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Abstract: In industry, forecasting machinery failures could save significant time and money if any
maintenance breaks are predictable. The aim of this work was to develop an energy harvesting
system which could, in theory, power condition monitoring sensors in heavy machinery. In this
study, piezoelectric-cantilever-type energy harvesters were attached to a motor and spun around with
different rotational speeds. A mass was placed on the tip of the cantilevers, which were mounted
pointing inward toward the center axis of the motor. Pointing a cantilever tip inward and increasing
the distance from the center axis of the motor decreased the natural resonance frequency significantly
and thus enabled higher harvested energy levels with lower rotational frequencies. Motion of
the cantilever was also controlled by altering the movement space of the tip mass. This created
another possibility to control the cantilever dynamics and prevent overstressing of the piezoelectric
material. Restricting the movement of the tip mass can also be used to harvest energy over a wider
frequency range and prevent the harvester from getting trapped into a stagnant position. The highest
calculated raw power of 579.2 µW at 7.4 Hz rotational frequency was measured from a cantilever
with outer dimensions of 25 mm × 100 mm. Results suggest that an energy harvesting system
with multiple cantilevers could be designed to replace batteries in condition sensors monitoring
revolving machinery.

Keywords: energy harvest; piezoelectric; rotational motion; softening effect; condition monitoring

1. Introduction

Piezoelectric energy harvesting from mechanical stress has been widely studied over
the last decade, as electronic devices have surrounded our daily lives. The goal has been
to replace or make more sensor solutions that could either be used solely with harvested
energy or with prolonged battery life. Many piezoelectric energy harvesters have been
studied from vibrating sources, where a mass is used to tune a cantilever type harvester
to a certain frequency. Refs. [1–6] show that, unfortunately, in a large number of cases,
the vibrating sources in nature are at a very low frequency and require a large mass
proportional to the size of the actual energy harvesting part. Mass tuning to lower the
resonance can vastly improve the harvester efficiency, but the corresponding stress build-up
in the piezoelectric material increases the risk of fatigue failure [7].

The same dilemma comes with harvesting from rotational motion. Many studies have
used a magnet to provide the desired force to bend a cantilever with each rotation [8,9].
Sometimes, it is not possible to use magnets, or they do not create enough force to bend the
piezoelectric cantilever, resulting in an insufficient amount of energy to provide the required
power; for example, to power a sensor’s electronics. Another common approach to convert
revolving energy into vibration is to attach the piezoelectric cantilever through tooth-like
parts of the rotating body. Tien et al. in [10] designed a system, where wind drives rotating
blades and teeth on the body move the piezoelectric cantilevers to generate electrical energy.
A novel technique was introduced by Yang et al. in [11], where wind energy drives a
body with piezoelectric cantilevers inside a chamber together with bouncing steel balls.
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Balls bounce around the chamber and hit the cantilevers to create electrical energy. Other
articles [12,13] have relied on very flexible beams, which in theory could stiffen due to
centrifugal force as the rotation speed increases and hit a resonance at the desired rotation
speed. Demanding design parameters and a quite high and narrow resonance band might
be a challenge with this approach. Over the past few years, more articles [14–19] have
been published about piezoelectric energy harvesting from a rotational motion utilizing the
centrifugal softening effect. The softening effect can be used to lower the natural resonance
frequency by pointing a cantilever-type harvester toward the center axis.

In this paper, the focus is on harvesting energy from rotational motion with a piezo-
electric bimorph type cantilever utilizing the softening effect. In addition, it is shown
how limiting the tip movement space and distance from the center axis affects the usable
frequency range, resonance and the amount of energy being harvested. This energy could
be used for sensing tires or heavy machinery with rotational parts, even with very low
60–600 rpm rotational speeds. Harvested energy could, for example, be used to power
tire pressure or a wheel motion balance sensor to forecast tire wear or bearing failures. In
industry, forecasting machinery failures could save significant time and money if any main-
tenance breaks are predictable. For instance, the conditions of large revolving machines,
such as those in the paper industry, conveyor belts in production lines, or port-loading
machinery, could be monitored. This study shows how positioning and alignment of the
cantilever-type harvester play a crucial role. In particular, the tip motion control can be
modified to enhance the harvested energy and make the design more robust.

