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Abstract: Due to the potential economic benefits, pedestrian flow is considered an essential indication
of public spaces. Pedestrian flow prediction is designed to assist operators in making decisions (such
as shopping center owners). Operators hold certain events, such as sales promotions, to attract
surrounding pedestrians; we refer to this type of event as a business event. Business events attract
pedestrian flows, which means business opportunities for the merchants. Moreover, their placement
will affect the distributions of the pedestrian flows. However, deciding which route is chosen for a
specified event is difficult. To the best of our knowledge, we are the first to consider business events
when predicting pedestrian flow. In this paper, we investigate two problems: one is pedestrian flow
prediction with business events, and the other is route recommendation for business events. First, we
propose an Attraction-Based Matrix Factorization model (ABMF) to efficiently predict the pedestrian
flow with business events, which introduces the attraction index of different categories to pedestrians
in matrix factorization. Second, we leverage the Skip-gram mode to learn the latent representations
and improve the pair-wise ranking loss to a flow-aware-based method (SG-FWARP), which aims to
learn events’ latent representations for route recommendation. Compared with other state-of-the-art
methods, the experimental results show ABMF can predict pedestrian flow matrix with a similarity
of over 0.9 compared with the ground truth, and SG-FWARP can recommend routes for business
events with high accuracy.

Keywords: matrix factorization; pedestrian flow prediction; route Recommendation; embedding
learning

1. Introduction

The rapid progress of urbanization brings prosperity to businesses. A large number
of human beings visit the business district, which forms dynamic pedestrian flows be-
tween Points of interests (POIs). Mobile crowdsourcing data from location-based social
network services (LBSNs) provide information on individuals’ preferences for routes and
locations [1–3]. Pedestrian flow prediction provides crucial information to operators for
decision-making. For instance, by utilizing crowdsourced trajectories, pedestrian flow anal-
ysis enhances the structure of technological show events [4], and pedestrian flow prediction
in vast road networks is used to benefit the German outdoor advertising market [5]. The
pedestrian flow provides the operators purchasing power and has the potential ability to
benefit them. Additionally, the operators frequently organize events to draw the nearby
pedestrian flow in order to gain greater commercial benefits. Researchers studied the
prediction with different types of events in real life. For example, the work [6] predicts the
crowdedness of POIs in order to enhance personalized trip recommendations by avoiding
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crowds. The work [7] forecasts attendance of the activity in event-based social networks
(e.g., Douban).

However, events that occur along the route are rarely studied by academics, such as
sales promotions, and we refer to this novel type of event as business events. Unlike previous
studies on pedestrian flows, we focus on pedestrian flow prediction under business events.
Business events are frequently hosted in areas with high pedestrian flows because event
organizers want to draw attention to their products by gathering pedestrian flow. Figure 1
depicts the effect of a business event on pedestrian flow: there are two paths from v1 to
v4, both of which pass through v2 and v3. Two business events are associated with the
two routes v1 → v3 and v3 → v4, respectively. These events attract a greater number of
pedestrians. As business events are scheduled to be placed, predicting pedestrian flow
with business events is a big challenge. The challenge is that different business events on
different routes will result in varied distributions of the overall pedestrian flow.

v1

Small pedestrian flow

Large pedestrian flow

POI 

Business event
Route

Small pedestrian flow

v4

v2

v3

Large pedestrian flow

Figure 1. Business event increases the pedestrian flow of a route.

In this paper, by utilizing mobile crowdsourcing data, we study how business events
affect pedestrian flows. Based on historical pedestrian flows, we present an Attraction-
Based Matrix Factorization model (ABMF) to predict pedestrian flows with business events
accurately, which introduces the attraction index of different categories to pedestrians in
matrix factorization. In some cases, the operator only knows which event he plans to hold
but does not know which route fits the event. Thus, it is essential to recommend routes for
a business event. So, we investigate which routes fit for holding an event, and recommend
top-N routes for a specified business event. The goal of top-N route recommendation is
to recommend for each event N routes that are most appropriate for it. To achieve this
goal, by leveraging the Skip-gram model [8], we learn the latent representations for a route
to capture the contextual information in sequences. By considering the flow factors, we
improve the pair-wise ranking loss to a flow-aware-based method, which aims to learn
events’ latent representations for route recommendation. The main contributions of this
paper are:

1. As far as we know, we are the first to take business events into account when predicting
pedestrian flow.

2. To predict pedestrian flow based on business events, we present the ABMF model,
and its highlight lies in that it introduces the attraction index of different categories to
pedestrians in matrix factorization.

3. To recommend routes for event placement, we learn route representations based
on the Skip-gram model and consider the flow factors to recommend top-N routes
for events.

4. We compare the performance of the proposed two methods with state-of-the-art
solutions on a simulation dataset and real-world datasets, and experiment results
reveal that our algorithms outperform the baselines.

This paper is organized as follows: Section 2 reviews related work. Section 3 shows
the data model and problem definition. We detail the ABMF method and the parameter
estimation in Section 4. Then, we introduce the extension of route recommendation for
events in Section 5. We report the experimental results in Section 6 and conclude our paper
in Section 7.
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2. Related Work

In this section, we review the related work from the following aspects:
(1) Pedestrian Flow Analysis: Pedestrian flow analysis, which is used to extract infor-

mation from stored trajectories via pedestrian flow modeling, simulation, and optimization,
has garnered increased attention. In the literature on pedestrian modeling, a number of
modeling techniques have already been proposed at microscopic and macroscopic scales,
including trajectory clustering for extracting similar trajectories from a dataset [9]. An
analysis of pedestrian flow in complicated scenes computes a representation of the main
pedestrian flows [10]. The work [11]predicts the influence of urban environment layout
on the spatial distribution of pedestrian flows. Based on the pedestrian trajectories, the
work [4]shows a technique for real pedestrian track analysis during an actual exhibition.
There are numerous approaches for simulating pedestrian traffic. The work [12] simulates
the pedestrian flow by considering the interaction among pedestrians. Kaminka et al. [13]
discuss a model of urban pedestrian flow based on agents.

