.; Liu, H.; Lin, Y. Study of RGB-D Point Cloud Registration Method Guided by Color Information. In Proceedings of the
International Conference on Information Optics and Photonics, Xi’an, China, 23-26 July 2021.

Kleppe, A.L.; Egeland, O. A Curvature-Based Descriptor for Point Cloud Alignment Using Conformal Geometric Algebra. Adv.
Appl. Clifford Algebras 2018, 28, 50. [CrossRef]

Xian, N.; Xiao, N.; Wang, N. A Fast Registration Algorithm of Rock Point Cloud Based on Spherical Projection and Feature
Extraction. Front. Comput. Sci. 2019, 13, 13. [CrossRef]

Lu, J.; Wang, Z.; Hua, B.; Chen, K. Automatic Point Cloud Registration Algorithm Based on the Feature Histogram of Local
Surface. PLoS ONE 2020, 15, €0238802. [CrossRef] [PubMed]

Ye, S.; Chen, D.; Han, S.; Wan, Z.; Liao, J. Meta-PU: An Arbitrary-Scale Upsampling Network for Point Cloud. arXiv 2021,
arXiv:2102.04317. [CrossRef] [PubMed]

Zhou, W.; Yang, Q.; Jiang, Q.; Zhai, G.; Lin, W. Blind Quality Assessment of 3D Dense Point Clouds with Structure Guided
Resampling. arXiv 2022, arXiv:2208.14603. [CrossRef]


http://doi.org/10.1088/1361-6501/aadff6
http://doi.org/10.1007/s00006-018-0864-9
http://doi.org/10.1007/s11704-016-6191-1
http://doi.org/10.1371/journal.pone.0238802
http://www.ncbi.nlm.nih.gov/pubmed/32915857
http://doi.org/10.1109/TVCG.2021.3058311
http://www.ncbi.nlm.nih.gov/pubmed/33560989
http://doi.org/10.48550/arXiv.2208.14603

	Introduction 
	Methods 
	Semantic Features 
	Normal Vector Calculation 
	Adaptive Regional Scale 
	Semantic Scoring and Classification 

	Coarse Registration Algorithm Based on Custom Semantic Feature Extraction 
	Feature Similarity between Points 
	Feature Similarity between Point Pairs 

	Point Cloud Coarse Registration 

	Results and Analysis 
	Datasets 
	Point Cloud Registration Results 
	Generation Parameters Analysis 
	Semantic Feature Point Extraction 

	Evaluation of the Proposed Method 
	Time Performance 
	Comprehensive Analysis of Time Cost and Accuracy of the Proposed Method 
	Registration Robustness Analysis 

	Outdoor Scene Application 

	Conclusions 
	References