2. Prototype Manufacturing and Test Setup

Piezoelectric ceramic and steel parts for prototypes were laser machined with a LPKF
protolaser enabling high-precision parts. Three prototypes were manufactured in order to
measure the harvested power as a function of the rotation frequency. The dimensions of
the bimorph-type cantilevers and mounting holder can be seen in Figure 1. The lasered
piezoelectric parts (PZ-5A) of 24 mm × 24 mm × 0.5 mm in size were installed with a
conductive epoxy on both sides of the lasered steel beam (150 µm) for all prototypes. The
free length from the clamp to the mass was 79 mm for each cantilever. Different tip masses
(7.05 g/Ø 12 mm, 8.94 g/Ø 13 mm, and 13.75 g/Ø 15 mm) were tested for the three
prototypes to tune the resonance of the harvester.
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Figure 1. Piezoelectric bimorph type cantilever energy harvester prototype (a) dimensions and (b) a
schematic of an energy harvester.

Clamping mechanics for the harvesters were made with a Markforged Mark Two 3D
printer. Carbon-fiber-filled nylon ensured high-durability parts for mounting on a plate
rotated by the motor (Figure 2).
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Figure 2. Prototype cantilevers clamped into nylon-reinforced 3D-printed holsters.

Prototypes were attached on a round aluminum plate that was clamped onto the re-
volving motor axle (Figures 3 and 4). The voltage from the harvester was measured through
a rectifier, over an electrical load, sent wirelessly and recorded with analyzing software.
The sample rate of the wireless measurement device was 300 Hz. Slow-motion videos were
used to further understand the mechanics of operation (Supplementary Videos).
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The first test sample was made to find the correct orientation of the cantilever suitable
for energy harvesting at low frequency rotation speeds. It was noted that the centrifugal
force increased as a function of rotating speed and as the distance to the center axis.
Gravitational force dominated at very low rotation speeds and shifted toward the cantilever
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according to alignment but was overpowered by the centrifugal force as the rotation speed
increased. The clamping position of the piezoelectric cantilever was chosen so that the long
side of the cantilever harvester was aligned with the rotating plane and the shorter side was
perpendicular to the plane. In this way, the centrifugal force either stretches or compresses
the harvesting ceramic and only starts to bend the beam after gravity has deflected it from
its straight position. More importantly, in this alignment, the gravitational force shifts
dominate at lower rotation speeds and bend the beam and piezoelectric material (Figure 3).

The energy harvesting circuit can be seen in Figure 5. The harvester voltage was
measured through a rectifier and over a load of 110 kOhm. This electrical load was
determined by the wireless voltage measurement device and could not be optimized for
harvesting frequency/rotation speed or for the capacitance of the piezoelectric parts. Due
to this disadvantage, the harvested energy was also measured by loading a capacitor over
time and subsequently comparing this to the results from the previous method.
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Energy was calculated from the following equation:

E = 0.5 × Ce × V
2

(1)

where Ce is the capacitance of the capacitor, and V is the voltage level charged into the
capacitor. This was compared to the calculated energy:

E = P × t (2)

P = V
2
/RL (3)

where t is time and V is the measured voltage over an electrical load RL.

3. Results and Discussions

The prototype with the heaviest mass produced the highest energy and was measured
more accurately with different restrictions of the tip mass movement. Figure 6 shows
how the tip mass movement was limited and how the beam could bend with the highest
(77 mm) and lowest limiters (48 mm) before making contact. Thus, the looseness of the tip
movement decreased with the height of the limiter.

