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Abstract: In this study, the feasibility of accelerated quantitative Ultrashort Echo Time Cones (qUTE-
Cones) imaging with compressed sensing (CS) reconstruction is investigated. qUTE-Cones sequences
for variable flip angle-based UTE T1 mapping, UTE adiabatic T1ρ mapping, and UTE quantitative
magnetization transfer modeling of macromolecular fraction (MMF) were implemented on a clinical
3T MR system. Twenty healthy volunteers were recruited and underwent whole-knee MRI using
qUTE-Cones sequences. The k-space data were retrospectively undersampled with different under-
sampling rates. The undersampled qUTE-Cones data were reconstructed using both zero-filling
and CS reconstruction. Using CS-reconstructed UTE images, various parameters were estimated
in 10 different regions of interests (ROIs) in tendons, ligaments, menisci, and cartilage. Structural
similarity, percentage error, and Pearson’s correlation were calculated to assess the performance.
Dramatically reduced streaking artifacts and improved SSIM were observed in UTE images from
CS reconstruction. A mean SSIM of ~0.90 was achieved for all CS-reconstructed images. Percentage
errors between fully sampled and undersampled CS-reconstructed images were below 5% for up
to 50% undersampling (i.e., 2× acceleration). High linear correlation was observed (>0.95) for all
qUTE parameters estimated in all subjects. CS-based reconstruction combined with efficient Cones
trajectory is expected to achieve a clinically feasible scan time for qUTE imaging.

Keywords: compressed sensing; UTE; quantitative MRI; image reconstruction

1. Introduction

MRI has been an important diagnostic imaging modality, owing to its noninvasiveness
and lack of risk of exposure to ionizing radiation while providing excellent visualization of
anatomical structures and physiological functions. However, the major limitation encoun-
tered in clinics is a relatively longer scan time than other imaging modalities such as CT,
X-ray, and ultrasound. MRI requires that patients remain still during scanning to avoid
motion that can cause imaging artifacts and misregistration between images. Moreover,
prolonged MR exams may be impractical for pediatric patients or those in pain. Therefore,
accelerated MR acquisition is crucial to minimizing patient discomfort by reducing station-
ary periods. In addition, accelerated MRI scans may directly help reduce healthcare costs
by allowing for higher patient throughput.

Despite achieving excellent soft tissue contrast, clinical MRI has a limitation in imaging
short T2 tissues such as tendons, cortical bone, ligaments, and menisci. Due to their rapid
signal decay over free induction decay (FID), these anatomical structures remain undetected
with conventional MR pulse sequences that have long echo times (TEs). Ultrashort echo
time (UTE) MR sequences allow for direct imaging of tissues with short T2 values as
they utilize significantly shortened TEs (on the order of microseconds), which cannot be
achieved by clinical MR sequences (with TEs on the order of milliseconds) [1–5]. Three-
dimensional UTE imaging typically utilizes a non-Cartesian center-out radial encoding
scheme in which a 3D spherical k-space is encoded with rotating half-radial projection lines.
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A more efficient, 3D spiral Cones trajectory has been incorporated in UTE imaging to encode
a 3D k-space with reduced acquisition times (~2.5×—5× acceleration) [6], more suitable
for in vivo imaging [7,8]. In addition, the 3D Cones trajectory possesses an innate property
to oversample the low-frequency region of a k-space, which can provide autocalibration
for parallel imaging (PI) to achieve additional accelerations [9,10].

Recently, quantitative UTE (qUTE) imaging techniques combined with the efficient 3D
Cones trajectory, such as UTE-based T2* (UTE-T2*) mapping [11], UTE-based T1 (UTE-T1)
mapping [7], UTE-based adiabatic T1ρ (UTE-Adiab-T1ρ) mapping [12], and UTE-based
quantitative magnetization transfer (UTE-qMT) modeling [13], have surfaced as new poten-
tial biomarkers to characterize musculoskeletal (MSK) tissues with short T2 values such as
deep cartilage, menisci, ligaments, tendons, and bone. Variable TE-based UTE-T2* mapping
and variable flip angle (VFA)-based UTE-T1 mapping have demonstrated quantification of
T2* and T1 relaxation times of both short and long T2 tissues in the knee joint [7]. The UTE-
Adiab-T1ρ mapping technique has shown efficacy at assessing changes in proteoglycan
and collagen contents in various knee joint tissues, with dramatically reduced sensitiv-
ity to the magic angle effect [14]. UTE-qMT modeling has demonstrated the assessment
of macromolecular fraction (MMF) [15,16]. Despite the promises with the qUTE-Cones
imaging techniques in the MSK system, the total acquisition time still remains long, since
multiple images with different contrasts (i.e., different imaging parameters) need to be
acquired [17–20]—an issue that poses a major impediment to translating these techniques
into clinical practices.

