
Citation: Zhou, B.; Wang, C.; Huan,

Z.; Li, Z.; Chen, Y.; Gao, G.; Li, H.;

Dong, C.; Liang, J. A Novel

Segmentation Scheme with

Multi-Probability Threshold for

Human Activity Recognition Using

Wearable Sensors. Sensors 2022, 22,

7446. https://doi.org/10.3390/

s22197446

Academic Editors: Marco Mobilio

and Daniela Micucci

Received: 30 August 2022

Accepted: 27 September 2022

Published: 30 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Novel Segmentation Scheme with Multi-Probability
Threshold for Human Activity Recognition Using
Wearable Sensors
Bangwen Zhou 1, Cheng Wang 1,*, Zhan Huan 2 , Zhixin Li 2, Ying Chen 2, Ge Gao 1, Huahao Li 1, Chenhui Dong 2

and Jiuzhen Liang 1

1 School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, School of Software,
Changzhou University, Changzhou 213000, China

2 School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213000, China
* Correspondence: chengwang@cczu.edu.cn

Abstract: In recent years, much research has been conducted on time series based human activity
recognition (HAR) using wearable sensors. Most existing work for HAR is based on the manual
labeling. However, the complete time serial signals not only contain different types of activities, but
also include many transition and atypical ones. Thus, effectively filtering out these activities has
become a significant problem. In this paper, a novel machine learning based segmentation scheme
with a multi-probability threshold is proposed for HAR. Threshold segmentation (TS) and slope-area
(SA) approaches are employed according to the characteristics of small fluctuation of static activity
signals and typical peaks and troughs of periodic-like ones. In addition, a multi-label weighted
probability (MLWP) model is proposed to estimate the probability of each activity. The HAR error
can be significantly decreased, as the proposed model can solve the problem that the fixed window
usually contains multiple kinds of activities, while the unknown activities can be accurately rejected
to reduce their impacts. Compared with other existing schemes, computer simulation reveals that
the proposed model maintains high performance using the UCI and PAMAP2 datasets. The average
HAR accuracies are able to reach 97.71% and 95.93%, respectively.

Keywords: human activity recognition; threshold segmentation; slope-area method; multi-label
weighted probability; machine learning

1. Introduction

With the rapid development in the fields of internet of things (IoT), human activity
recognition (HAR) has gradually become a research hotspot these days. HAR provides the
detection, interpretation, and recognition of different kinds of activities such as walking,
running, eating, lying down, sitting, etc. Recently, numerous research works on HAR have
been conducted, and most of the works are on healthcare [1,2], surveillance activities [3,4],
context-aware computing [5,6], and smart home [7]. For example, in the medical indus-
try, the accurate detection of human movement by HAR supports the development of
autonomous machine-based diagnostic systems. For smart home and video surveillance,
HAR applications can assist family members in remotely monitoring abnormal behaviors
and the physical health conditions of the elderly and children. There mainly exist two data
types, video based and sensor based, which are usually applied for HAR. Compared with
the video type, the sensor type is more widely utilized since no image information of users
is required, which can protect the user privacy [8].

In order to collect sensor-based data, external sensors and wearable sensors are always
deployed in the HAR system [9]. For the former, the devices are fixed in a predetermined
place, so the inference of activity entirely depends on the voluntary interaction between
users and sensors, such as smart home environment. However, wearable sensors can
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support users in dealing with HAR with the data (such as accelerometer data, tempera-
ture, heart rate, etc.) collected anytime and anywhere [1]. They are widely used during
HAR analysis due to their advantages of being light weight and easy to carry, having
flexible installation position, and having low power consumption [5]. In recent years,
the continuous development of machine learning technology has also provided efficient
algorithms for HAR, such as support vector machine (SVM), K-nearest neighbor (KNN)
and decision tree (DT) [10]. Here, one of the key steps is feature extraction; the extracted fea-
tures include statistical features which depend on the original signals (time and frequency
domain features), and cross coding (such as Fourier transform and wavelet transform) [11].
In addition, with the successful applications of deep learning technology in the field of com-
puter vision [4], convolutional neural network (CNN), long short-term memory (LSTM),
bidirectional LSTM (BLSTM), multi-layer perceptron (MLP), etc., are also introduced for
sensor-based HAR [12]. It automatically extracts relevant features by constructing multi-
layer deep structures [13]. Compared with the traditional classification algorithms, deep
learning is able to automatically extract proper features [3]. However, a large number of
samples are required for accurate analysis, and expensive hardware is indispensable to
build a proper deep learning model [14].

The general process of simple activity recognition is first to identify the action segments
manually from the action time series, then the HAR classifier can be generated after feature
extraction and training process. However, only parts of data and labels of related actions
can be known in real collected time series. There exist many challenges to identify the
main human activities in a complete time series. For example, it is difficult for the trained
model to classify the human activities which have not been learned before, and each
segmented window may contain multiple types of activities which improve the difficulty of
the classification. In addition, the starting point and the ending point of each main activity
from the complete time series should be exactly found out. Additionally, body jitter and
useless segments may have similar characteristics to the main activities, which decreases
the accuracy of HAR. Therefore, it is an important issue to effectively identify the main
activities from the time series and reject unknown activities. In [15], Gupta and Dallas
(later referred to as the GD algorithm) was proposed using Relief-F and sequential forward
floating search (SFFS) for feature selection. Here, naive Bayes (NB) and KNN were applied
to identify six kinds of daily life activities and transition activities with a fixed window size
of 6 s. In [10,16–20], researchers used different segmentation methods. Ref. [19] proposed
to use the adaptive time window in a quasi-periodic part and fixed time window in a
non-periodic part. Ref. [20] proposed an adaptive signal segmentation method to detect
transition activities, and integrated it with the activity classification algorithm to overcome
the limitations of the sliding window with a fixed size used in the existing work. However,
these approaches require large computation, and the accuracy of the classifier still can
be improved.

In this paper, a novel segmentation model based on the multi-probability threshold is
proposed for complex activity recognition, and the corresponding algorithm is developed
based on the characteristics of typical activities. According to the small fluctuation of
static activity data, a new threshold-segmentation (TS) algorithm is proposed to find the
optimal threshold according to the related measurements. Periodic-like activity has typical
signal characteristics, such as peak and trough points. Through the connection of peak
and trough points, the corresponding gradient area can be used to obtain the optimal
threshold. Additionally, in order to identify the periodic-like activity, the slope-area (SA)
filtering algorithm is applied to eliminate the abnormal points in the time series. Here,
a new multi-label weighted probability model (MLWP) algorithm is proposed to obtain
the probability of each activity which can be estimated by overlapping the sliding window
and combining with the proposed segmentation algorithm. In addition, the threshold,
θreject, can support to distinguish whether the segment is the main activity or the unknown
activity. The proposed method is evaluated using two common benchmarks of HAR
datasets, UCI and PAMAP2. Computer simulation reveals that the proposed segmentation
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and recognition model significantly improves the recognition accuracy and has relatively
low computational complexity. The main contributions are as follows:

• The TS algorithm is proposed according to the stationary of the static signal. A new
indicator, Fab, is estimated to identify the optimal threshold and segment from the
static interval of the unknown time series.

• The SA algorithm is proposed according to the peak and trough of the periodic-like
signal. Two new notions, slope and area, are employed to eliminate the abnormal
points which support to identify the suspected periodic-like interval of the unknown
time series.

• Combined with the pre-segmentation results, a multi-probability threshold recognition
model is proposed, which not only substantially improves the accuracy of HAR,
but also effectively distinguishes the useless segments in the complex continuous
time series.

The remainder of this paper is organized as follows. Section 2 provides the related
work of HAR. Section 3 describes the proposed multi-probability threshold recognition
model and the segmentation algorithms. Section 4 introduces the HAR data set and shows
the performance evaluation of the proposed scheme. Finally, Section 5 summarizes the
paper and lists the future work.