The measurement results (Figure 7) show the amount of harvested power at different
rotational speeds and with six different movement limitations of the tip mass. This shows
that four times more power could be harvested with the loosest movement limitation of
the tip mass (48 mm) versus the tightest one (77 mm). However, with the loosest limitation,
the mass became more easily pinned/trapped into a stagnant position (4.6 Hz) due to
centrifugal force (“Supplementary Videos”). The calculated ratio of the resonance’s center
frequency to its half-power bandwidth showed that the widest frequency bands were with
the tightest (70 mm) and the middle length limiter (60 mm), having Q factors of 5.65 and
5.80, respectively. The two limitations of 48 mm and 68 mm, which had the highest power
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levels, showed Q factors of 8.07 and 11.02, respectively. The highest calculated raw power
of 208.8 µW at 4.6 Hz rotational frequency was measured with the 13.75 g/Ø 15 mm tip
mass and 48 mm limitations. This computes to ~725 µW/cm3 for the piezoelectric material.
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Figure 7. Harvested power as function of rotation frequency of the prototype with a 13.75 g tip mass
pointed toward the center axis and measured with adjusted tip movement limiters from 48 mm to
77 mm.

Essential parameters to raise harvester power were the rotational speed and amount of
deviation of the cantilever tip. Higher rotational speed leads to a higher bending frequency,
which determines how many times an electric charge is generated. Shorter limiters allow the
cantilever tip to bend more, thus a higher stress is inflicted upon the clamped piezoelectric
material, leading to the generation of a greater charge. For example, Figure 6 shows how
longer limiters (77 mm) stop the cantilever free beam traveling ~17 mm, and shorter limiters
(48 mm) allow the beam to bend ~39 mm before collision. In addition, collision between
the limiter and the harvester leads to a wider frequency band; the same observation was
also made by Rui et al. [19]. Additionally, more energy can be harvested due to shock
excitation caused by the collision between the limiter and harvester. The frequency band
of the harvested energy could be increased with a returning mechanism that bounced the
mass back into motion when pinned/trapped into a stagnant position. See Supplementary
Videos to further understand the mechanics of operation.
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3.1. Testing Different Harvesting Electronics

The previous measurements were made by converting the bipolar piezoelectric output
into a unipolar voltage, which was measured over an electrical load to calculate harvested
power (Figure 5). This is not the optimal electrical configuration to harvest all the available
energy from the system. Although this investigation was devoted to studying and enhanc-
ing the mechanics behind the harvested energy, in the next measurements, the harvested
energy was also measured by loading a capacitor over time and compared to the previous
method (Figure 8).
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Figure 8. Energy was harvested through a rectifier into a capacitor.

The harvester with a 13.75 g tip mass was measured. Energy was harvested through a
rectifier into a capacitor, and the voltage was measured from the capacitor after different
time periods. This harvested energy into capacitor was compared to the calculated energy
from the measured voltage over an electrical load at the same rotation frequency of 4.5 Hz
as in previous measurements. Two different-sized capacitors of 103.7 µF and 448 µF were
used for comparison, and the voltage was measured over time. The results can be seen in
Figure 9.
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over a load.

Results show that at least ~70% more energy (39.78 mJ) could be harvested with an
optimal capacitor loading (blue and red lines) over time than was calculated by measuring
the voltage over an electrical load (23.35 mJ). Loading a capacitor is closer to the application
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where all the energy can be stored directly into the system. As stated earlier, the harvesting
electronics used for the wireless voltage measurement is not an ideal case. There are many
studies devoted to energy harvesting circuits, which can further improve the harvested
energy amount significantly [20–23]. In the end, designing an optimum circuit for energy
harvesting goes hand in hand with the mechanical design. The application determines the
mechanical design, which in turn, sets the electromechanical properties such as frequency
range, electrical charge and voltage level to be harvested.