Compressed sensing (CS) theoretically allows for the recovery of unknown sparse
signals from underdetermined measurements [21]. With CS, MR images in a sparse repre-
sentation can be reconstructed from randomly undersampled k-space data with the help of
appropriate nonlinear optimization algorithms. Since typical MR images are not sparse
in the native spatial domain, a sparsifying transform such as discrete wavelet transform
(DWT) is often utilized [22]. Recently, parallel imaging (PI) has been combined with CS
techniques to achieve artifact-free image reconstruction with even higher acceleration [10].
In this first-of-its-kind, previously unpublished study, the feasibility and efficacy of PI-
based CS are explored in 3D qUTE-Cones imaging. The data are undersampled at different
levels, which are then reconstructed into images with highly acceptable imaging stan-
dards, allowing for error-free and reliable qUTE parameter mapping along with reduced
acquisition time.

Theory

The theory behind compressed sensing stems from the idea to intentionally violate the
Nyquist sampling rate by acquiring a lower number of measurements. In MRI, a desired
MR image is reconstructed by calculating the inverse discrete Fourier transform of fully
sampled k-space data. Undersampling of the input k-space data reduces acquisition time
at the cost of aliasing artifacts that occur in the spatial domain due to Nyquist violation
in k-space (i.e., reduced field of view (FOV)) [23]. CS in MRI utilizes a randomized
undersampling scheme to ensure that the aliasing artifact is noise-like (i.e., incoherent) in
either the native spatial domain or DWT domain. The generic CS MR inverse problem can
be given as:

x̂ = argminx
1
2
‖Ax− y‖2

2 + R{x}, (1)

where x is the complex image, y is k-space data that are undersampled, and R is a regular-
ization parameter. The sensing matrix A is composed as:

A = PFS, (2)

where P denotes a sampling operator, F denotes a discrete Fourier transform operator,
and S denotes coil sensitivity information [24]. The first term in the right-hand side of
Equation (1) ensures data fidelity, and the second term promotes sparsity in a certain
domain (e.g., DWT domain). For accelerated MRI with undersampled k-space data, the
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regularization term, R, in Equation (1) may be critical to suppress the noise-like aliasing
artifact, which typically utilizes gradient information in the image domain, such as total
variation (i.e., finite difference). In literature, DWT-based CS combined with PI has proven
to be successful in MRI reconstruction [25,26]. By employing DWT as a sparsifying trans-
form, the data representation becomes much sparser, thereby enabling CS to achieve its
full efficiency.

2. Materials and Methods
2.1. Pulse Sequence

The UTE technique allows for direct acquisition of an FID signal with short T2 values
lasting only a few hundreds of microseconds after radiofrequency (RF) excitation, before
major T2* decay has occurred. Figure 1a shows a pulse sequence diagram of 3D UTE-Cones
sequence used for imaging in this study. The 3D UTE-Cones sequence employs a short
rectangular radiofrequency (RF) pulse for nonselective excitation of spins, followed by
data acquisition with efficient 3D spiral Cones trajectories. For the 3D Cones imaging, a
3D spiral arm is first generated [27] for each Cone (e.g., for ~100–300 total polar angles to
cover the 3D k-space through kz-axis). Then, the spiral arm is rotated around the kz-axis
to generate different spiral arms and hence cover the kx–ky plane in each Cone, yielding
~10,000–40,000 spokes to encode the 3D spherical k-space. UTE-Adiab-T1ρ [12] and UTE-
qMT [15] can be achieved by applying an additional pulse sequence module designed to
achieve the desired signal contrast in front of the UTE-Cones sequence. Figure 1b,c show the
signal preparation module used for UTE-Adiab-T1ρ and UTE-qMT imaging, respectively.
The 3D Adiab-T1ρ UTE-Cones sequence used a train of adiabatic full-passage pulses to
generate T1ρ contrast, followed by 3D UTE-Cones data acquisition. For UTE-qMT, a Fermi
pulse was used for MT preparation. After the pulse preparation, multiple spokes were
sampled to speed up data acquisition (Nsp: number of spokes per preparation). Figure 1d
illustrates a simplified example of the 3D Cones-based k-space trajectory.
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Figure 1. (a) UTE-Cones sequence with a short rectangular pulse, (b) adiabatic T1ρ signal preparation 

that uses a train of adiabatic full-passage pulses to generate T1ρ contrast followed by 3D UTE-Cones 

