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Abstract: In this paper, a new type of ring-shaped interdigital electrode is proposed to improve the
accuracy and repeatability of quartz crystal microbalance. The influence of different types of single
finger, dot finger, dot double-finger electrodes on mass sensitivity distribution as well as the optimal
proportion of finger and gap width are obtained through multi-physical coupling simulation. The
results show that the design criteria of interdigital electrodes will not change with the increase in
the number of fingers. The gap width should obey the decrease order from central to edge and be
about twice the width of finger. The width of the outermost finger and the radius of the middle dot
electrode should be maintained at about 0.4 and 0.2 times of the total electrode radius. An experiment
was carried out to verify that the quartz wafer with a dot double-finger electrode has high quality
factors and less modal coupling, which can satisfy the engineering application well. As a conclusion,
this study provides a design idea for the electrode to maintain a uniform distribution of quartz crystal
microbalance mass sensitivity.

Keywords: quartz crystal microbalance; interdigital electrode; uniform mass sensitivity; high
quality factor

1. Introduction

As a typical piezoelectric acoustic resonator operating in thickness shear mode, quartz
crystal microbalance (QCM) has the characteristics of simple structure, high mass sensitivity
and well measurement resolution, great stability and specificity, and so on. In addition, the
development technology of artificial quartz crystal is mature and the manufacturing cost
is low nowadays. QCM has greatly contributed to the development of engineering fields
such as biology, chemistry, environmental science, food inspections and aerospace during
the past decades [1–5].

QCM is usually composed of a specific cut quartz with concentric electrodes on
both sides. The commonly used circular electrodes limit the vibration displacement in
electrode region to make QCM sensitive to the mechanical and electrical characteristics
of the surface load. Moreover, circular electrodes reduce the coupling vibration between
fundamental and parasitic overtone modes and increase the reliability of measurement.
However, for the traditional QCM with circular electrodes, the mass sensitivity distribution
is a Gaussian shape [6], which greatly limits the accuracy and repeatability of precision
measurement [7–9]. Many scholars have studied the electrode material, structure and
thickness to improve such an issue. The early studies on improving the mass sensitivity
distribution mainly focused on the analysis of ring electrode and M-N electrode by Josse and
Lee [10–12]. Such an asymmetric electrode structure can obviously change the distribution
of mass sensitivity. Especially, the bi-modal sensitivity distribution of ring electrodes paves
a way for exploring the homogenization of sensitivity distribution. The subsequent research
mainly focused on optimizing the thickness and geometry of the ring electrode to further
unify the mass sensitivity [13–16]. The bimodal distribution was further modified into three

Sensors 2022, 22, 7422. https://doi.org/10.3390/s22197422 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22197422
https://doi.org/10.3390/s22197422
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22197422
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22197422?type=check_update&version=2


Sensors 2022, 22, 7422 2 of 13

and four peaks through dot ring and dot double-ring by Gao et al. [9], Huang et al. [17].
They compared the influence of electrodes with different sizes on the multi-peak mass
sensitivity distribution through theoretical analysis. Aashish et al. [18] and Jiang et al. [19]
explored the mass sensitivity distribution of multi-ring electrodes with different proportions
based on the finite element method. The investigations have shown that the dot multi-ring
electrodes structure can unify the distribution of mass sensitivity. However, less attention
is focused on the influence of size and distribution of ring electrodes on the sensitivity.
In addition, some of previous electrode shapes are complex and difficult to produce [9],
which makes it difficult to apply in practice. Therefore, this paper presents a new type
of interdigital electrode as shown in Figure 1, which is similar to the ring electrode but
more suitable for engineering application and manufacturing. In this paper, the influences
of single finger, dot finger, dot double-finger electrode and the ratio between fingers on
the uniformity of mass sensitivity are analyzed through multiple-physical field simulation
based on finite element method. According to the summarized design regularity, the mass
sensitivity distribution of dot triple-finger electrode with appropriate size ratio is predicted.
Finally, an experimental verification of the performance of the presented QCM with dot
double-finger electrode is carried out.
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2. Theory