(2) Pedestrian Flow Prediction: Predicting pedestrian flow is a fundamental topic
in urban computing [14]. Previous research focuses on predicting people’s movements
using their past location data [15,16]. In recent years, researchers have developed methods
to forecast the city’s crowd flow in a variety of situations, including taxi and bike move-
ments [17]. Zhou et al. [18] propose MOHER to predict the potential crowd flow in a certain
mode, which uses the LTSM module to predict the sequential flow. To predict the crowd
flow over the entire city, Zhang et al. [19] develop an end-to-end ST-ResNet structure based
on unique spatio-temporal data features. Some studies concentrate on predicting pedes-
trian flow: Eravci et al. [20] forecast the scale of pedestrian flows to provide commercial
advice; Ma et al. [21] propose an approach that automatically predicts crowd density in
the short term, which presents a prediction algorithm using v-support vector regression
(vSVR). Duan et al. [22]introduce a complementary attention gated network to predict
pedestrian trajectory, which captures both frequent and peculiar modals in spatial and
temporal patterns.

(3) Urban Computing and Business Recommendation: The rich human mobility data
generated in urban spaces reflects a city’s underlying problems, helping urban planners to
formulate plans effectively. Big data-driven urban computing is a popular field with many
valuable applications. Li et al. [23] select locations for ambulance stations. Bao et al. [24]
plan bike lanes relaying on the sharing-bikes’ trajectories. Liu et al. [25] aim to select
billboard locations based on the large-scale taxi trajectories. The recommendation technique
is employed in business category selection, store location selection, etc. Zhao et al. [26]
utilize the data from location-based social networks to recommend new business categories
in a partitioned business district, which mines the business opportunities and guides
the planners to open new commercial shops in certain categories in a specific district.
Some researchers employ the business data to support the business owners in LBSNs,
designing the zone recommendation system [27], business prediction system [28], and retail
allocation system [29]. Lu et al. [30] apply user and business properties for personalized
business recommendation.

(4) Sequential Modeling and Embedding Learning: Modeling the sequential pattern
is an important technique in the recommendation field. Many works apply the Markov
chain in the successive check-ins to observe the sequential pattern. The studies in [31]
learn the transitive pattern of categories in sequential check-ins. Zhang et al. [32] learn the
transitive probability from the additive Markov chain to recommend POIs. With the success
of deep learning, the neural network has been utilized to model the check-in sequences.
The work [33] applies the word2vec framework to model the check-in sequences to capture
the sequential contexts. The prior works [31,33] inspire us to capture the sequential pattern
from user travel trajectories to improve business event recommendation. The word2vec
framework [8] is a neural language model to learn latent representations of words effectively.
The main idea is to observe a word’s contextual relations in sentences, which perform better
than the viewpoint of word similarity and transitivity in sentences. With the success of the
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framework in capturing the contextual correlations of items, the word2vec framework is
widely used for user modeling [34] and POI modeling [35], etc. For example, Liu et al. [33]
adopt a Skip-Gram model in POI recommendation by capturing the sequential POI check-
ins and performs better than the Markov chain model. However, the work [33,36] neglects
the crowd flow influence, so we propose a flow-aware model to recommend routes for
the business event. Compared to these studies, the main difference lies in our proposed
methods naturally focusing on predicting the pedestrian flow with business events and
recommending routes for business events. This prediction assists operators in making
decisions on where to place business events, increasing possible economic gains.

3. Preliminaries

The motivation to predict pedestrian flow with business events is as follows: The
business events that are held along the route will attract pedestrian flow, which could
have advantages and is the driving force behind the prediction of pedestrian flow with
business events. This section explains the data model and defines the problem of predicting
pedestrian flow under business activities. The most common notations used in this paper
are listed in Table 1.

Table 1. Frequently-used notations.

Notation Interpretation

V/E the set of locations/routes, vi ∈ V, |V| = n, eij ∈ E

A the business events set, ai ∈ A

A′ the current business events set

MA the set of pedestrian flow history data

Mi the ith pedestrian flow matrix

Ai the ith the business events set, Ai ⊆ A

Ri the position matrix of Ai

C the set of categories, ci ∈ C

X the latent location feature matrix

H the latent business event feature matrix

Y latent factor feature matrix of location

F latent factor feature matrix of business event

f (ai) the function to map ai to its category index

λx, λy, λh, λ f the regularization parameters of X, Y, H and F

λm the reciprocal of the variance

η the learning rate

s the predicted pedestrian flow matrix index

z the latent feature dimension

Si the ith trajectory, Si ∈ S

v/a the vector of route/event

fa,e the flow size with event a on the route e

Lm loss function of learning route representations

Lwarp loss function of flow-aware WARP loss

3.1. Data Model

Assume there are n locations (or POIs) and k business events in a region, which is
represented by a fully connected graph G = (V, E), where V represents the set of locations
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and E represents the set of routes. We assume that, at most, one business event will occur on
the route between two locations. We treat several business events that take place between
two locations as a single event with a mixed preference, which covers the preference of
every business event on this route. We describe a pedestrian flow matrix as follows:

Definition 1. A pedestrian flow matrix is a n-order matrix denoted as M, with the element mi j
referring to the pedestrian flow between locations vi and vj under a set of business events.

The pedestrian flow history dataset is defined as MA, MA = {(M1, A1, R1), (M2, A2,
R2), (Mi, Ai, Ri), . . . }, where Mi, Ai and Ri denote the pedestrian flow matrix, the set of
business events and the position matrix of each business event during the ith time window
(i ∈ [1, n]), respectively. Here, Ri and Mi are of equal size. The attraction of business events
in Ai and their interactions influence the pedestrian flow matrix Mi. It should be noted
that all MA data is collected either during the week or on the weekends (holiday).