Figure 1. (a) UTE-Cones sequence with a short rectangular pulse, (b) adiabatic T1ρ signal preparation
that uses a train of adiabatic full-passage pulses to generate T1ρ contrast followed by 3D UTE-Cones
data acquisition, (c) MT preparation, (d) 3D Cones k-space trajectory, and (e) general flow involved
in the accelerated quantitative UTE-Cones imaging.

2.2. Recruitment

In this study, 20 healthy volunteers were recruited for knee MRI following human
study guidelines issued by our Institutional Review Board. Average age of the included
volunteers was 38 years, with range between 24 and 60 years of age. The cohort included
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7 male and 13 female subjects. Additionally, a female subject aged 27 years with a previous
anterior cruciate ligament injury was recruited as a pathologic case to demonstrate the
feasibility in extending the technique to abnormal dataset as well.

2.3. Imaging Parameters

MRI was performed in a clinical 3T MRI scanner (MR750, GE Healthcare, Milwaukee,
WI, USA). An 8-channel knee coil was used for both RF transmission and signal reception.
In UTE-Cones imaging, both RF and gradient spoiling were performed to remove the
remaining transverse magnetization after each data acquisition. The 3D UTE-Cones se-
quences, which were previously reported in [7,12,15], were used for qUTE-Cones imaging.
The k-space data were acquired with 23,869 spokes in a full Nyquist sampling rate using
the imaging parameters listed in Table 1.

Table 1. This table provides all the parameters used in VFA-UTE-T1 [7], UTE-Adiab-T1ρ [12], and
UTE-qMT [15]. Additional B1 correction was performed using actual flip angle imaging (AFI)
technique [28]. For qMT, a Fermi pulse was used for MT saturation.

Parameters
Sequence

UTE—T1 UTE—Adiab T1ρ UTE—qMT

TR (ms) 20 500 102.6

TE (ms) 0.032 0.032 0.032

FOV (cm3) 15 × 15 × 10.8 15 × 15 × 10.8 15 × 15 × 10.8

MT power (◦) - - 500, 1500

Frequency
offset (kHz) - - 2, 5, 10, 20, 50

Spin lock time (ms) - 0, 24, 48, 96 -

Flip angle (◦) 5, 15, 30 10 7

Matrix 256 × 256 × 32 256 × 256 × 32 256 × 256 × 32

Receiver bandwidth (kHz) 166 166 166

Scan time 6 min 8 s 8 min 54 s 9 min 38 s

2.4. Compressed Sensing-Based Image Reconstruction

The k-space data were retrospectively undersampled at four different levels (i.e., 25%,
35%, 50%, and 65%) using a pseudorandom bit-reversal ordering scheme. This was followed
by iterative density compensation [29], which is crucial due to the non-Cartesian nature of
Cones trajectory that does not possess uniform distribution of data points. Coil sensitivity
was estimated using the complex image reconstructed with zero-filling in each channel
using nonuniform FFT [30].

The objective function of CS reconstruction based-based on l1 norm and l2 norm was
posed as below: ∣∣∣PFSx− y|22 + λ

∣∣∣φx
∣∣∣1, (3)

where F is Fourier transform, P is a sampling operator, S is coil sensitivity, x is an image
to be reconstructed, y is k-space data, λ is a regularization parameter, and φ is discrete
wavelet transform operator.

Berkeley Advanced Reconstruction Toolbox (BART) [31] was used to perform DWT-
based CS reconstruction. The regularization parameter, λ, was empirically optimized to
accommodate the current application and remained constant for the control group. The
reconstructed images were input to the subsequent qUTE parameter quantification process.
Figure 1e shows a complete block diagram representation for the entire flow.
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2.5. Parameter Fitting

Data analysis was performed using MATLAB (The MathWorks, Natick, MA, USA).
Ten different regions of interest (ROIs) (i.e., anterior femoral cartilage (AFC), medial femoral
cartilage (MFC), posterior femoral cartilage (PFC), patellar cartilage (PC), tibial plateau
cartilage (TPC), anterior lateral meniscus (ALM), posterior lateral meniscus (PLM), anterior
cruciate ligament (ACL), posterior cruciate ligament (PCL), and patellar tendon (PT))
were drawn in the in vivo knee images from 20 healthy subjects. Levenberg–Marquardt
algorithm was employed for quantification of pixelwise parameters in UTE-T1, UTE-Adiab-
T1ρ and UTE-qMT within the manually drawn ROIs [7,12,13], and their mean and standard
deviation were computed.