2. Related Work
2.1. Human Activity Recognition

Recent HAR researches focus on typical activities (e.g., walking, standing, sitting, and
running). However, human daily activities are always complex and continuous, which
may include transition and atypical actions. Esfahani et al. showed that location-aware
multi-sensors (PAMS) can significantly improve the classification accuracy of HAR [7].
Gyllensten et al. [21] used traditional machine learning technologies to classify static and
dynamic actions in human daily life. Wan et al. [11] applied deep learning methods to
identify human activities, including CNN, LSTM and other methods. Gyroscopes can also
be used for HAR. It has been proved that the use of gyroscopes and accelerometers can
improve the recognition performance [22]. In [23], the hidden Markov model (HMM) was
introduced to detect feeding activities with the collected data of acceleration and angular
velocity of the arms, and the accuracy rate reached 84.3%.

In [24] , the researchers proposed a lightweight CNN using Lego filters for HAR, which
can greatly reduce the cost of memory and computation compared with traditional CNN.
Ref. [25] introduced the mixed channel and time attention mechanism into CNN, which
enhanced the interpretability. CondConv [26] was employed to replace the standard convo-
lution procedure in CNN. The performance of the model can be improved by increasing
the number of experts. Yang et al. [27] quantified the weight and adopted dynamic fusion
strategy for different types of activities, which achieved good results on multiple data sets
and greatly saved memory. Since deep learning methods require a large number of samples
and expensive hardware to train the model, the shallow learning method is mainly focused
on in this paper. Experiments show that it can also achieve good classification results with
fewer computing resources.

2.2. Signal Segmentation

HAR can be essentially simplified as a multivariate time series classification prob-
lem [4]. The signal is divided into different fragments by using segmentation methods,
and then these fragments are mapped to specific activities [3]. In [18], the researchers
proposed a method to dynamically adjust the window size based on entropy for activity
recognition, but it did not consider the transition actions. Ref. [28] applied a data stream
segmentation algorithm to adjust the window size according to whether the data value is
stable. These algorithms are very sensitive to noise. Therefore, it is necessary to prepro-
cess signals before recognition. There exist many kinds of filters, such as the Butterworth
filter [28], Chebyshev filter, Bessel filter and Elliptic filter [29]. In [9], researchers used the
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Butterworth filter to process acceleration data and achieved good results. Referring to the
extraction algorithm of fundamental tone in speech signal processing, an adaptive time
window method was employed to accurately extract features from periodic-like signals
for HAR [19]. Experiment showed that it has a good recognition rate for dynamic and
static activities. A symbol-based segmentation method [30] was proposed to detect the gait
phase and transmit important dynamic information from the accelerometer signal. Here,
a symbol-based symmetry index was introduced to replace the traditional one.

As shown in Figure 1, sliding window is a typical segmentation method to solve
the HAR problem [5], which can be mainly divided into two types: time based and
activity based. The time-based type is the window segmentation of the original signal.
Jorge-L et al. [17] proposed the transition-aware human activity recognition (TAHAR)
system architecture, which has greatly improved the recognition of transition actions in
UCI [9], PAMAP2 [31] and REALDISP dataset. Noor et al. [20] used the adaptive window
segmentation method to solve the limitation of the fixed window segmentation in UCI [9]
dataset. Here, the window was adaptively expanded according to the probability of the
action in the window. Activity-based segmentation is the window segmentation of the data
segments of each activity. Fidad et al. studied the recognition effect of different lengths of
windows on short-term activities (sitting, standing and transition) and long-term activities
(walking, upstairs and downstairs) and used a self-collected dataset, for which subjects
wore a tri-axial accelerometer on their waist [10]. Since the gait recognition performance
decreases with the change of walking speed, Sun et al. [16] proposed a gait segmentation
method based on adaptive speed, and the threshold was generated by single match. The
ZJU-GaitAcc public dataset and self-collected dataset were utilized in the comparative
experiment. For these two sliding window segmentation methods, the activity-based type
does not need to consider the situation of useless segments or multiple activities in one
window, which can achieve better accuracy. However, for the complex and continuous
time series of HAR, data contain useless segments, and the starting point of the activity is
unknown. This paper adopts the time-based sliding window segmentation method.

a)Time-based sliding window b)Activity-based sliding window a)Time-based sliding window b)Activity-based sliding window 

Figure 1. Two different segmentation methods of sliding window. (a) Time-based, and (b) Activity-based.

3. The Proposed Scheme
3.1. Problem Formalization

In this paper, assume that volunteers have k sensors in different parts of their bodies,
while all sensors have the same sampling frequency and emission time synchronization.
Usually, wearable sensors, such as smart phones and the inertial measurement unit (IMU),
are equipped with accelerometers, gyroscopes and magnetometers. Each sensor can gener-
ate multi-dimensional signals (for example, accelerometers can generate three-dimensional
signals along the x-axis, y-axis and z-axis), and the signals generated by all sensors can
be expressed as a multi-dimensional time series T as shown in Equation (1). Here, Tt
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represents the 1× k output vector by the k sensors at time t, and Tkt represents the output
data of the kth sensor at time t, so T is a matrix with size t× k.

T = [T1, T2, . . . , Tt]
T with Tt = [T1t, T2t . . . , Tkt] (1)

As shown in Figure 2, it is assumed that volunteers perform a total of N different daily
activities during time t, including some useless segments caused by body jitter or manually
unmarked segments. Let A={ g1, g2, . . . , gN , gτ} represent the whole recognition set of
activities, where gτ is the category of useless segments. Then the complex HAR problem
can be described as follows: given an unknown S, find the various activities occurring
in S and identify their corresponding starting and ending positions. The mathematical
description is shown in Equation (2), where Suiri represents the sequence segment of the
ith activity segment from time ui to ri, and o is the number of activity segments in the
time series.

o⋃
i=1

Suiri = S

s.t. Suiri ∈ A = { g1, g2, . . . , gN , gτ}
1 ≤ ui ≤ ri ≤ t and 1 ≤ i ≤ o

(2)

Model

Figure 2. Problem formalization of HAR.

3.2. The Proposed Framework

Figure 3 shows an overall framework which is proposed to segment and identify
unknown time series with multiple activities. The black, orange, blue, and the black dotted
arrow represent the training procedure, TS algorithm and its optimization, SA algorithm,
and MLWP algorithm and testing procedure, respectively. Therefore, the framework mainly
includes four procedures:

• The training set is segmented by sliding window based on activity, and the corre-
sponding time–frequency domain features are extracted manually. The recognition
model is trained by traditional classifiers (SVM, DT, NB, etc.).

• For the training set, TS and its optimization algorithms are used to find the optimal
threshold parameters, cbest and dbest, and apply them to the testing set to identify the
suspected static segmentations in the time series.

• For the training set, the peak–trough method is applied to estimate the related slope,
Kmin, and area, Smax. The SA algorithm is used to detect and eliminate the outliers,
and the suspected periodic-like segmentations in the testing set can be determined.

• The testing set is segmented according to the method of overlapping sliding window
and feature extraction, and multi-class labels are generated by training the model.
Combined with the basic activity segmentations identified before, the probability
vector of each window can be obtained by the MLWP algorithm. Correct activity
category and unknown ones of the window can be distinguished by θreject.
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Figure 3. Framework diagram of the proposed scheme.

Section 3.3 shows the data preprocessing. In Section 3.4, the TS algorithm and opti-
mization algorithm are explained in detail, and the optimal threshold cbest and dbest are
obtained. Section 3.5 shows how to segment periodic-like interval and detailed description
of the exclusion of outliers. After the test sample is pre-segmented, activity recognition was
carried out according to MLWP algorithm in Section 3.6.