3.2. Problem Definition

Figure 2a depicts a heat map of crowds for a district. The business event, i.e., a
festival booth in Figure 2b, is taken on the route (The terms “route” and “edge” are used
interchangeably in this paper.), and the business event in Figure 2c is taken on a route
between the POIs in the campus. The green arrows in Figure 2b,c reflect the pedestrian flow
on the original route, while the blue signs represent the event on the route. The problem of
pedestrian flow prediction with business events is defined as follows:

Problem 1 (Pedestrian flow prediction with business events.). Given the historical data MA
with (s− 1) time windows, the set of business events As at the sth time window, and the position
matrix Rs of As, we aim to predict the pedestrian flow matrix Ms at the sth time window.

Business events have an impact on the pedestrian flow matrix. Typically, business
events attract pedestrians to visit. Figure 2b shows how visitors are drawn to the events.
The phenomenon demonstrates that business events can attract the pedestrian flow for the
routes they place. As a result, pedestrian traffic modeling will help operators make deci-
sions about where to arrange business events. The challenge is that different business events
placed on different routes result in varying distributions of the overall pedestrian flow.

(a)

Route
Festival 
booth

(b)

Route

Activity

(c)

Figure 2. An example of a business event: (a) Heat map of crowds; (b) Festival booth; (c) Business
event in campus.

4. Predicting Pedestrian Flow

This section presents an Attraction-Based Matrix Factorization (ABMF) model to
overcome the aforementioned challenge. Figure 3 outlines the structure of pedestrian flow
prediction with business events, including the optimization and prediction procedures.
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ABMF 
model

Calculate 
 loss function

Ground truth 
pedestrian flow matrix

Predicted pedestrian 
flow matrix

Update Parameters

Optimization process

Prediction 
function

Pedestrian flow 
history dataset A Business event set

Predicted pedestrian 
flow matrix

Business 
events position Prediction process

Optimized 
parameters

Figure 3. Framework of pedestrian flow prediction with business events.

4.1. ABMF Model

Unlike the traditional matrix factorization [37], we construct a location–location matrix,
where each mij represents the pedestrian flow between location vi to location vj. Let
X ∈ Rz×n and Y ∈ Rz×n be the latent location feature matrix and the latent factor feature
matrix [38], with column vectors Xi and Yi representing the z-dimensional location-specific
and factor-specific feature vectors of location vi. In particular, the vector of location feature
represents the location’s preference for corresponding properties, and the vector of factor
feature captures the properties level of location vi, where each property level indicates
the ability to attract visitors. For instance, X ∈ R3×2 and Y ∈ R3×2, X1 = (0.8, 0.6, 0.1)T,
Y1 = (200, 60, 30)T. The elements in X1 represent the preference for three categories of
location 1, which correspond to the degree of belonging to a category. The elements
in Y1 represent the ability to attract visitors for corresponding categories of location 1.
Therefore, the location 1 can attract 0.8× 200 + 0.6× 60 + 0.1× 30 = 199 visitors. Similarly,
we also construct two matrices for business events. We denote H ∈ Rz×|C| and F ∈
Rz×|C| as the latent business event feature matrix and the latent factor feature matrix of
business event, where the column vectors Hj and Fj represent the z-dimensional business
event-specific and factor-specific feature vectors of business event aj. C denotes a set of
categories C = {c1, c2, · · · , c|C|} and |C| is the amount of categories of business events. The
business event feature vector, in particular, reflects the preference of the business event for
corresponding properties, whereas the factor feature vector captures the property level of
the business event ai, which is the attractive crowd index for each property. We create an
undirected graph G = (V, E), where V = {v1, v2, · · · , v|V|} signifies the set of the locations
and eij represents the edge (route) between vi and vj. Let A = {a1, a2, · · · , a|A|} denote the
set of all the business events. If the visitors are visiting at vi, and then they are attracted
to visit vj, the pedestrian flow from vi to vj is formed. When a business event ak (ak ∈ A)
takes place on eij, the pedestrian flow on eij includes four aspects: (1) the pedestrian flow
from vj to vi; (2) the pedestrian flow from vi to vj; (3) the pedestrian flow that ak attracts
from all the locations; (4) the pedestrian flow that ak attracts from other business events,
excluding the pedestrian flow that other business events attract from ak. As a result, we
integrate X, Y, H, F together to model the pedestrian flow between vi and vj.

The current set of a business event is denoted as A′, where A′ ⊂ A. The predicted
pedestrian flow m̂ij between location vi and location vj is defined as follows:

m̂ij = XT
i Yj + XT

j Yi + Iak
ij ∑

s∈V

1
|V|X

T
s Ff (ak)

+ Iak
ij
(

∑
am∈A′/ak

1
|A′/ak|

HT
f (am)Ff (ak)

(1)

− ∑
am∈A′/ak

1
|A′/am|

HT
f (ak)

Ff (am)

)
where the function f (ak) converts ak into its category index. The indicator function, Iak

ij , is
equal to 1 if the ak takes place on eij and to 0 otherwise. A′/ak represents the business events
set excluding ak, while A′/am represents the set of business events excluding am. 1

V is the
attraction influence probability of ak across all POIs. The attraction influence probability
of ak on other business events is 1

|A′/ak |
, while the attraction influence probability of other

business events on ak is 1
|A′/am | . Note that mii = 0 (i ∈ [1, n]). If there is no event between

locations vi and location vj, mij is represented as: m̂ij = XT
i Yj + XT

j Yi, as shown in Figure 4.
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i

j

M

=

×
Xi

Yj

×

Xj Yi

+
�mij

Figure 4. Vector representations for pedestrian flow matrix M.