2.6. Data Analysis

Structural similarity (SSIM) was utilized to assess the reconstruction performance for
morphological UTE-Cones imaging [32]. The SSIM combines three different components
to yield the overall metric that includes luminance, contrast, and structure. A mean SSIM
(MSSIM) index evaluates the overall image quality between completely sampled and
partially sampled reconstruction for various quantification parameters, as given by the
following equation:

MSSIM(A, B) =
1
M ∑M

j=1 SSIM(aj, bj), (4)

where A is the reference (fully sampled reconstructed image) and B is the CS-reconstructed
image, respectively; aj and bj are the image contents at the jth local window; and M is the
number of local windows in the image. A mean of MSSIM was calculated from the entire
sample set for describing the achieved reconstruction performance.

Pearson’s correlation was calculated between qUTE parameters estimated with fully
sampled and undersampled data, based on the mean values from all ROIs in all subjects
(i.e., 20 subjects × 10 ROIs = 200 data points).

3. Results
3.1. Morphological Assessment

CS reconstruction was compared with zero-filled reconstruction at various under-
sampling levels (i.e., 25, 35, 50, and 65%). In all 20 subjects, CS provided a discernible
morphological improvement of the reconstructed images while zero-filled reconstruction
showed pronounced streaking artifacts at high undersampling rates.

In Figure 2, the UTE–T1 images reconstructed at different undersampling rates using
zero-filling or CS are shown. At 25% undersampling, the images were visually similar
to those with fully sampled data. At 35% undersampling, a mild intensity change and
contrast variation were pictured throughout the sagittal slice of femur in the zero-filled
reconstruction, while such changes were hardly visible using CS-based reconstruction
(yellow arrows). At 50% and 65% undersampling, both CS and zero-filling introduced
streaking, but CS showed improved image quality with higher details. Similar tendencies
were observed in UTE-Adiab-T1ρ and UTE-qMT. In UTE-Adiab-T1ρ (Figure 3), streak
artifacts were manifest in the tibial bone (yellow arrows) at 35%, 50%, and 65% under-
sampling rates for the zero-filled reconstruction. In particular, at a high undersampling
rate (i.e., 65%) the images reconstructed with zero-filling showed blurred, compromised
high-frequency details, while images with CS showed much-improved details. As seen
in Figure 4, UTE-MT images obtained at a 50% undersampling rate using CS performed
much better than the images reconstructed using the zero-filling method. Artifacts were
consistently exhibited at higher undersampling rates in the zero-filled reconstruction as
opposed to the CS reconstruction.
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Figure 3. Comparison of UTE-Adiab-T1ρ-reconstructed images at different undersampling rates
between zero-filled reconstruction (top row) and CS-based reconstruction (bottom row). Image
reconstructed using entire k-space data is shown as the reference. Reconstructed images using
incomplete (i.e., undersampled) k-space via zero-filling carries streaking artifacts that are resolved
using CS-based reconstruction, as marked by the yellow arrows.

The MSSIMs from the zero-filled reconstruction and CS reconstruction with the to-
tal dataset of 20 subjects are presented in Table 2. In all qUTE techniques, the MSSIM
dropped with an increased undersampling rate due to exacerbated reconstruction error.
For most cases, the MSSIM with the CS-based reconstruction was over 0.9 with up to 50%
undersampling while the zero-filled reconstruction recorded much lower value (~0.77).
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Figure 4. Comparison between zero-filling-based reconstruction (top row) and CS-based reconstruc-
tion (bottom row) for UTE-qMT at different undersampling rates (25%, 35%, 50%, and 65%). The
arrows point towards the streaking artifacts and blurring present in the reconstructed images with
zero-filling, which is reduced with CS.