3.2. Further Optimization of the Piezoelectric Energy Harvester

The piezoelectric energy harvester was further optimized by replacing the steel ball
(7.86 g/cm) with a tungsten (19.3 g/cm3) mass (Figure 10). The more than two times higher
density of the tungsten ensured that the size of a tip mass did not increase, even when more
than doubling the weight. A heavier tungsten mass ensured a lower resonance frequency
even with a slightly thicker steel (250 µm), which in turn made it possible to transfers
energy into a slightly thicker piezoelectric material (0.6 mm). Additionally, the piezoelectric
(PZ-5A) area (25 mm × 30 mm × 0.6 mm) was increased by 30% compared to previous
prototypes to further enhance the harvested energy.
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Figure 10. Piezoelectric cantilever prototypes with (a) a 28.3 g and (b) a 56.6 g tungsten mass.

The highest calculated raw power of 579.2 µW at 7.4 Hz rotational frequency was
measured with Proto 1 in Figure 10. This computes to ~1287 µW/cm3 for piezoelectric
material. This average power was around the same as that measured by Zou et al. in [24]
(7.0 Hz/564 µW and 9.2 Hz/535 µW) from a two-beam revolving cantilever system. In
Zou’s system, energy harvesting was enhanced by placing magnets on the tips of cantilevers
pointing inward and facing each other. Figure 11 shows results of the prototypes’ harvested
power as a function of rotating frequency and calculated days needed to overcome a
220 mAh (typical lithium CR2032 battery) with four harvesters. With this power level, a
typical CR2032-battery could be loaded inside 6 days using four Proto 1 type piezoelectric
cantilevers. According to the results, both prototypes 1 and 2 could theoretically support
an electrical system if the rotational speeds were to be around 4 to 6.5 Hz and the electrical
system functioned with a 220 mAh battery over a hundred days. Theoretically, the battery
could be replaced with the introduced energy piezoelectric cantilevers if the battery life of a
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system exceeds the limits in operation time shown in Figure 11. Proto 2 with two tungsten
masses (56.6 g) also produced close to the same power levels as Proto 1, even when its tip
mass movement was more restricted with 3 mm cushions (Figure 10, red circles). The Proto
2 tip mass became more easily pinned/trapped into a stagnant position (6.5 Hz) although
the power curves were quite similar. This is probably due to the centrifugal force being
increased with the heavier tip mass.
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4. Conclusions

In industry, anticipating machinery failures could save significant time and money
if maintenance breaks are predictable. In this work, several piezoelectric cantilever-type
energy harvesters were realized and measured from a rotating source. Pointing the tip mass
inward decreases the harvesting beam resonance frequency and enhances the harvested
energy significantly. Furthermore, restricting the movement of the tip mass can be used
to harvest energy from a wider frequency range and reduce bouncing as well as avoiding
getting trapped into a stagnant position. Correct balance of the piezoelectric material and
steel thickness/length/width, tip mass and restricting the movement can be designed
when the rotation frequency range of a system is known. The highest recorded continuous
power was 579.2 µW at 7.4 Hz rotational frequency from one piezoelectric bimorph-type
cantilever. Results suggest that a possible multibeam structure could replace batteries in the
condition sensors monitoring of revolving machinery when rotational speeds are known,
and an energy harvesting system can be designed accordingly together with optimal energy
harvesting electronics. Further improvements could be made where the beam movement
is restricted by other beams and tip masses, which could collide and force each other
away from a stagnant position. This would enable the harvester to operate over a wider
frequency range.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/s22197449/s1, Video S1: Rotation at 4.5 Hz and Movement
limitors 48 mm and Continuous movement. Video S2: Rotation at 5.0 Hz Movement limitors 48 mm
and Gets into Stagnant position. Video S3: Rotation at 5.2 Hz Longer movement limitors 77 mm and
Continuous movement.

https://www.mdpi.com/article/10.3390/s22197449/s1
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