Inspired by [38], the elements in the pedestrian flow matrix are supposed to be drawn
from a Gaussian distribution with the mean as stated in Equation (1) and the precision as λm.
We apply zero-mean spherical Gaussian priors on location and factor feature vectors with
precisions of λx and λy, respectively. Similarly, we apply zero-mean spherical Gaussian
priors with the precision of λh and λ f to business event and factor feature vectors. Therefore,
using a Maximum-a-Posteriori (MAP) estimation, we derive the objective function for X, Y,
H, and F in Equation (2), where ‖ · ‖F signifies the Frobenius norm to avoid overfitting.

When m̂ij is substituted for Equation (1), the ABMF model is learned by the following
objective function, where m̂ij is the estimated value as indicated in Equation (1).

Loss= min
X,Y,H,F

λm

2

n

∑
i=1

n

∑
j=1

(mij − m̂ij)
2+

λx

2
‖ X ‖2

F +
λy

2
‖ Y ‖2

F +
λh
2
‖ H ‖2

F +
λ f

2
‖ F ‖2

F (2)

4.2. Parameter Estimation

We utilize stochastic gradient descent (SGD) to learn the objective function. For each
training instance, we update the associated parameters as well as the gradient’s ascending
direction to learn the model. The gradients of Loss with regard to the latent factor features
are as follows:

∂Loss
∂Xi

=λm

n

∑
j=1

(mij−m̂ij)(−Yj−Yi)+ Iak
ij

Ff (ak)

|V| +λxXi (3)

∂Loss
∂Yj

=λm

n

∑
i=1

(mij − m̂ij)(−Xi−Xj)+λyYj (4)

∂Loss
∂Hc

=λm

n

∑
i=1

n

∑
j=1

(mij − m̂ij)Iak
ij F̃ + λhHc (5)

∂Loss
∂Fr

=λm

n

∑
i=1

n

∑
j=1

(mij − m̂ij)Iak
ij H̃ + λ f Fr (6)

We define the following variables to simplify the formula:

F̃ =
|D1|
|A′/ak|

Ff (ak)
− ∑

am∈A′/ak

1
|A′/am|

Ff (am) (7)

H̃=
1
|V|

|V|

∑
s=1

Xs + ∑
am∈A′/ak

1
|A′/ak|

H f (am)−
|D2|
|A′| − 1

H f (ak)
(8)

where D1 is the business events set where am ∈ D1 and satisfies am ∈ A′/ak& f (am) = c;
D2 is the business events set where am ∈ D2 and satisfies am ∈ A′/ak& f (am) = r.

The following are the details of Algorithm 1: the inputs consist of the abstracted graph
G = (V, E), the historical data MA, the set of all the business events A, regularization
coefficients, the dimension z, business events category number |C| and the learning rate η.
In lines 1–7, for each pair of historical data in MA, it randomly initializes X, Y, H, F. Then,
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each column vector of X, Y, H, andF is simultaneously updated as follows based on the
gradients and step size η:

Xi ← Xi − η
∂Loss
∂Xi

(9)

Yj ← Yj − η
∂Loss

∂Yj
(10)

Hc ← Hc − η
∂Loss
∂Hc

(11)

Fr ← Fr − η
∂Loss

∂Fr
(12)

After that, the algorithm computes the learned matrices Xi, Yi, Hi, Fi for each pair of
(Mi, Ai). In lines 8–12, after training all the samples, for each Xi

ab(i ∈ [1, n]), the mean
value is calculated excluding the maximal Xi

ab and the minimum Xi
ab, because we want to

lessen the impact of the maximum and the minimum on the mean value. Then, we obtain
the final optimized X and apply the same method to calculate Y, H, F.

Algorithm 1: The ABMF Optimization
Input: G, A, MA, λm, λx, λy, λh, λ f , z, |C|, η
Output: X, Y, H, F

1 for the ith data (M, A, R) ∈ MA do
2 Randomly initialize X, Y, H, F;
3 Repeat;
4 Simultaneously update X, Y, H, F using SGD with step size η;
5 Until covergence;
6 Obtain X, Y, H, F;
7 Xi = X, Yi = Y, Hi = H, Fi = F;

8 for each S ∈ {X, Y, H, F} do
9 Temp(S) = {S1, S2...Sn};

10 for each element position (a, b) do

11 Sab =

n
∑

i=1
Si

ab−max(Si
ab)−min(Si

ab)

n−2 ;

12 return X, Y, H, F

When making predictions, the operator plans to allocate a set of business events As in
the region with the position matrix Rs. Based on the learnt matrices, we use Equation (1) to
predict each element of the pedestrian flow matrix.

5. Extension: Route Recommendation for Business Events

In this section, we make an extension of the pedestrian flow prediction with business
events. In Problem 1, we define the problem of predicting pedestrian flow under a set of
business events whose position is known in advance. In some cases, the operator only
knows which event he plans to hold but does not know which route fits the event. Thus, it
is essential to recommend routes for a business event. This is why we make the extension.

In the following subsections, we first introduce the concepts and problems. In order to
recommend routes for business event and attract more pedestrian flows, we then apply a
Skip-gram-based model to represent each route like representing word vector in Section 5.2.
Finally, we improve the pair-wise ranking loss to a flow-aware-based method by consider-
ing the flow factors in Section 5.3, which aims to learn events’ latent representations for
top-N route recommendation by minimizing the F-WARP loss.
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5.1. Concepts and Problem Definition

The set of business events is denoted by A = {a1, a2, ...}. The set of all routes in a travel
graph is denoted by E = {e1, e2, ...}. The travel trajectories of users are defined as follows:

Definition 2 (Travel trajectories). The set of travel trajectories is denoted by S = {S1, S2, ...},
where Si refers to the ith travel trajectory and Si = {e1, e2, ..., ei, ...}, ei denotes a route in a travel
trajectory. Note that Si is the subset of E.