Table 2. This comparison of zero-filled (ZF) and CS reconstruction using MSSIM measure at various
undersampling rates. MSSIM values for various flip angles of UTE-T1 show that with increase in
undersampling rate, MSSIM falls below 0.9 for CS images and much lower value (~0.7) for ZF-
reconstructed images. For MSSIM metric value of UTE-Adiab-T1ρ at different spin lock times, an
undersampling rate of 65% still yields significantly higher MSSIM measure (around 0.95), which
proves the efficiency of CS-based reconstruction, whereas ZF-reconstructed images average at 0.8.
In UTE-qMT with two different MT powers (1500 and 500 degree) at multiple frequency offsets (2,
5, 10, 20, and 50 kHz) a mean of 0.93 at 50% undersampling has been recorded, proving the CS
reconstruction strategy to be quite more reliable than ZF. The recorded MSSIM for CS is closer to fully
sampled data (<10% error) than ZF (approx. 30% error).

ZF-Based Reconstruction MSSIM CS-Based Reconstruction MSSIM

Sequence
Parameter

Fully
Sampled 25 35 50 65 Fully

Sampled 25 35 50 65

UTE-T1

FA = 5 1.00 0.88 0.84 0.76 0.68 1.00 0.99 0.98 0.93 0.88
FA = 15 1.00 0.88 0.84 0.76 0.68 1.00 0.97 0.94 0.89 0.84
FA = 30 1.00 0.88 0.84 0.76 0.69 1.00 0.97 0.93 0.89 0.84

UTE-
Adiab-T1ρ

TSL = 0 1.00 0.89 0.85 0.77 0.71 1.00 0.99 0.99 0.97 0.94
TSL = 24 1.00 0.88 0.85 0.77 0.72 1.00 1.00 0.99 0.98 0.97
TSL = 48 1.00 0.89 0.85 0.76 0.72 1.00 0.99 0.99 0.98 0.97
TSL = 96 1.00 0.88 0.85 0.76 0.72 1.00 1.00 0.99 0.98 0.96

UTE-qMT
w/MT
Power
1500◦

Offset = 2 1.00 0.89 0.84 0.77 0.69 1.00 0.99 0.98 0.93 0.87
Offset = 5 1.00 0.89 0.84 0.77 0.69 1.00 0.99 0.98 0.92 0.87

Offset = 10 1.00 0.89 0.84 0.77 0.69 1.00 0.99 0.97 0.93 0.91
Offset = 20 1.00 0.89 0.84 0.76 0.69 1.00 0.99 0.98 0.93 0.87
Offset = 50 1.00 0.89 0.84 0.76 0.69 1.00 0.99 0.97 0.93 0.87

UTE-qMT
w/MT
Power
500◦

Offset = 2 1.00 0.89 0.84 0.76 0.69 1.00 0.99 0.97 0.93 0.87
Offset = 5 1.00 0.89 0.84 0.76 0.69 1.00 0.99 0.97 0.93 0.87

Offset = 10 1.00 0.89 0.84 0.77 0.7 1.00 0.99 0.98 0.94 0.89
Offset = 20 1.00 0.89 0.84 0.77 0.7 1.00 0.99 0.98 0.93 0.88
Offset = 50 1.00 0.89 0.84 0.77 0.7 1.00 0.99 0.98 0.94 0.88
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3.2. qUTE Parameter Mapping

To illustrate the pixelwise mapping of T1, T1ρ, and MMF parameters, four ROIs
representing four different tissue types (i.e., PT, AFC, PCL, and PLM) out of a total of
10 ROIs were selected. The results of quantitative parameter mapping in the selected ROIs
are visualized in Figures 5–7. Figure 5 shows the results of UTE-T1 mapping at various
undersampling levels where the estimated parameters fall under the admissible range,
as reported in [4]. Figures 6 and 7 display the results of UTE-Adiab-T1ρ and UTE-qMT
mapping at different undersampling levels.
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Figure 5. Quantitative mapping of UTE-T1 parameter at different undersampling levels in four
representative ROIs. A representative region is chosen from each group, namely tendon (patellar
tendon), cartilage (anterior femoral cartilage), ligament (posterior cruciate ligament), and meniscus
(posterior lateral meniscus). The T1 quantification values ranged between 500 to 1000 ms. The
parameter maps show high correlation between different undersampled maps except posterior lateral
meniscus, with values between 900 and 800, a margin of 100 ms.
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Figure 6. Quantitative mapping of UTE-Adiab-T1ρ parameter at different undersampling levels
in four representative ROIs. The estimated T1ρ parameter ranged between 15 and 40 ms in the
aforementioned ROIs.
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Figure 7. Quantitative mapping of UTE-qMT parameter (i.e., MMF) at different undersampling
levels in four representative ROIs. The estimated MMF ranged between 0.12 and 0.19. For the PCL
region, due to partial volume effect, quantitative maps showed visible changes between images with
different undersampling rates.