3.3. Filtering and Feature Extraction

In the real environment, the signal generated by the sensor usually contains noise,
and even the data can be lost. Therefore, it is necessary to preprocess the raw signal first.
In order to reduce the interference of random noise on the signal, the median filter and third-
order Butterworth filter are employed to handle the original signal. Here, the acceleration
and angular velocity data are utilized to extract features in order to improve the HAR
performance [16]. Six new sets of data, A

′
x, A

′
y, A

′
z, G

′
x, G

′
y and G

′
z, are generated by

obtaining derivatives with respect to the original data (including Ax, Ay, Az, Gx, Gy and
Gz) from each sensor. In addition, the Euclidean norm of the original acceleration, RA, and
angular velocity data, RG, can be calculated to obtain two new sets of data. Therefore, in
total, 14× k sets of data are obtained, which include 6 sets of original data and 8 sets of
generated new data, where k is the number of sensors. The sliding window method is
used to extract 7 time domain features (mean value, standard deviation, mode, maximum,
minimum, skewness and kurtosis) and three frequency domain features (gravity frequency
(the weighted average of the amplitude of the power spectrum), frequency variance and
mean square frequency) from each set of data of each window so that each sliding window
can obtain a total of 140× k sets of statistical features. The initial feature set and descriptions
of 14 signals of HAR are listed in Tables 1 and 2.

Table 1. Initial feature set of activity recognition.

Characteristics Expression Characteristics Expression

Mean value AVG Standard deviation Std
Mode M Maximum Max

Minimum Min Skewness SK
Kurtosis K Gravity Frequency GF

Frequency Variance FV Mean Square
Frequency MF
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Table 2. Description of 14 signals of HAR.

Signal Description Signal Description

Ax Acceleration of x-axis Ay Acceleration of y-axis
Az Acceleration of z-axis Gx Angular velocity of x-axis
Gy Angular velocity of y-axis Gz Angular velocity of z-axis
A
′
x Data difference of Ax A

′
y Data difference of Ay

A
′
z Data difference of Az G

′
x Data difference of Gx

G
′
y Data difference of Gy G

′
z Data difference of Gz

RA Resultant acceleration RG Resultant angular velocity

3.4. Static Segmentation

Human activity can be divided into static, dynamic and transition actions. Compared
with the dynamic and transition action, static action has a little rate of change. Therefore,
the difference of the signals can be clearly reflected through acceleration and angular velocity.

The signals of acceleration and angular velocity are differential processed, respectively,
and the static segmentations in the whole time series can be identified by setting the
threshold. As shown in Figure 4a, a set of thresholds is randomly selected from the
candidate value pairs to obtain the corresponding static segmentation C̃ by the proposed
TS algorithm. Figure 4b illustrates the selection procedure of the threshold pair using the
grid search approach. The evaluation indicator Fab can be estimated through comparing C̃
from Figure 4a with C labeled manually. The best threshold pair, cbest and dbest, are finally
obtained if Fab is optimized. A detailed estimation of Fab is provided below.

(b)Optimization algorithm

(a)TS algorithm

Diff data:A'x ,G
’
x

 Threshold c

and d

 If smaller 

than the 

threshold ?

Record static 

Segmentation

Sort out all Static 

segmentations

Y

If k >250?N

Y

Start from 

the next 

point,k=1

N

Evaluation 

index Fab 

under this 

Pair 

Start from 

the first 

point

Training set

If the last 

point?

Y

Continue the next 

point,k=k+1
N

Candidate 

set

Pick a 

pair  

randomly

TS 

algorithm

The set 

C̃     

The set 

C     

Fab  is the 

best?

N

Optimal 

threshold 

pair:cbest、dbest

Figure 4. Flow chart of the proposed TS algorithm. (a) TS algorithm, and (b) Optimization algorithm.

For a complex time series, the starting point of the focused activity is often manually
identified [7]. C = {Su1r1 , Su2r2 , . . . , Suiri , . . . , SuKrK}, where 1 ≤ ui < ri ≤ t and 1 ≤ i ≤ K.
C is the set of static segmentations manually identified. Sukrk represents the static segmen-
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tation from time uk to rk , while K represents the number of static segmentations manually
identified. After differential processing of the time series data, it can be found that the
difference between the static segmentations is relatively small during [0, g], where g is
the gravity acceleration. Referring to the grid search method, this paper exhaustively
traverses all the hyper-parameter combinations in order to select the optimal set as the
final results. The purpose of TS algorithm is to find out the optimal threshold cbest and
dbest to cut out the optimal static segmentations. It is assumed that the thresholds c and
d both have z groups of candidate parameters, and listed as 1× z one-dimensional ma-
trices, Ic and Id, respectively. Ic and Id can generate z× z candidate values. According
to Figure 4a, the static segmentations with different candidate values can be identified,
and the related optimal threshold can be finally obtained according to Figure 4b. Let
C̃=
{

Sũ1 r̃1 , Sũ2 r̃2 , . . . , Sũi r̃i , . . . , SũK̃ r̃K̃

}
, where 1 ≤ ũi < r̃i ≤ t and 1 ≤ i ≤ K̃ be a set of

static segmentations identified using candidate thresholds c and d. Here, K̃ represents the
number of static segmentations identified by the TS algorithm, and Sũi r̃i denotes a static
segmentation from time ũi to time r̃i.

In order to find the optimal thresholds in the training samples, the algorithm should
clearly determine the optimized static segmentations, while the TS algorithm does not mix
up with the segmentations of other types of activities. As obtained in Equations (3) and (4),
Sa denotes the total number of sampling points in static segmentations labeled manually,
while Sb is the total number of sampling points in static segmentations identified by the TS
algorithm with the candidate pairs of thresholds. Here, ui and ri represent the starting and
ending points of the ith static segmentation in set C, respectively. Similarly, ũj and r̃j are
the starting and ending points of the jth static segmentation in set C̃, respectively. Sab rep-
resents the number of sampling points in the overlapping areas of the static segmentations
identified by the TS algorithm and the labels. Sab/Sa represents the proportion of all static
intervals that are correctly split. Sab/Sb represents the proportion of correct segmentation
in the interval segmented by the TS algorithm. In order to divide the interval to be both
right and complete, Sab/Sa and Sab/Sb should be as big as possible. As shown in Figure 5,
the red parts are the manually labeled static segmentations, and the black rectangular
boxes are the static segmentations identified by the TS algorithm. In Figure 5a, most static
intervals are not split using a very small threshold, then Sa/Sab is small. In Figure 5b,
the transition actions are contained in Sb which result in Sb/Sab being smaller. Therefore,
there exists a trade-off between these two requirements. The F1-score is an indicator used
to measure the accuracy of binary classification model in statistics, which considers the
accuracy and recall of the classification model at the same time. According to the logic of
F1-score, Fab is calculated in Equation (5).
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Figure 5. Segmentation results under different thresholds. (a) small threshold, and (b) big threshold.

As shown in Figure 6, the red and blue parts represent the static segmentations
identified manually and by the TS algorithm, respectively. It can be found that there
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exist only four cases in which overlapping occurs among the total six cases of the relative
positions between two kinds of static segmentations.

Sur

case 1

case 2

case 3

case 4

case 5

case 6

Sũr̃ 

Sur

case 1

case 2

case 3

case 4

case 5

case 6

Sũr̃ 

Figure 6. The relative position of the interval cut by the algorithm and the manual annotation interval.

For cases 1–3, it can be seen that the ending point of the segmentations using the TS
algorithm is smaller than those manually labeled. If the ending point of the blue parts
is smaller than the starting point of the red part, there is no overlapping area. Therefore,
max(0, (r̃j − ui))/|r̃j − ui| is used to eliminate case 1. Additionally, Figure 6 shows that the
overlapping area can be obtained as follows: min(r̃j, ri)−max(ui, ũj) + 1. For cases 4–6,
similarly, the ending points of the blue parts are greater than the red part. Then, the total
overlap point number of C and C̃ is obtained as max(0, (r̃j − ui))/|r̃j − ui| × (min(r̃j, ri)−
max(ui, ũj) + 1). In summary, the overall calculation can be estimated in Equation (6).