Definition 3 (Target route and context route). In a travel trajectory Su, the chosen ei is the
target route, and other routes in Su are context routes.

Problem 2 (Routes recommendation for an event). Given a business event a and users’ travel
trajectories set E, the task is to recommend routes to hold this event, which aims to attract more
people to visit this event so as to bring more benefit to the merchant.

For example, the operators plan to hold a sales promotion and will be recommended
routes for this promotion. These routes not only have a high preference degree for this
promotion but also bring pedestrian flow to increase potential benefits.

5.2. Learning Route Representations

The workflow to recommend routes for events is presented as flows: We first learn
routes’ latent vector representations from context routes in the trajectories. Then, we capture
events’ flow-aware preference for routes and learn events’ latent vector representations.
At last, we recommend top-N routes for an event by the inner product of the latent factor
vectors of an event and routes.

Based on the Skip-Gram model [8], we propose an embedding model to learn route
representations, which captures routes’ contextual information from trajectory sequences.
We learn the representations of context routes from ei+k to ei−k given a target route ei. Here,
k is set to control the window size of context, as shown in Figure 5. In our scenario, the
collected route corpus is fed into the Skip-gram model. Compared with the word corpus,
each route and each travel trajectory correspond to a word and a sentence, respectively. We
aggregate all travel trajectories to construct a route corpus. We learn the route embeddings
by maximizing the function below:

Lm = ∑
Su∈S

1
|Su| ∑

ei∈Su

∑
−k≤z≤k,z 6=0

log P(ei+z|ei) (13)

where S is a set containing all travel trajectories. Lm aims to maximize the context route’s
conditional occurrence likelihood for all travel trajectories.

route iroute i-1route i-2 route i+1 route i+2 route i+3

Context window (previous and next window) of route i

Next windowPrevious window

Time

Figure 5. An instance of the context window of a trajectory. The window includes 4 routes visited
before and after the ith route.
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In addition, we formulate the probability P(ei+z|ei) using a softmax function (The
bold type in this paper refers to a vector.):

P(ei+z|ei) =
exp(vi+z · vi)

∑ex∈E exp(vx · vi)
(14)

where D refers to the dimension of the latent space; vi ∈ RD×1 and vi+z ∈ RD×1 refer to the
latent representations of the target route ei and one of its context routes ei+z, respectively.
It is hard to directly optimize Equation (14) as the size of set E is extremely large. In this
work, a negative sampling [8] method is utilized to promote optimization efficiency. For
each route ei ∈ E, a set of K routes that not occur in ei’s context window are sampled. We
reformulate the objective function as a new form that is easier to minimize,

Lm =− ∑
Su∈S

1
|Su| ∑

ei∈Su

∑
−k≤z≤k,c 6=0

(log σ(vi+z · vi) +
K

∑
k=1

Ek log σ(−vk · vi) (15)

where σ(·) refers to the commonly used sigmoid function. The noise distribution Pn(r) is
applied to sample the K negative routes, this distribution is the unigram distribution raised
to the 3/4rd power [8]. E(·) means calculating the expected value for all negative samples
used. We utilize the backpropagation algorithm to fit the Skip-gram model.

5.3. Flow-Aware Recommendation Model

In the above subsection, routes’ latent representations are learned by utilizing the
context patterns in a global view, so the various flow characteristics on the routes are not
considered. In order to address this problem, we design a flow-aware preference learning
model for top-N route recommendations as events’ route selection. It is seen that the events
are usually taken on the routes, so the flow size on the route is crucial for events. We define
fa,e to denote the pedestrian flow size when an event a is taken on the route e. Note that the
larger flow size f on the route e, the more confident that event a fit for the route e. Thus, the
events’ preference rankings of the routes can be obtained. For example, fa,e > fa,e′ indicates
the route e ranked higher than the route e′ for a given event a. In this paper, fa,e = 0 shows
a is not fit for e. It can also refer to the fact that a has not been taken on e.

In order to design a flow-aware preference learning model for top-N route recommen-
dation, with the help of pair-wise ranking loss, we utilize the Weighted Approximately
Ranked Pairwise (WARP) loss [39] to learn events’ latent representations. By leveraging
the precision@N measure, the WARP loss measures the pair-wise violations relying upon
routes’ positions in the ranking list. For each event a, its arranged route set and un-arranged
route set are denoted as Z+

a and Z−a , respectively. We define the WARP loss as follows,

Lwarp = ∑
a∈A

∑
e∈Z+

a

L[rank(ω̂a,e)] (16)

where rank(ω̂a,e) is the rank of an arranged route e ∈ Z+
a in a’s flow-aware ranking list of

routes. rank(ω̂a,e) is estimated by ∑e′∈Z−a
I(ω̂a,e′ ≥ ω̂a,e), and I(·) is an indicator function.

To optimize the WARP loss function, we supplant the discrete indicator function by a
continuous margin function [33]: max(0, 1 − ω̂a,e + ω̂a,e′). L(·) is applied to convert a
ranking order to a loss value, and L(s) = ∑s

i=1
1
i . ω̂a,e represents an event a’s preference for

a route e, and it can be predicted by our factorization model: ω̂a,e = a>ve, where a ∈ RD×1

is the latent vector of an event a, and ve refers to e’s latent vector that obtained by the
Skip-gram model in the Section 5.2. To accommodate the Skip-gram model, we set the
dimension of events’ latent representations is the same as routes’ latent representations.

For most events, the number of routes un-arranged is substantially more than the
arranged ones. We need to approximate the rank function efficiently. For each event a, we
sample an un-arranged route e′ randomly when an arranged route e is given, until the
sampled routes do not conform with the margin function. ω̂a,e is estimated by b |Z

−
a |−1
N c,
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where b·c is floor function to obtain an integer, and N is the quantity of sampling times,
| · | is the set’s cardinality.