3.3. Quantitative Assessment of CS-Based qUTE Parameters

Table 3 provides the mean and standard deviation of all qUTE parameters estimated
in all tissue ROIs at different undersampling levels, as well as the corresponding mean
percentage errors with respect to the reference values obtained from fully sampled data.
The estimated parameters from CS-reconstructed images exhibited a percentage error below
5% for up to 50% undersampling in most of ROIs. PCL and PLM exhibited relatively higher
errors, presumably due to the high partial volume effect and the small size of ROI, which is
more susceptible to the reconstruction errors.

Table 3. Parameter quantification for 10 ROIs with mean and standard deviation along with per-
centage error. A total of 20 subjects were evaluated for the current study. Error estimates include
either an underestimation or overestimation from reference value denoted by the sign. Abbreviations
of each ROI are presented on the left side of table. Mean error can be estimated as less than 5%
with exceptions in PCL, which is a difficult region to quantify due to the small ROI size and strong
partial volume effect through planes (ACL = anterior cruciate ligament, AFC = anterior femoral
cartilage, MFC = medial femoral cartilage, PC = patellar cartilage, PFC = posterior femoral cartilage,
TPC = tibial plateau cartilage, ALM = anterior lateral meniscus, PLM = posterior lateral meniscus,
PCL = posterior cruciate ligament, and PT = patellar tendon).

Undersampling
(%) ACL AFC MFC PC PFC TPC ALM PLM PCL PT

T1 (ms)

Fully sampled 822.8 ±
103.6

584.1 ±
73.9

553.5 ±
118.7

605.1 ±
102.5

557.1 ±
80.5

501.4 ±
93.1

690.3 ±
104

894.5 ±
101.3

838.7 ±
103.7

582.6 ±
81.2

25
801.6 ±

145.7
(2.6%)

598.5 ±
75.6

(−2.5%)

536.8 ±
89.7
(3%)

631.3 ±
121.8

(−4.3%)

534.2 ±
71.5

(4.1%)

480.8 ±
87.5

(4.1%)

683.6 ±
90.7
(1%)

791.7 ±
100.2
(1.5%)

766.5 ±
104.5
(8.6%)

589.2 ±
87.5

(−1.1%)

35
783.9 ±

160.4
(4.7%)

598.9 ±
76.8

(−2.5%)

531.8 ±
87.8

(3.9%)

633.9 ±
125.6

(−4.8%)

521.3 ±
76.5

(6.4%)

478.4 ±
94

(4.6%)

669.3 ±
92.3
(3%)

749.2 ±
103.2
(4.6%)

755.7 ±
100.5
(9.9%)

590.9 ±
88.2

(−1.4%)

50
779.4 ±

132.4
(5.3%)

601.3 ±
76.6

(−2.9%)

528.5 ±
94.3

(4.5%)

635.5 ±
120.4

(−5%)

521.3 ±
76.1

(6.4%)

474.5 ±
94.9

(5.4%)

669.6 ±
95.2

3.0%)

744.8 ±
105.6
(5.6%)

726.7 ±
98.5

(13.4%)

592 ±
86.7

(−1.6%)

65
775.5 ±

125.6
(5.7%)

604 ±
78.2

(−3.4%)

526.5 ±
94

(4.9%)

637.8 ±
129.2

(−5.4%)

519.9 ±
78.2

(6.7%)

466.8 ±
92.2

(6.4%)

667.1 ±
96.4

(3.4%)

770.1 ±
108.5
(6.2%)

722.8 ±
103.5

(13.8%)

593.8 ±
87.1

(−1.9%)
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Table 3. Cont.

Undersampling
(%) ACL AFC MFC PC PFC TPC ALM PLM PCL PT

Adiab-T1ρ
(ms)

Fully sampled 29.0 ±
9.2

36.0 ±
8.4

27.0 ±
7.4

29.2 ±
5.2

25.7 ±
6.5

22.0 ±
6.5

27.2 ±
5.7

25.2 ±
5.1

21.7 ±
6.7

16.3 ±
5.6

25
28.2 ±

11.4
(2.7%)

35.9 ±
8.4

(0.2%)

25.6 ±
6.4

(5.2%)

29.5 ±
5.6

(−0.9%)

24.3 ±
6.1

(5.4%)

21.1 ±
5.5

(4.1%)

26.6 ±
5.6

(2.2%)

23.8 ±
5.6

(5.6%)

19.8 ±
6.4

(8.9%)