Sa =
K

∑
i=1

(ri − ui + 1) (3)

Sb =
K

∑
j=1

(r̃j − ũj + 1) (4)

Fab = 2× sa × sb
(sa + sb)× s ab

(5)

Sab=



K
∑

i=1

K̃
∑

j=1
[

max(0,(r̃j−ui))

|r̃j−ui |
× (min(r̃j, ri)−max(ui, ũj)

+1)], r̃i ≤ rj;
K
∑

i=1

K̃
∑

j=1
[

max(0,(ri−ũj))

|ri−ũj |
× (min(r̃j, ri)−max(ui, ũj)

+1)], r̃i > rj.

(6)

Algorithm 1 gives the detailed procedures of the proposed TS algorithm.
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Algorithm 1 The proposed TS algorithm.

Input: C, Ic, Id, A
′
x, G

′
x.

Output: cbest, dbest
initialization: cbest, dbest, fbest = 0

1: function SEGMENTATION(A
′
x, G

′
x, c, d)

2: i = 1, k = 0
3: while i<=length(A

′
x) do

4: if A
′
x(i) < c && G

′
x(i) < d then

5: k = k + 1, i = i + 1
6: else
7: if (A

′
x(i) > c ‖ G

′
x(i) > d) && k > 250 then

8: [i− k, i + 1] = C̃, k = 0, i = i + 1
9: end if

10: end if
11: end while
12: return C̃
13: end function
14: function COMPARE(x, y)
15: Calculate Sa(x) using Equation (3).
16: Calculate Sb(y) using Equation (4).
17: Calculate Sab(x, y) using Equation (6).
18: Calculate Fab using Equation (5).
19: return Fab
20: end function
21: for i from 1 to z do
22: for j from 1 to z do
23: C̃ = Segmentation(A

′
x, G

′
x, Ic(i), Ic(j))

24: Fab = compare(C, C̃)
25: if Fab > fbest then
26: cbest = Ic(i), dbest = Id(i)
27: end if
28: end for
29: end for
30: return cbest, dbest

3.5. Periodic-like Interval Segmentation

Periodic-like activity usually takes a long time. Here, peaks and troughs can clearly
reflect the characteristics of periodic signals. Generally, the horizontal spacing distance
between the peaks and troughs are half of the human activity cycle. For a complex time
series, the periodic-like action segmentations can be identified by finding peaks and troughs.
However, the transition activity between two static activities and the jitter of human body
has the probability to generate abnormal peaks and troughs, which may bring serious
impacts to HAR. Therefore, the SA algorithm is applied to eliminate these abnormal points.
The area of the line connecting two adjacent peaks and the troughs between them will
be much larger than the normal area, so the abnormal points can be preliminarily found
according to the calculated area. However, the abnormal points cannot be accurately
identified only by using the area. Another notion, slope, is introduced. Since for the
abnormal points, the slope of the line connecting two adjacent peaks and the troughs
between them is much smaller than the normal slope, the abnormal points can be further
filtered by the slope. The flowchart of the proposed SA algorithm is shown in Figure 7.
The training part lists the peaks and troughs and connects the adjacent peaks and troughs to
estimate the threshold slope and area, then finds the minimum slope value and maximum
area value stored as kmin and Smax. The test data set repeats the procedure to calculate the
related slope and area which are used to compare with kmin and Smax. After eliminating
the abnormal points, the periodic-like segmentations can be cut out from the time series.
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Figure 7. The flow chart of the proposed SA algorithm.

Let Pv = {p1
v, p2

v, p3
v, . . . , pm

v } and Pc = {P1
c , P2

c , P3
c , . . . , Pn

c } be the set of peak and
trough points in the periodic-like segmentations in the training sample, respectively. Here,
m and n are the number of peak and trough points, respectively. Suppose kur and Lur are
the absolute value of the slope and the length of the line connecting between the peak
point (pr

v) and the trough point (pu
c ), respectively. Similarly, ku(r+1) and Lu(r+1) are the

absolute value of the slope and length of the line connecting between the peak point (pr+1
v )

and the trough point (pu
c ) . Here, Pr

v < Pu
c < Pr+1

v , 1 ≤ u ≤ n, 1 ≤ r < m. It is necessary
to calculate the area of the lines connecting three points, pu

c , pr+1
v , and pr

v, where the
triangle area is Su,r,r+1 = 1

2 Lur × Lu(r+1) × sin a, and a is the angle of the lines connecting
three points, as shown in Figure 8. The slope of point pu

c and pr
v, kur can be obtained as

shown in Equation (7). Here, xpr
v and ypr

v represent the corresponding number of sampling
points and the acceleration value of point pr

v, respectively. Let 1/kur and 1/ku(r+1) be
the tangent values of ∠1 and ∠2. The tangent values of ∠a can be obtained, as shown in
Equation (8). According to tan a obtained above, the corresponding sin a can be obtained
using Equation (9). Then the triangle area, Su,r,r+1 can be calculated by Equation (10).

kur =
ypr

v − ypu
c

xpr
v − xpu

c

(7)

tan a = tan(π− (1+ 2)) = − tan(1+ 2) =
1/kur + 1/ku(r+1)

1/(kur × ku(r+1))− 1
=

kur + ku(r+1)

1− kur × ku(r+1)
(8)

sin a =

√
tan2a

tan2a + 1
=

√√√√ (kur + ku(r+1))
2

(kur + ku(r+1))
2 + (kur × ku(r+1) − 1)2 (9)

Su,r,r+1 =
Lu(r+1) × Lur

2
×

√√√√ (kur + ku(r+1))
2

(kur + ku(r+1))
2 + (kur × ku(r+1) − 1)2 (10)
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Figure 8. Triangle diagram of the lines connecting adjacent peaks and the related trough.

Then the normal values of slope and area are estimated to determine the thresh-
old. Finally, the abnormal points in complex time series are eliminated by the pro-
posed SA algorithm, and the periodic-like segmentations can be clearly identified. Let
P̃v = { p̃1

v, p̃2
v, p̃3

v, . . . , ˜p ˜
vm} and P̃c = {P̃1

c , P̃2
c , P̃3

c , . . . , P̃ ˜
cn} be the sets of the peak and trough

points in the test sample, respectively. The corresponding kmin and smax are calculated
according to Equations (7) and (10).

Algorithm 2 lists the detailed steps of the proposed SA algorithm. Output, D, is the
set of the peak and trough points without abnormal points.

Algorithm 2 The proposed SA algorithm.
Input: Kmin, Smax, Pc, Pv, P̃c, P̃v
Output: D
1: function GETSLOPEAREA(Pc, Pv)
2: Calculate K(Pc, Pv) using Equation (7).
3: Calculate S(Pc, Pv) using Equation (8)–(10).
4: return K, S
5: end function
6: function ELIMINATE(K, S, Kmin, Smax)
7: i = 1
8: while i > length(s) do
9: if S > Smax then

10: if K(i) < Kmin then
11: if K(i + 1) < Kmin then
12: outlier = Pi, i = i + 1
13: else
14: outlier = Ti+1, i = i + 1
15: end if
16: else
17: if K(i + 1) < Kmin then
18: outlier = Ti, i = i + 1
19: end if
20: end if
21: end if
22: end while
23: return outlier
24: end function
25: K, S = GetSlopeArea(P̃c, P̃v)
26: outlier = eliminate(K, S, kmin, smax)

27: P̃c
′
= P̃c − outlier

28: P̃v
′
= P̃v − outlier

29: D = P̃c
′
+ P̃v

′

30: return D
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3.6. Multi-Label Weighted Probability Model (MLWP)

For complex HAR using the sliding window method, the window is prone to make
classification errors at the boundaries of different actions or at the segmentations due to
body jitter. Even worse, some useless segmentations may be classified into major activities.
If a sliding window of a small size is used to reduce the number of sampling points
at the boundary while improving the recognition rate, this may lead to the loss of the
basic characteristics of other activities. Therefore, window overlap is a better solution.
Let the sliding window be overlapped by q%, which means each sub-window produces
d1/(q%)e labels. When the overlapping sliding window method is used for classification
and recognition, the sub-windows at the boundary may generate many different labels.
For these sub-windows, the corresponding weight vector can be determined by combining
the basic activity segmentations identified before, and the corresponding probability can be
obtained. By setting the threshold, the unknown class is rejected, and the classification and
recognition are carried out to determine the activity category of the sub-window.