We need to catch events’ flow-aware preference for routes, so we consider the flow
size on the routes. Thus, we propose the F-WARP loss to enhance the WARP loss for more
reasonable recommendations. For each pair of positive and negative routes (e, e′), we
consider adding a weight θe,e′ , which is defined as: θe,e′ = 1 + γ · ( fa,e − fa,e′), where γ is to
control the difference of increasement. If the difference is larger, this pair of routes does
not conform to the margin function, so this pair of routes contribute much to the total loss.
When we take the weight of the route pair into account, we reformulate the loss function
as follows:

L f−warp = ∑
a∈A

∑
e∈Z+

a

L[ ∑
e∈Z−a ∪{Z+

a \e}
max(0, θe,e′ · (1− ω̂a,e + ω̂a,e′))] + λ ∑

a∈A
‖ a ‖2

F (17)

where λ manages the degree of regularization and aims to avoid over-fitting. In the
negative sampling routes process. It is not essential to bind the negative routes to un-
arranged routes; the arranged routes of the event with a small flow size can likewise be
sampled as negative cases.

We employ stochastic gradient descent (SGD) to learn the latent factors of events. For
each arranged route, we sample a negative route to update the event ’s latent factors in each
iteration. The gradient of L f−warp about the kth latent factor of a is calculated as follows:

∂L f−warp

∂ak
=L(b |E| − 2

N c)θe,e′(ve′ ,k−ve,k) + 2λak (18)

The update rule for the latent factor is:

ak ← ak − η
∂L f−warp

∂ak
(19)

where η is the learning rate.
After the latent representations of events have been learned, we evaluate the suitability

of an event a for a route e by computing the inner product of a and ve. We recommend the
routes for an event by ordering the candidate routes in a descending sort of the predicted
scores, and then we select top-ranked N routes for the recommendation. We define the
flow-aware route recommendation for business events based on the Skip-gram model
as SG-FWARP.

6. Experiments

This section analyzes the pedestrian flow before comparing the performance of the
ABMF and SG-FWARP with existing approaches.

6.1. The Experimental Setup

(1) Datasets. In the experiment, we describe three datasets as follows:

• The first is a surveillance video dataset of the New York Grand Central Station [40],
which records people coming and passing by.

• The second one is a simulation dataset, which simulates pedestrian flow under differ-
ent business event sets by using the social force model [41]. In the simulation dataset,
the number of locations ranges from 10–60, and there are 8 types of business events,
such as promotions, exhibitions of cloths, games and so on, each type of business
event has a preference to attract visitors.

• The third one is Foursquare [2,42], a publicly crowdsourced large-scale check-in
LBSNs dataset is free available. Foursquare of New York (NYC) has 1,385,223 check-
ins, whereas Foursquare of Tokyo (TKY) has 573,703 check-ins. We obtain the check-in
flows and identify the business events using the dataset’s visit counts for the routes.



Sensors 2022, 22, 7478 12 of 21

(2) Experimental Settings. We choose 80% of the datasets to train the ABMF model,
and the remaining 20% to test. We use cross-validation in training SG-FWARP. λm is set
to 0.0001, whereas λx, λy, λh and λ f are all set to 0.01. z is assigned to different values
based on the simulation data’s scale. η is set as 0.001 first, and we decrease its value when
iterations are sufficient. λ is set to 0.01. We recommend top-10 routes for a business event.
We select the regularization coefficient by experimental value. The process is as follows:
we first determine the learning rate; then we determine the order of magnitude of λm
(such as 0.0001 or 0.01, etc). Finally, we fine-tune it further to obtain a proper value of a
regularization coefficient.

6.2. Metrics

• The ABMF model is evaluated according to matrix similarity and root-mean-square
error (RMSE), which are defined as:

sim(M, N)=

∑
i

∑
j
(mij−M̄)(nij−N̄)√

(∑
i

∑
j
(mij−M̄)2)(∑

i
∑
j
(nij−N̄)2)

(20)

RMSE =

√√√√ 1
n

n

∑
i=1

n

∑
j=1

(mij − nij))2 (21)

where sim(M, N) represents the similarity degree between M and N adjusted to 0− 1.
Both M and N are n-order matrices that represent the ground truth and predicted
pedestrian flow matrix, respectively. The average values of matrix M and matrix N
are represented by M̄ and N̄, respectively.

• To evaluate the performance of route recommendation for events, we use precision@N,
which refers to the ratio of the successfully predicted routes to the top-N recommen-
dations. We use Mean Reciprocal Rank (MRR) as another metric. This ranking metric
measures the recommendation accuracy by finding out how far the first successfully
predicted route is from the top of the recommendation list. MRR is defined as follows:

MRR =
1
A

|A|

∑
i=1

1
ri

(22)

where |A| is the size of the event set. For the ith event, ri refers to the ranking position
of the first route in the recommendation list in the ground-truth result. Note that
all experiments are conducted 10 times for latent factor models, and we report the
averaged results.

6.3. Baseline methods

• The ABMF model is used to predict pedestrian flow based on a set of business events.
We compare the prediction results of the ABMF model with the other three prediction
methods. The baseline algorithms include vSVR [21], PMF [37,43], and MOHER [18]
(1) vSVR is an application of SVM (Support Vector Machine) to regression problems,
which can be applied to predict the pedestrian flow density, and then covered to the
number of individuals. (2) PMF is an effective method that is frequently used as
a baseline in current work [44], which factors the pedestrian flow matrix into two
feature matrices. (3) MOHER is to predict the potential crowd flow in a certain mode,
which uses the LTSM module to predict the sequential flow. However, the baseline
algorithms cannot reflect the diverse influence of business events, because they fuse
the influence of business events into the pedestrian flow.