The distribution of mass sensitivity is a Gaussian when QCM works as a quality sensor.
The relationship between the change in resonance frequency and mechanical load is shown
as follows [20]:

∆ f0 = −S f (r, θ)∆m(r, θ) (1)

where S f (r, θ) is the mass sensitivity function, ∆m(r, θ) is the added mass on surface, r and
θ are the position of the added mass in polar coordinates. When QCM works under the
fundamental frequency vibration, the mass sensitivity function is as follows [11,17]:

S f (r, θ) =
|ũ(r, θ)|2

2π
∫ ∞

0 r|ũ(r, θ)|2dr
C f (2)

where ũ(r, θ) is the vibration displacement function of the particle on the surface. The
denominator is the integral of the total surface effective particle amplitude intensity. C f is
the Sauerbrey sensitivity constant, which is generally used as the average mass sensitivity in
practical applications to characterize the linear relationship between the change in resonant
frequency and the added mass, the function is shown as follows:

C f =
f0

2

A(c66ρq)
1/2 (3)

where f0 is the resonant frequency, ρq is the density of quartz, A is the effective piezoelectric
area. c66 is the piezoelectric reinforced elastic coefficient which is the modification of
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the elastic coefficient c66 with the piezoelectric effect. For the AT-cut quartz crystal, the
expression is as follows:

c66 = c66 +
e2

26
ε22

(4)

where e26 is the piezoelectric constant of quartz, ε22 is dielectric constant of quartz.
For a QCM vibrating at the fundamental frequency, the denominator of Equation (2)

and the C f are constant. In this case, the mass sensitivity of QCM is proportional to the
square of the particle displacement amplitude. Wave propagation is assumed in the X2
direction and thickness shear motion is in the X1. For AT-cut quartz crystal microbal-
ance, which is operated in thickness shear mode, only the vibration displacement along
the X1 direction is coupled to the electric potential. Moreover, when QCM vibrates at
fundamental frequency, the vibration displacement in X1 direction is larger than the dis-
placement in X2 and X3. The amplitude of vibration displacement in X1 has no connection
with θ. Therefore, the distribution of mass sensitivity can be reflected by calculating the
displacement amplitude distribution in the X1 direction of surface particles. The distribu-
tion of particle displacement amplitude in cylindrical coordinates can be solved by Bessel
equation [9,11,19]:

r2 ∂2ũr

∂r2 + r
∂ũr

∂r
+ (rkr)

2ũr = 0 (5)

where kr is the wave number of shear horizontal acoustic wave in thickness direction of
quartz crystal wafer, the function is shown as follows:

k2
r = k2 − k2

i =

(
π2

h2

)(
f 2

f 2
0

)
−
(

π2

h2

)(
fi

2

f 2
0

)
,i = E, P, U (6)

where k is the wave number of driving frequency, fi and ki are cutoff frequency and
corresponding number of cutoff waves in different regions. As shown in Figure 1, E, P, U
refers to the fully electroplated region with electrodes on both side of quartz crystal, the
partially electroplated region with electrodes on only one side and the non-electroplated
region without electrodes on both sides, respectively. h is the thickness of the quartz crystal
wafer. The distance between the tip of finger and the other interdigital electrode is narrow.
Therefore, the circle region of finger can be equivalent to the fully electroplated region.
According to the energy trap effect [21–23], when the resonant frequency of QCM satisfies
fE < f0 < fP < fU , waves can spread freely in the fully electroplated region, generating
standing wave and forming resonance. In the partial-electroplated region, especially the
non-electroplated region, the wave cannot propagate and decays exponentially, therefore,
most of vibration energy is confined to the fully electroplated and partial-electroplated
region. It is practicable to homogenize distribution of mass sensitivity by changing number,
size and position of fingers.