Let E =
{

sm1n1
, sm2n2 , sm3n3

, smini , . . . , smknk

}
, 1 ≤ mi < ni ≤ t, 1 ≤ i ≤ k be the set of

all abnormal segmentations in the time series, and lmini = {l1, l2, l3, l4}, 1 ≤ i ≤ k, l ∈ A be
the four labels of smini , which is generated by the classifier. Let wmini = [w1, w2, w3, . . . , wN ]

T,
wmini be the weight vector of all kinds of activities from the time interval mi to ni, and its initial
value is zero vector with size N × 1. N is the number of activity classes in the time series. Let
M be the set of all static and periodic-like segmentations according to the proposed TS and SA
algorithms. The algorithm diagram is shown in Figure 9. Through the proposed TS and SA
algorithms, the thresholds Kmin, Smax, cbest and dbest are obtained, and the time series of the test
set is pre-segmented. The time series employ overlapping sliding windows to go through the
classifier. According to label, L, generated by the sub-windows, the corresponding weight vector,
w, is estimated. When the labels are not completely consistent, the segmentations are identified
as E, and the segmentation inside the sub-window is judged if it is in M. The corresponding w is
weighted, and the detailed weighting procedure is shown in Algorithm 3. Here, w is converted
into the corresponding activity probability vector, P, using Equation (11). The maximum
probability of activity is found, and the threshold, θreject, is determined to distinguish between
the known and the unknown activity.

Pi =
ewi

z
∑

i=0
ewi

, 1 ≤ i ≤ z (11)
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Figure 9. The diagram of the proposed MLWP algorithm.
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For the selection of threshold θreject, this paper selects a group of complete time series
subjects as validation data from the training samples, and the candidate value of θreject is
set from [0, 1]. Regardless of the accuracy, the maximum is selected as the θreject of the data
set to reject the unknown activities in the time series.

Algorithm 3 shows the detailed steps of the proposed MLWP algorithm. The output,
L f orcast, is the final generated label of E.

Algorithm 3 The proposed MLWP algorithm.
Input: E, L, M, N, k
Output: Lforcast
1: function WEIGHTING(L)
2: for i from 1 to 4 do
3: if Li = j then
4: wj = wj + 1, 1 ≤ j ≤ N
5: end if
6: end for
7: return w
8: end function
9: function WEIGHTOFCUTINTERVAL(x,w,M)

10: if s(x) ⊂ M && L(x) = j then
11: w(x) = w(x) + 1.5
12: end if
13: return w
14: end function
15: for i from 1 to k do
16: w(i) = weighting(L(i))
17: w(i) = weighto f cutinterval(i, w, M)
18: Calculate p(j) using Equation (11)
19: u = argmax(p(i)),1 ≤ u ≤ N
20: if u > θreject then
21: L f orcast(i) = u
22: else
23: L f orcast(i) = unkonwn
24: end if
25: end for
26: return Lforcast

4. Performance Evaluation
4.1. Experimental Environment and Data Sets

The experiment was conducted on a laptop equipped with AMD Ryzen 5 4600H 3 GHz
CPU and NVIDIA GeForce® GTX 1650 2G GPU. The operating system was Windows 10.
MATLAB R2019b was used for HAR.

The data sets used in this paper include the UCI and PAMAP2 data set. The UCI (UCI-
Rvine, University of California, Irvine) data set comes from “Human activity recognition
using smart phones” in the machine learning repository [9]. The data set consists of
30 volunteers aged 19–48 who wore a smartphone (Samsung Galaxy S II) around their
waist. Each volunteer performed six consecutive activities (walking, walking upstairs,
walking downstairs, sitting, standing, and lying down). Using its embedded accelerometer
and gyroscope, it samples 3-axis acceleration and 3-axis angular velocity at a constant rate of
50 Hz. The PAMAP2 data set is measured by nine volunteers wearing inertial measurement
units (IMUs) consisting of gyroscopes, magnetometers, an accelerometer, temperature,
and heart rate sensor composition. Each volunteer performed 12 consecutive activities [31].
As described in the previous section, this data set was preprocessed, and the sensor data of
one experimenter were randomly selected as the verification set, while the sensor data of
the other experimenters were used for model training and hyperparameter tuning.
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4.2. Evaluation Indicators

The problem to be solved in this paper is to accurately detect the starting point of
each activity for complex activity time series. In order to evaluate the performance of the
proposed scheme from multiple perspectives, the evaluation indicators include accuracy,
precision, recall and F1-score [32]. Accuracy represents the percentage of the correct
prediction results in the total sample; precision is for the prediction results, which means
the probability of actually being a positive sample in all the predicted positive samples;
recall is for the original sample which means the probability of being predicted to be
positive in the actual positive sample; and the F1-score considers both precision and recall
to make both reach the highest at the same time and maintain the balance. The indicators
can be obtained as Equations (12)–(15).

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + PN
(14)

F1-score = 2× Precision× Recall
Precision + Recall

(15)

4.3. Experimental Results
4.3.1. Static and Period-like Interval Segmentation

In this paper, 5 groups of 60 samples from 30 volunteers in UCI data set were randomly
selected as test samples, while others were used as training samples. One of the nine
volunteers in the PAMAP2 data set was randomly selected as the test sample, while others
are used as training samples. According to the proposed method, the optimal threshold
was calculated to identify segmentations. The results of the segmentations are shown in
Figure 10.
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Figure 10. Segmentation results of the proposed scheme in different data sets, (a) UCI data set and
(b) PAMAP2 data set.

Figure 10a,b shows the complete continuous activity time series in UCI and PAMAP2
data sets, respectively. The red and blue parts are the static and periodic-like segmentations
identified by the proposed algorithm, respectively. The black-dotted rectangular boxes
are the manually labeled periodic-like and static segmentations. It is clear that the typical
segmentations in the original time series can be clearly figured out.

4.3.2. Model Classification Results

The selection of sliding window size has a certain influence on the final recognition
rate [33]. In [34], the sliding windows of 0.5 s, 1.28 s, 2.56 s, and 3 s were selected as the
candidate windows on the UCI data set. The final result was that the size of 2.56 s showed
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the best performance. Therefore, the training set adopted the window of 2.56 s to collect six
basic action signals and extract the corresponding time–frequency domain characteristics.

Since the sampling frequency of PAMAP2 data set is 100Hz, this paper selects 1.28 s,
2.56 s, 3.84 s, 5.12 s, and 6.4 s as the size of the sliding window, respectively. The experi-
mental results are shown in Table 3, where 5.12 s performs the best, so 5.12 s is selected as
the size of the sliding window on the PAMAP2 data set.

Table 3. The accuracy of the classifier under different window lengths in the PAMAP2 data set.

Window length (s) 1.28 2.56 3.84 5.12 6.4

Accuracy (%) 94.8 94.5 95.2 96 95.9

For the UCI and PAMAP2 test sets, the sliding windows of 2.56 s and 5.12 s are used
respectively, and 25%(q) overlap is set for feature extraction. The multi-class labels are
obtained through the classifier. Among them, the UCI data set involves the identification of
the transition actions. Therefore, according to the previously identified static segmentation,
the transition action segmentations are derived by the change of before and after actions.
For the UCI data set, Anguita et al. proved that SVM had the best performance results,
and multi-class labels were obtained by SVM. For the PAMAP2 test set, multi-class labels
are obtained by different classifiers trained using training set. The corresponding θreject is
obtained according to the training set, as shown in Figure 11. Among them, 0.4 is selected
as the threshold for the UCI data set, while 0.1 is selected as the threshold for the PAMAP2
data set. The θreject of the data set is low since when the PAMAP2 data set is manually
labeled, the transition between actions is not considered (the previous sampling point is
walking, and the next sampling point is seating), so it is not as good as what the UCI data
set shows. The proposed MLWP algorithm is used to determine the label, and the results
are compared with those of the manually labeled ones. The experimental results are shown
in Tables 4 and 5.