• We compare SG-FWARP with three top-N recommendation methods. (1) The first is
WRMF [45], which is the weighted regularized matrix factorization model designed
to handle implicit feedback data (i.e., an event taken on a route or not) for top-N
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recommendations. This method is used as a baseline in the latest work [46]. (2) The
second one is WARP-MF [47]. This is a pairwise ranking method that utilizes matrix
factorization to minimize the basic WARP loss. The latent factors of events and routes
are learned by randomly sampling the positive and negative route pairs. (3) The third
one is similarity pairwise ranking matrix factorization (SPRMF) [48]. This method
uses a new penalty to eliminate the differences in the scores between popular and
personalized items based on their similarity.

6.4. Analysis of Pedestrian Flow

A 5-minute video collected from New York Grand Central Station is used to analyze the
pedestrian flows. We use KLT keypoint tracker [49] to extract trajectories. Figure 6a shows
the clustered main coarse-grained trajectories. Then, the extracted trajectories are shown in
Figure 6b. A red ellipse represents the attractive region. The pedestrians congregate around
the attractive region, indicating that something draws pedestrians to visit. As shown in
Figure 6c, the horizontal axis represents the indexes of the clustered routes extracted from
the video in Figure 6b. The vertical axis reflects the number of pedestrian flows on each
route during the video. According to the statistical results, the number of pedestrian flow
on route 1 is higher than that of other routes, indicating that the attractive region draws in
the pedestrians for route 1. As a result, it makes sense to introduce the attractive crowd
index for each property in the ABMF model.

(a)

1 2 3
4

5

(b)
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Figure 6. The statistics in New York Grand Central Station. (a) Trajectory clustering; (b) The extracted
trajectories; (c) The pedestrian flow number.

6.5. Experimental Results

We present the experimental results of the two problems separately.

6.5.1. Experimental Results for the ABMF

Based on the simulation pedestrian dataset with business events, the pedestrian flow
matrix without/with business events are mapped on the heat map. Figure 7a shows the
original pedestrian flow matrix with five locations, and Figure 7b shows the pedestrian flow
matrix of five locations when arranging two business events on e14 and e54, respectively. It
is obvious that the pedestrian flow values on route e14 and e54 in Figure 7b are larger than
the corresponding values in Figure 7a, indicating that the scheduled business events draw
additional pedestrian flow for the associated routes.

Figure 8 depicts the performance of various algorithms with various scales of sim-
ulation datasets. In Figure 8a, the number of locations corresponds to the scale of the
simulation dataset, and each business event set has the same categories under all the
simulation datasets. The dimension of latent features is set differently with the different
scales of the datasets. The number of locations in the dataset ranges from 10 to 60, and
the corresponding dimension is set from 5 to 30. Overall, the RMSE of the ABMF is lower
than that of the other three methods. The smaller RMSE is, the more accurate the algorithm
is. The reason is that ABMF considers the ability of categories to attract pedestrian flow
and refines the source of the flow of a route. The performance of PMF is better than that of
vSVR because PMF considers potential factors in matrix factorization.
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Figure 7. Heat map of pedestrian flow matrix: (a) The original matrix; (b) The changed matrix.

In Figure 8b, the similarity between the predicted matrix by the ABMF and the ground
truth matrix is higher than that of the other three algorithms overall. Regarding the metric
of similarity, its range is 0 to 1, and the greater the similarity, the closer the predicted
result is to the ground truth. As the ABMF takes into account the entire flow sources of
a route with a business event, the ABMF is utilized for pedestrian flow prediction with
the diversity of business events set. The result shows that the ABMF outperforms vSVR,
PMF, and MOHER, because the three methods fuse the influence of business in the model,
while ABMF models the attraction of business events to the pedestrian flow in the design.
MOHER performs better than vSVR and PMF because MOHER uses LSTM to mix different
flow modes and then predict the pedestrian flow. The performance of MOHER is not as
good as ABMF, because MOHER is more suitable for the mix of different transportation
modes, and only predicting pedestrian flow can not play a full role. In Figure 9, ABMF
performs well on large-scale real datasets, and its performance is superior to vSVR, PMF,
and MOHER. The analysis in Figure 9 with the Foursquare dataset is consistent with that
in Figure 8.
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Figure 8. Performance comparison with different scale of simulation dataset: (a) Performance on
RMSE; (b) Performance on Similarity.
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Figure 9. Performance comparison with different scale of Foursquare(NYC) dataset: (a) Performance
on RMSE; (b) Performance on Similarity.

In this experiment, the simulation data is associated with 20 locations and 8 kinds of
business events, and the dimension of location latent factor z is set to different values in
order to evaluate the metrics of similarity and RMSE. Figure 10 displays the performance
of various algorithms with varying dimensions of the latent factor. As illustrated in
Figure 10b, the similarity of both four methods rises with the dimension increasing. In
Figure 10a, the RMSE of the ABMF is lower than that of the other three methods with
the dimension increasing, indicating that a larger dimension model is more accurate in
predicting pedestrian flow, and the ABMF model performs the best of the four algorithms.
When the dimension is set to 30, the similarity of the ABMF remains close to 1, indicating
that the ABMF performs well in terms of accuracy and stability. The analysis in Figure 11
under the Foursquare dataset is similar to that in Figure 10. Figure 11 shows that when the
dimension increases, the performance of ABMF in terms of RMSE and similarity changes
little, indicating the solid performance of the ABMF model. The increase in the potential
feature dimension plays a promotive role in the performance of ABMF.
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Figure 10. Performance with different dimensions on simulation dataset: (a) Performance on RMSE;
(b) Performance on Similarity.
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Figure 11. Performance with different dimensions on Foursquare (NYC) dataset: (a) Performance on
RMSE; (b) Performance on Similarity.

Figure 12 displays the influence of business event diversity on the routes in the
simulation dataset. There are four different types of business events in the business events
set; each business event is associated with a type. We select three routes from the simulation
dataset, and we place 0, 1, 2, 3 or 4 business events on each route to obtain the changed
pedestrian flow matrix, respectively. Each time, the business events are placed on the three
routes simultaneously. The results show that the pedestrian flow size of each route rises as
the type of business events increases.
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Figure 12. The impact of diversity events on the route in the simulation dataset.