16.3 ±
5.7

(0.2%)

35
28.1 ±

10.4
(3.1%)

36.1 ±
8.5

(−0.3)

25.4 ±
6.2

(5.9%)

29.5 ±
7.6

(−0.9%)

24.0 ± 6
(6.6%)

20.9 ±
5.8

(5.0%)

26.5 ±
5.5

(2.5%)

23.1 ±
5.4

(8.3%)

19.5 ±
6.5

(10.3%)

16.2 ±
5.6

(0.8%)

50
28 ±
11.4

(3.3%)

35.8 ±
8.4

(0.5%)

25.2 ±
6.5

(6.7%)

29.6 ±
5.4

(−1.2%)

23.9 ±
6.1

(6.9%)

20.9 ±
5.4

(5.0%)

26.2 ±
5.8

(3.6%)

22.5 ±
5.4

(10.8%)

19.3 ±
6.8

(11.2%)

16.2 ±
5.7

(0.8%)

65
27.1 ±

11.1
(6.5%)

36.4 ±
8.5

(−1.2%)

25.2 ±
6.8

(6.7%)

29.6 ±
5.6

(−1.2%)

23.7 ± 6
(7.7%)

20.7 ±
6.2

(6.0%)

26 ± 5.6
(4.4%)

22.5 ±
5.8

(10.8%)

18.9 ±
6.8

(13.1%)

16.0 ±
5.8

(1.8%)

MMF (%)

Fully sampled 8.6 ±
3.0

7.9 ±
1.5

10.9 ±
3.8

9.8 ±
2.2

10.3 ±
2.2

12.7 ±
2.2

10.2 ±
2.4 12 ± 2.3 10.9 ±

2.4
11.9 ±

3.1

25
8.6 ±

3.3
(0%)

7.8 ±
1.5

(1.3%)

10.7 ±
2.7

(1.8%)

9.8 ±
2.4

(0%)

10.2 ±
2.4

(1%)

12.7 ±
2.2

(0%)

10.2 ±
2.4

(0%)

12.2 ±
2.3

(−1.7%)

11.0 ±
2.8

(−1%)

11.7 ±
3.1

(1.7%)

35 8.4 ± 3
(2.3%)

7.8 ±
1.5

(1.3%)

10.7 ±
2.7

(1.8%)

9.9 ±
2.6

(−1%)

10.2 ±
2.5

(1%)

12.8 ±
2.2

(−0.8%)

10.3 ±
2.3

(−1%)

12.3 ±
2.3

(−2.5%)

11.2 ±
2.8

(−2.7%)

11.6 ±
3.2

(2.5%)

50 8.3 ± 3
(3.5%)

7.8 ±
1.5

(1.3%)

10.6 ±
2.6

(2.8%)

9.9 ±
2.6

(−1%)

10.1 ±
2.6

(1.9%)

12.8 ±
2.2

(−0.8%)

10.4 ±
2.3

(−2%)

12.3 ±
2.4

(−2.5%)

11.2 ±
2.8

(−2.7%)

11.6 ±
3.2

(2.5%)

65
8.3 ±

2.8
(3.5%)

7.7 ±
1.5

(2.5%)

10.6 ±
2.6

(2.8%)

9.9 ±
2.6

(−1%)

10.7 ±
2.6

(−3%)

13 ± 2.2
(−2.3%)

10.4 ±
2.3

(−2%)

12.5 ±
2.5

(−4.1%)

11.2 ±
2.8

(−2.7%)

12.2 ±
3.3

(−2.5%)

Figure 8 depicts the scatter plots of mean qUTE parameters estimated in all 200 ROIs
from all subjects, as well as the Pearson’s correlation between fully sampled and undersam-
pled CS with various undersampling levels. Each ROI for each tissue type is coded with
a different color to identify the outlier points. The high degree of linearity indicates that
the quantitative parameters from undersampled data (y-axis in scatter plots in Figure 8)
correlate well with the corresponding parameters from fully sampled data (x-axis in scatter
plots in Figure 8), despite the reduced data. Among all ROIs, qUTE parameters estimated in
PCL (orange dots) included many outliers due to the abovementioned reasons (i.e., partial
volume effect and small ROI).