(a) (b)

Figure 11. Accuracies of two data sets at different thresholds. (a) UCI data set, and (b) PAMAP2
data set.

Table 4. Experimental results of five groups of test samples in the UCI data set.

Accuracy (%) Precision (%) Recall (%) F1 (%)

S1 97.48 94.41 94.94 93.93
S2 97.73 95.33 90.84 92.72
S3 97.39 91.52 96.75 93.47
S4 97.68 91.67 91.30 90.51
S5 98.28 92.75 96.04 94.08
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Table 5. Experimental results of the PAMAP2 data set using different classifiers.

Accuracy (%) Precision (%) Recall (%) F1 (%)

SVM 95.93 93.94 96.71 95.12
DT 81.20 78.23 75.96 74.19

LDA 93.77 91.53 94.21 92.64
NB 85.52 80.85 80.72 88.23

KNN 91.66 89.62 92.25 90.69
BT 95.21 93.30 96.04 94.44

As shown in Table 4, five groups of test samples are randomly selected, where S1−S5
represent the first to the fifth groups of data in the test samples, respectively. The highest
accuracy is 98.28%, while the lowest is 97.39%. The average accuracy can achieve 97.71%.

As shown in Table 5, SVM, DT, linear discriminant (LDA), NB, KNN and bag tree (BT)
classifiers are applied. The accuracies of SVM, LDA, KNN and BT are relatively better than
the others, while SVM performs the best, reaching 95.93%.

Figure 12 shows the confusion matrix of the proposed scheme on the UCI and PAMAP2
data sets. From Figure 12a, it can be seen that the classification effect of three types of
static activities, sitting, and lying, and three types of dynamic activities, walking, upstairs
and downstairs, is very good, while the effect of transition activities (standing to lying,
standing to sitting, sitting to standing, sitting to lying, lying to standing, and lying to
sitting) is relatively poor because the boundary part is often mistakenly classified into static
actions. Additionally, Figure 12b shows that the model has a good recognition rate for
lying, running, cycling, walking, going up and down stairs, and relatively poor recognition
for sitting, standing, scalding, cleaning and other actions (the volunteer does not perform
rope skipping).
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Figure 12. The confusion matrix of the proposed scheme on different data sets. (a) UCI data set,
and (b) PAMAP2 data set.

As illustrated by Figure 13, different types of actions use different colors; the red spaces
in Figure 13a,c is manually unlabeled segmentations, and the black spaces in Figure 13b,d
are unknown segmentations rejected according to the proposed algorithm. The first black
box in Figure 13b is identified as unknown and walking, because the volunteer may stand
up and walk for some time, while the second black box is totally identified as unknown
since it can be distinguished as transition action according to before and after actions.
Similarly, the first black box in Figure 13d is identified as unknown and downstairs, while
the second black box is identified as unknown since it is a transition action. It can be seen
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that the proposed scheme can clearly segment the time series and identify all kinds of
actions. In addition, the unknown segmentation can be distinguished accurately.

Figure 13. Scatter comparison of x-axis acceleration of the proposed model on different data sets.
(a) Ground truth of the UCI data set, (b) prediction results of the UCI data set, (c) ground truth of the
PAMAP2 data set, and (d) prediction results of the PAMAP2 data set.

In order to demonstrate the superiority of the proposed model, this paper compares
the results with existing research work. As shown in Figure 14, in [35], the features
are first processed by a kernel principal component analysis (KPCA) and LDA. Finally,
researchers proposed a deep belief network (DBN) and it was compared with SVM and
artificial neural network (ANN). Ref. [36] proposed the U-Net network (UNET) and fully
convolutional networks (FCN); UNET achieved fast enough recognition speed. Ref. [37]
evaluated extreme gradient boosted machines (EGBM) in HAR. Ref. [38] proposed that
shown in Figure 13, a sparse representation based hierarchical (SRH) classifier. Figure 14
shows the comparison of accuracy of different methods in the UCI data set. Numerically,
the proposed scheme shows outstanding performance and produces 8.65%, 4.79%, 4.55%,
3.59%, 2.74%, 1.85% and 0.15% higher accuracy compared to that of ANN, FCN, UNET,
SVM, EGBM, DBN and SRH, respectively.
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Figure 14. The comparison of accuracy using different methods in the UCI data set.

Table 6 compares the recall of various types of activities form UCI data sets. Among
them, the meaning of A1–A12 is walking, upstairs, downstairs, sitting, standing, lying,
standing to sitting, sitting to standing, sitting to lying, lying to sitting, standing to lying,
standing to lying, and lying to standing. The proposed scheme produces better recognition
results for most of the activities.

Table 6. The comparison of recall of 12 types of activities using different schemes in UCI data set.

Method ANN [35] FCN [36] UNET [36] SVM [35] EGBM [37] DBN [35] SRH [38]
The

Proposed
Scheme

A1 83.27 95.77 95.56 88.78 97.78 94.69 98.59 100
A2 95.48 93.84 95.54 97.30 96.82 97.12 98.30 100
A3 96.88 93.10 91.19 97.61 93.57 97.61 97.86 100
A4 91.93 90.43 91.65 95.97 93.89 95.97 97.96 98.37
A5 93.99 93.80 94.17 97.58 95.86 97.78 97.93 96.88
A6 85.71 95.53 97.20 97.14 98.70 96.67 99.07 97.16
A7 34.78 71.43 77.14 73.91 62.86 82.61 82.86 94.67
A8 00.00 66.67 75.00 80.00 83.33 80.00 83.33 80.6
A9 56.25 83.33 77.08 50.00 91.67 81.25 93.75 100

A10 76.00 84.85 75.76 64.00 81.82 72.00 87.88 100
A11 51.02 85.71 83.67 69.39 75.51 85.71 87.75 100
A12 18.52 81.58 71.05 62.96 73.68 81.48 84.21 84.43

For the PAMAP2 data set, the accuracy, precision, recall and F1-core are compared with
the existing deep learning-based schemes. As shown in Figure 15, numerically, the proposed
scheme shows outstanding performance and produces 11.86%, 4.93%, 2.96%, 2.43%, 1.92%,
8.03%, 1.21%, 8.53% and 1.55% higher accuracy compared to that of SVM, CNN, Local Loss
CNN, Lego CNN, condconv CNN, MLP-D, CNN-D, LSTM-D, and Hybrid-D, respectively.
As shown in Table 7, the proposed model focuses on shallow learning method. Through
probabilistic alignment of the identified typical segmentations, the F1-score is raised to
95.12%. Ref. [39] introduced using the distance-based loss function in MLP, CNN, LSTM
and hybrid model, and found that CNN-D shows the best performance among these
methods. Compared with CNN-D, the accuracy and F1-score increases by 1.21% and 0.89%.
Compared with [26] which introduced condconv to replace the standard convolution layer,
the accuracy increases by 1.92%. While compared with [24], which applied the Lego CNN
model, the accuracy, recall, and F1-score increases by 2.43 %, 5.64%, and 3.72%, respectively.
For the other schemes, the proposed scheme also shows the best performance for the
four evaluation indicators. In summary, the proposed shallow learning scheme is able to
maintain good classification results with fewer computing resources.