6.5.2. Experimental Results for SG-FWARP

We first analyze how the context window size impacts the performance of SG-FWARP
in Table 2. The dimensionality of latent factor vectors D is set as 300 in the experiments. The
size of the context window varies from 1 to 6. From Table 2, we observe that precision and
MRR increase first with the increasing context window size, then decrease after arriving
at a larger value at the window size of 3 or 4. The reason is as follows: a larger window
size represents the target route’s context and could be more comprehensively modeled.
Compared with the large-scale text corpus where the Skip-gram is typically used, the route
corpus we used is sparse, so a small context window size is proper to model the route’s
context influence in our experiments.
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Table 2. Performance of different context window size on SG-FWARP (top-10 recommendations).

Dataset Metric
Context Window Size

1 2 3 4 5 6

Foursquare(NYC)
Precision@10 0.2024 0.2342 0.2548 0.2746 0.2383 0.2262

MRR@10 0.5656 0.6198 0.6841 0.7071 0.6108 0.5026

Foursquare(TKY)
Precision@10 0.0983 0.1424 0.1663 0.1569 0.1322 0.1172

MRR@10 0.4318 0.4655 0.5645 0.5142 0.4731 0.4128

Next, we report the impact of dimensionality on the latent vectors in Figure 13. In the
SG-FWARP method, we set the dimensionality from 50 to 400 with 50 as the increment.
Figure 13 shows that a higher latent vector dimensionality brings higher precision and MRR.
This trend reflects that higher latent vector dimensionality helps to capture more latent
factors and more accurately represent routes and events. However, we find that precision
and MRR are stable after achieving a certain threshold (e.g., 300). As a consequence, an
optimal latent vector dimensionality can be obtained from empirical value, so we can obtain
a high recommendation quality with proper computational overheads. In the following
comparison experiment, we set 300 as the default dimensionality of a latent vector.
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Figure 13. Performance of different latent factor vector dimensionality (top-10 recommendations):
(a) Precision; (b) MRR.

In the comparison experiment, we compare the performance of our proposed method
SG-FWARP with three baseline methods. By using cross-validation, for the methods WRMF,
WARP-MF, and SPRMF, we set the dimension of latent factor vector, γ, and regularization
coefficient λ as 200, 1, and 0.01, respectively. For SG-FWARP, the latent factor vector
dimensionality, γ, and regularization coefficient are set to 300, 1, and 0.01, respectively. In
addition, the optimal context window size is set for different datasets.

Table 3 shows the experimental results on two datasets when evaluating top-10 route
recommendations as events’ route recommendations. We can see that the SG-FWARP
model outperforms WARP-MF, WRMF, and SPRMF, because SG-FWARP captures the
semantic information of sequence routes. The main difference is that semantic information
(i.e., categories of routes) is considered to learn the latent preferences, thus improving
the performance. The other three algorithms WARP-MF, WRMF, and SPRMF fuse the
flow factor in the matrix factorization, while SG-FWARP model introduces the flow factor
into the WARP loss to improve the reasonability in flow-aware route recommendation for
business events.
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Table 3. Performance comparison on top-10 route recommendation.

Dataset Algorithm Precision MRR

Foursquare NYC

WRMF 0.1392 0.3712
WARP-MF 0.1253 0.3517

SPRMF 0.1927 0.5461
SG-FWARP 0.2436 0.6814

Foursquare TKY

WRMF 0.0912 0.2310
WARP-MF 0.0836 0.2150

SPRMF 0.1261 0.3952
SG-FWARP 0.1632 0.5147

Overall, SG-FWARP is superior to the three baseline methods by two main design
mechanisms. First, we apply the Skip-gram model to learn the routes’ latent representations
to capture the context (before and after the target route) of routes. Second, based on the
learned route latent representations, the F-warp loss function combines the flow size of
the routes with a pairwise ranking algorithm to learn users’ latent representations for
flow-aware route recommendation.

6.6. Discussion

Overall, the problem of route recommendation for business events happens before the
pedestrian flow prediction. Route recommendation for business events is to assist operators
in making decisions when the operators have no idea where to place the business event.
We explained the experimental results in the above subsections in detail. We first verify
the performance of ABMF in predicting pedestrian flow, then we show the experimental
results to demonstrate the feasibility of recommending routes for business events. However,
suppose the operators apply SG-FWARP every time they make a decision. In this case,
the problem of pedestrian flow prediction with business events and the problem of route
recommendation for business events will affect each other in the long term. Below, we
conclude our paper and present future work.

7. Conclusions

In this paper, we first present the ABMF model to predict the pedestrian flow with
business events, which is essential because pedestrian flow can bring potential profits
to operators; the highlight of the ABMF model is that it introduces the attraction index
of different categories to pedestrians in matrix factorization. Then, we learn route repre-
sentations based on the Skip-gram model, and we improve the basic pair-wise ranking
loss to a flow-aware-based method by considering the flow factors, which aims to learn
events’ latent representations for route recommendation. To the best of our knowledge,
we are the first to predict pedestrian flow by considering business events. We evaluate
the performance of the ABMF and SG-FWARP; both are superior to the baseline meth-
ods, which confirms the ABMF and SG-FWARP models are better and more applicable to
pedestrian flow prediction with business events and route recommendation for business
events. The limit of this paper is that we did not consider the interaction effect between
route recommendation for the events and pedestrian flow prediction; the two problems
can affect each other in the long run. In the future, we will consider the joint optimization
of the two problems and find the optimal solutions under the interaction effect by utilizing
Markov Process. Furthermore, we will also consider the time-aware factors to improve the
ABMF and SG-FWARP models.
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