3.4. CS Reconstruction from a Degenerated Knee

Figure 9 portrays a special case with a 27-year-old female patient who has tibial tunnel
from a previous ACL reconstruction, which is clearly depicted in the CS-reconstructed
images (red arrows). Susceptibility artifacts are shown in the tibial tunnel (red arrows)
on the distal portion, as shown in the sagittal UTE MRI data of the knee. Similar to the
healthy control dataset, the presence of artifacts and blurring of information is visible in
various sections of images from a zero-filled reconstruction. CS reconstruction, on the
other hand, provides a consistent and reliable image quality up until 65% undersampling
(yellow arrows).
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Figure 8. Scatter plot for various quantification parameters (i.e., T1, T1ρ, and MMF) at different
undersampling levels in ROIs from human knee joint. Correlation coefficient (R) recorded over
0.85 for all parameters in all four undersampling rates. While very few points can be recognized as
outliers, parameters estimated in most of the ROIs showed high linearity between undersampled CS
reconstruction and fully sampled reconstruction.
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Figure 9. CS reconstruction in a patient with a degenerated knee. As seen, the presence of an
abnormality (tibial tunnel from an ACL reconstruction as shown by red arrows) is clearly depicted
in images with CS reconstruction. Streaking artifacts in zero-filled reconstruction are dramatically
reduced in CS reconstruction (yellow arrows).

4. Discussion

In this work, the feasibility of accelerated qUTE-Cones imaging using the CS re-
construction method was explored for the first time to our best knowledge. The qUTE
parameter mappings inherently require multiple repeated acquisitions of images to achieve
different contrasts used in signal modeling and parameter fitting. For example, T1ρ map-
ping requires the acquisition of multiple images with different TSLs, resulting in different
degrees of T1ρ weighting (i.e., based on exponential decays) to fit the relaxation parameter.
This in turn imposes a longer scan time, which is especially problematic in in vivo applica-
tions. A rudimentary approach to reducing the image acquisition time of any mapping is
to limit the number of sequences (i.e., data points in the parameter domain), which could
compromise accuracy and precision of the quantitative parameter estimation. Hence, it is
vital to develop an accelerated qUTE technique that can reduce an acquisition time while
generating parameter maps without significantly compromising the accuracy.

In this study, morphological image quality and accuracy of quantification maps were
assessed to show the effectiveness of CS reconstruction in three qUTE techniques. In the
morphological assessment, CS achieved the robust reconstruction of UTE images with
highly reduced reconstruction errors with 50% undersampling (MSSIM > ~0.9), as shown
in Figures 2–5. In the experiment with the quantification of pixelwise qUTE parameters,
CS yielded a percentage error below 5% and Pearson’s linear correlation over ~0.95 with



Sensors 2022, 22, 7459 13 of 14

50% undersampling in most of ROIs. Therefore, it is expected that CS will shorten the total
acquisition time of the qUTE techniques by a factor of 2 without dramatic degradation of
the reconstructed image quality and accuracy in qUTE parameter estimation. In the current
qUTE imaging protocol, with the 50% undersampling, CS reconstruction is expected to
shorten the scan time down to 3 min 4 s, 4 min 27 s, and 4 min 49 s for UTE-T1, UTE-
Adiab-T1ρ, and UTE-qMT, respectively, which is more suitable to add in the clinical MSK
MRI workflow.

Despite being a highly useful tool for rapid qUTE imaging, the downside of CS is
the need for finding an optimal regularization parameter involved in the reconstruction
process, which is typically performed manually, and thus is time-consuming. CS is based
on an information theory that allows for data reconstruction from highly undersampled
measurements. The application of CS for clinical scenarios requires the estimation of
optimal regularization parameter λ (i.e., Lagrange multiplier in the objective function to
minimize). In this work, we empirically identified the best-suited regularization parameter
that was maintained the same for all the cases and for all different qUTE techniques, which
yielded a decent quality of image reconstruction, as demonstrated in the experimental
results. This implies that the regularization parameter tuning for CS reconstruction is
insensitive to the image contrast in qUTE-Cones.

This study has a limitation that only 20 healthy volunteers were included, without
the inclusion of a cohort of patients. Although we presented a special case of one patient
with abnormality in the knee joint, the inclusion of more cases with different pathologies
will show the clinical feasibility in the general population. In future studies, we propose
to recruit more patients with osteoarthritis to evaluate the diagnostic power of CS-based
qUTE-Cones imaging.

5. Conclusions

We have demonstrated the feasibility and efficacy of CS reconstruction for quantitative
3D UTE-Cones imaging of the knee. The results showed that images can be reconstructed
from undersampled data with a highly reasonable imaging standard to allow for robust
qUTE parameter mapping with reduced error.
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