Sensors 2022, 22, 7446 20 of 22

84.07

91

92.97

93.5

94.01

87.9

94.72

87.4

94.38

95.93

SVM CNN Local Loss CNN Lego CNN condconvCNN MLP-D CNN-D LSTM-D Hybrid-DThe proposed scheme 

84

86

88

90

92

94

96

A
c
c
u

ra
c
y
(%

)

Figure 15. The comparison of accuracy using different methods in the PAMAP2 data set.

Table 7. The comparison of evaluation indicators using different methods in the PAMAP2 data set.

Method SVM [11] CNN [11] Local Loss
CNN [40]

Lego
CNN [24]

Condconv
CNN [26]

MLP-
D [39]

CNN-
D [39]

LSTM-
D [39]

Hybrid-
D [39]

The
Proposed
Scheme

Accuracy 84.07 91 92.97 93.5 94.01 87.9 94.72 87.4 94.38 95.93
Recall 84.71 91.66 - 88.17 - - - - - 93.94

Precision 84.23 91.54 - 91.07 - - - - - 96.71
F1-Score 83.76 91.16 93.03 91.4 - 86.66 94.23 86.53 93.88 95.12

Table 8 compares the recall of various types of activities form PAMAP2 data sets.
Among them, the meaning of B1–B11 is lying, sitting, standing, walking, running, cycling,
Nordic walking, upstairs, downstairs, vacuum cleaning, and ironing. The proposed scheme
produces better recognition results for most of the activities.

Table 8. The comparison of recall of 11 types of activities using different schemes in PAMAP2 data set.

Method CNN [40] Local Loss
CNN [40] Lego CNN [24] DanHAR [25] The Proposed

Scheme

B1 90.3 90.3 90.3 90.3 97
B2 98.4 97.8 98.4 95.1 90
B3 86.3 92.3 92.6 93.7 100
B4 35.9 50.3 58.0 47.3 98.0
B5 96.5 97.8 98.2 96.9 81.9
B6 94.6 94.1 73.5 94.1 96
B7 86.4 93.8 94.3 95.5 98.5
B8 98.1 98.1 99.0 97.1 93.6
B9 91.6 94.4 88.8 96.2 90.1

B10 83.2 87.4 84.2 79.8 91.5
B11 88.3 91.6 94.7 95.5 98.2

5. Conclusions

Most of the current research work focuses on simple HAR. Here, classification and
recognition are based on manually labeled segmentations in time series, without consid-
ering the cost of the manually labeled and personal privacy. In this paper, a probability
threshold based algorithm for complex HAR is proposed, which can segment and identify
the basic actions in complex activity time series. The proposed scheme accurately segments
the activities while effectively rejecting the useless segmentations. In addition, the cost of
manual labeling can be reduced to improve the efficiency of HAR. The proposed model
is applied to the UCI and PAMAP2 data sets for experiment validation. The results show
that for the UCI data set, the proposed model can well segment and identify the static,
dynamic, and transition activities. Additionally, the useless segmentation can be effectively
identified, and the overall accuracy rate is able to reach 97.8%. For the PAMAP2 data set,
the proposed model can distinguish the basic activities well, and the overall accuracy is
about 95.9%.
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This paper only classifies and identifies six basic activities and six transitional activities.
The structure of the proposed model used in the experiment can be further optimized,
and more detailed comparative experiments can be carried out. In the future work, in order
to verify the robustness and practicability of the proposed model, experiments are planned
on various data sets, and the developed modules will be applied to deep learning model.

Author Contributions: Conceptualization, B.Z., Z.H., Z.L., Y.C., G.G., H.L., C.D. and J.L.; Method-
ology, B.Z.; Supervision, C.W.; Validation, C.W.; Visualization, B.Z.; Writing—original draft, B.Z.;
Writing—review and editing, B.Z. and C.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lara, O.D.; Labrador, M.A. A Survey on Human Activity Recognition using Wearable Sensors. IEEE Commun. Surv. Tutor. 2013,

15, 1192–1209. [CrossRef]
2. Bulling, A.; Blanke, U.; Schiele, B. A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput. Surv.

2014, 46, 33. [CrossRef]
3. Dang, L.M.; Min, K.; Wang, H.; Piran, M.J.; Lee, C.H.; Moon, H. Sensor-based and vision-based human activity recognition: A

comprehensive survey. Pattern Recognit. 2020, 108, 107561. [CrossRef]
4. Qin, Z.; Zhang, Y.; Meng, S.; Qin, Z.; Choo, K.K.R. Imaging and fusing time series for wearable sensor-based human activity

recognition. Inf. Fusion 2020, 53, 80–87. [CrossRef]
5. Ahmed, N.; Rafiq, J.I.; Islam, M.R. Enhanced Human Activity Recognition Based on Smartphone Sensor Data Using Hybrid

Feature Selection Model. Sensors 2020, 20, 317. [CrossRef]
6. Al-Janabi, S.; Salman, A.H. Sensitive integration of multilevel optimization model in human activity recognition for smartphone

and smartwatch applications. Big Data Min. Anal. 2021, 4, 124–138. [CrossRef]
7. Ferrari, A.; Micucci, D.; Mobilio, M.; Napoletano, P. On the Personalization of Classification Models for Human Activity

Recognition. IEEE Access 2020, 8, 32066–32079. [CrossRef]
8. Esfahani, P.; Malazi, H.T. PAMS: A new position-aware multi-sensor dataset for human activity recognition using smartphones.

In Proceedings of the 2017 19th International Symposium on Computer Architecture and Digital Systems (CADS), Kish Island,
Iran, 21–22 December 2017; pp. 1–7.

9. Anguita, D.; Ghio, A.; Oneto, L.; Parra Perez, X.; Reyes Ortiz, J.L. A Public Domain Dataset for Human Activity Recognition using
Smartphones. In Proceedings of the 21th International European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, Bruges, Belgium, 24–26 April 2013.

10. Fida, B.; Bernabucci, I.; Bibbo, D.; Conforto, S.; Schmid, M. Varying behavior of different window sizes on the classification of
static and dynamic physical activities from a single accelerometer. Med. Eng. Phys. 2015, 37, 705–711. [CrossRef]

11. Wan, S.; Qi, L.; Xu, X.; Tong, C.; Gu, Z. Deep Learning Models for Real-time Human Activity Recognition with Smartphones. Mob.
Netw. Appl. 2020, 25, 743–755. [CrossRef]

12. Ronao, C.A.; Cho, S.B. Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst.
Appl. 2016, 59, 235–244. [CrossRef]

13. Bianco, S.; Cadene, R.; Celona, L.; Napoletano, P. Benchmark Analysis of Representative Deep Neural Network Architectures.
IEEE Access 2018, 6, 64270–64277. [CrossRef]

14. Ferrari, A.; Micucci, D.; Mobilio, M.; Napoletano, P. Hand-crafted Features vs Residual Networks for Human Activities
Recognition using Accelerometer. In Proceedings of the 2019 IEEE 23rd International Symposium on Consumer Technologies
(ISCT), Ancona, Italy, 19–21 June 2019; pp. 153–156.

15. Gupta, P.; Dallas, T. Feature selection and activity recognition system using a single triaxial accelerometer. IEEE Trans. Biomed.
Eng. 2014, 61, 1780–1786. [CrossRef] [PubMed]

16. Sun, F.; Mao, C.; Fan, X.; Li, Y. Accelerometer-Based Speed-Adaptive Gait Authentication Method for Wearable IoT Devices. IEEE
Internet Things J. 2019, 6, 820–830. [CrossRef]

17. Reyes-Ortiz, J.L.; Oneto, L.; Sama, A.; Parra, X.; Anguita, D. Transition-Aware Human Activity Recognition Using Smartphones.
Neurocomputing 2016, 171, 754–767. [CrossRef]

18. Santos, L.; Khoshhal, K.; Dias, J. Trajectory-based human action segmentation. Pattern Recognit. 2015, 48, 568–579. [CrossRef]

http://doi.org/10.1109/SURV.2012.110112.00192
http://dx.doi.org/10.1145/2499621
http://dx.doi.org/10.1016/j.patcog.2020.107561
http://dx.doi.org/10.1016/j.inffus.2019.06.014
http://dx.doi.org/10.3390/s20010317
http://dx.doi.org/10.26599/BDMA.2020.9020022
http://dx.doi.org/10.1109/ACCESS.2020.2973425
http://dx.doi.org/10.1016/j.medengphy.2015.04.005
http://dx.doi.org/10.1007/s11036-019-01445-x
http://dx.doi.org/10.1016/j.eswa.2016.04.032
http://dx.doi.org/10.1109/ACCESS.2018.2877890
http://dx.doi.org/10.1109/TBME.2014.2307069
http://www.ncbi.nlm.nih.gov/pubmed/24691526
http://dx.doi.org/10.1109/JIOT.2018.2860592
http://dx.doi.org/10.1016/j.neucom.2015.07.085
http://dx.doi.org/10.1016/j.patcog.2014.08.015


Sensors 2022, 22, 7446 22 of 22

19. Sheng, Z.; Hailong, C.; Chuan, J.; Shaojun, Z. An adaptive time window method for human activity recognition. In Proceedings
of the 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE), Halifax, NS, Canada, 3–6 May
2015; pp. 1188–1192.

20. Noor, M.H.M.; Salcic, Z.; Kevin, I.; Wang, K. Adaptive sliding window segmentation for physical activity recognition using a
single tri-axial accelerometer. Pervasive Mob. Comput. 2016, 38, 41–59. [CrossRef]

21. Gyllensten, I.C.; Bonomi, A.G. Identifying Types of Physical Activity With a Single Accelerometer: Evaluating Laboratory-trained
Algorithms in Daily Life. IEEE Trans. Biomed. Eng. 2011, 58, 2656–2663. [CrossRef]

22. Masum, A.K.M.; Bahadur, E.H.; Shan-A-Alahi, A.; Chowdhury, M.A.U.Z.; Uddin, M.R.; Al Noman, A. Human Activity
Recognition Using Accelerometer, Gyroscope and Magnetometer Sensors: Deep Neural Network Approaches. In Proceedings of
the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India,
6–8 July 2019; pp. 1–6.

23. Ramos-Garcia, R.I.; Hoover, A.W. A Study of Temporal Action Sequencing During Consumption of a Meal. In Proceedings of the
International Conference on Bioinformatics, Computational Biology and Biomedical Informatics, Washington, DC, USA, 22–25
September 2013.

24. Tang, Y.; Teng, Q.; Zhang, L.; Min, F.; He, J. Layer-Wise Training Convolutional Neural Networks with Smaller Filters for Human
Activity Recognition Using Wearable Sensors. IEEE Sens. J. 2021, 21, 581–592. [CrossRef]

25. Gao, W.; Zhang, L.; Teng, Q.; He, J.; Wu, H. DanHAR: Dual Attention Network For Multimodal Human Activity Recognition
Using Wearable Sensors. Appl. Soft Comput. 2021, 111, 107728. [CrossRef]

26. Cheng, X.; Zhang, L.; Tang, Y.; Liu, Y.; Wu, H.; He, J. Real-Time Human Activity Recognition Using Conditionally Parametrized
Convolutions on Mobile and Wearable Devices. IEEE Sens. J. 2022, 22, 5889–5901. [CrossRef]

27. Yang, Z.; Raymond, O.I.; Zhang, C.; Wan, Y.; Long, J. DFTerNet: Towards 2-bit Dynamic Fusion Networks for Accurate Human
Activity Recognition. IEEE Access 2018, 6, 56750–56764. [CrossRef]

28. Bifet, A.; Gavalda, R. Learning from Time-Changing Data with Adaptive Windowing. In Proceedings of the 2007 SIAM
International Conference on Data Mining, Minneapolis, MN, USA, 26–28 April 2007.

29. Wächter, A.; Biegler, L.T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear
programming. Math. Program. 2006, 106, 25–57. [CrossRef]

30. Sant’Anna, A.; Wickstrom, N. A Symbol-Based Approach to Gait Analysis From Acceleration Signals: Identification and Detection
of Gait Events and a New Measure of Gait Symmetry. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 1180–1187. [CrossRef] [PubMed]

31. Reiss, A.; Stricker, D. Introducing a New Benchmarked Dataset for Activity Monitoring. In Proceedings of the 2012 16th
International Symposium on Wearable Computers, Newcastle, UK, 18–22 June 2012; pp. 108–109.

32. Bradley, A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997,
30, 1145–1159. [CrossRef]

33. Ye J.; Qi, G.J.; Zhuang, N.; Hu, H.; Hua, K.A. Learning Compact Features for Human Activity Recognition Via Probabilistic
First-Take-All. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 126–139. [CrossRef] [PubMed]

34. Khan, A.; Hammerla, N.; Mellor, S.; Plotz, T. Optimising sampling rates for accelerometer-based human activity recognition.
Pattern Recognit. Lett. 2016, 73, 33–40. [CrossRef]

35. Hassan, M.M.; Uddin, M.Z.; Mohamed, A.; Almogren, A. A robust human activity recognition system using smartphone sensors
and deep learning. Future Gener. Comput. Syst. 2018, 81, 307–313. [CrossRef]

36. Zhang, Y.; Zhang, Y.; Zhang, Z.; Bao, J.; Song, Y. Human activity recognition based on time series analysis using U-Net. arXiv
2018, arXiv:1809.08113.

37. Gusain, K.; Gupta, A.; Popli, B. Transition-aware human activity recognition using eXtreme gradient boosted decision trees. In
Advances in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2018; pp. 41–49. [CrossRef]

38. Jansi, R.; Amutha, R. Hierarchical evolutionary classification framework for human action recognition using sparse dictionary
optimization. Swarm Evol. Comput. 2021, 63, 100873. [CrossRef]

39. Jin, L.; Wang, X.; Chu, J.; He, M. Human Activity Recognition Machine with an Anchor-Based Loss Function. IEEE Sens. J. 2022,
22, 741–756. [CrossRef]

40. Teng, Q.; Wang, K.; Zhang, L.; He, J. The Layer-Wise Training Convolutional Neural Networks Using Local Loss for Sensor-Based
Human Activity Recognition. IEEE Sens. J. 2020, 20, 7265–7274. [CrossRef]

http://dx.doi.org/10.1016/j.pmcj.2016.09.009
http://dx.doi.org/10.1109/TBME.2011.2160723
http://dx.doi.org/10.1109/JSEN.2020.3015521
http://dx.doi.org/10.1016/j.asoc.2021.107728
http://dx.doi.org/10.1109/JSEN.2022.3149337
http://dx.doi.org/10.1109/ACCESS.2018.2873315
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1109/TITB.2010.2047402
http://www.ncbi.nlm.nih.gov/pubmed/20371410
http://dx.doi.org/10.1016/S0031-3203(96)00142-2
http://dx.doi.org/10.1109/TPAMI.2018.2874455
http://www.ncbi.nlm.nih.gov/pubmed/30296212
http://dx.doi.org/10.1016/j.patrec.2016.01.001
http://dx.doi.org/10.1016/j.future.2017.11.029
http://dx.doi.org/10.1007/978-981-10-4603-2-5
http://dx.doi.org/10.1016/j.swevo.2021.100873
http://dx.doi.org/10.1109/JSEN.2021.3130761
http://dx.doi.org/10.1109/JSEN.2020.2978772

	Introduction
	Related Work
	Human Activity Recognition
	 Signal Segmentation

	The Proposed Scheme 
	Problem Formalization
	The Proposed Framework
	Filtering and Feature Extraction
	Static Segmentation
	Periodic-like Interval Segmentation
	Multi-Label Weighted Probability Model (MLWP)

	Performance Evaluation
	Experimental Environment and Data Sets
	Evaluation Indicators
	 Experimental Results
	Static and Period-like Interval Segmentation
	Model Classification Results


	Conclusions
	References