Vibration displacement on surface of QCM with interdigital electrode can be expressed
by the solution of Bessel equation [17]:

ũr =

{
AJ0(krr) + BN0(krr)(krr)2 > 0
CI0(krr) + DK0(krr)(krr)2< 0

(7)

where J0 and N0 are the Bessel functions of order-zero of the first and second kinds,
respectively. I0 and K0 are the modified Bessel functions of order-zero of the first and
second kinds, respectively. A, B, C, D are unknown constant variables, which can be
derived by solving linear equations for the continuity condition of displacement and shear
strain field at different boundaries [9,11,17]. It should be noted that N0 and K0 are singular
at origin and should be excluded when solving the vibration displacement near the origin.
As r goes to infinity, I0 tend to infinity. Hence, I0 should be excluded when solving the
non-electrode region vibration displacement.
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3. Multiple-Physical Field Simulation

At present, although most analytical and semi-analytical solutions have been proved
to be correct near the resonance frequency, many mechanical properties have been ignored
due to the simplification of the model. The finite element technique is a powerful numerical
tool which has been proved to be able to simulate the thickness shear vibration of quartz
crystal microbalances well [24–29]. The finite element equation of structural mechanics and
electrostatic coupling of AT cut quartz crystal element is as follows [30]:[

M 0
0 0

]{ ..
u
..
v

}
+

[
Cm 0
0 0

]{ .
u
.
v

}
+

[
Km Kme
KT

me Ke

]{
u
v

}
=

{
F
L

}
(8)

where M, Cm and Km are the mass, damping and stiffness matrices of structure, respectively.
Ke and Kme are the dielectric conduction matrix and piezoelectric coupling matrix are
respectively. F, L are the structural force vector and the node charge vector. The dynamic
characteristics and vibration displacement of the structure can be obtained based on this
equation and the second piezoelectric constitutive equation.

A quartz crystal with the thickness and radius of 0.166 mm and 6.25 mm, respectively,
is selected as the substrate to analyze the vibration displacement distribution of single
finger, dot finger, dot double finger electrode as shown in Figure 2. There is a circular
electrode on back surface with the same radius as the outer contour of interdigital elec-
trode. The orientation of AT-cut quartz crystal is −35.25◦ based on the IEEE standard on
piezoelectricity in 1978. Quartz crystal is an anisotropic piezoelectric material. The material
parameter matrix of AT-cut quartz can be obtained from the material constant matrix of the
original quartz crystal through coordinated change. The boundary conditions of the quartz
crystal are free. A metallic film of gold with a thickness of 100 nm is attached on both of the
surfaces of QCM as electrode. When traditional circular electrode radius is 10~20 times of
the quartz thickness, the Gaussian distribution can maintain a high peak [31,32]. In order to
uniformly distribute the mass sensitivity while maintaining a high amplitude, the radius of
bottom circular electrode and the outer contour of top interdigital electrode are always kept
at 2.5 mm with the increased number of fingers. An alternating field is applied between
the electrodes to keep QCM resonant. The thickness shear motion of quartz crystal can be
well-described when there are at least four layers of mesh in the thickness direction. The
electrodes are arranged as a grid layer to reduce computing resources. The finite element
model of QCM with dot finger electrode is shown in Figure 3. Parameterized simulation is
carried out to explore the influence of different proportions between finger and gap width
on the vibration displacement.
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Figure 3. The finite element model of QCM with dot finger electrode.

3.1. Single Finger Electrode

The electrode structure of single finger is shown in Figure 2a. In order to analyze the
effect of size and position of finger on vibration displacement and obtain the optimal size
proportion, five groups of different sizes of finger width a2 are selected for simulation, and
their widths a2 are 2.3, 1.9, 1.5, 0.9 and 0.3 mm, respectively.

Figure 4a shows the normalized displacement distribution in X1 direction of quartz
surface on electric shaft X1 with different a2 at the corresponding fundamental resonant
frequency. When the finger occupies the main area of single-finger electrode, the displace-
ment distribution starts to appear in double peaks, but the overall distribution is mainly
Gaussian shape. As a2 decreases, the amplitude of vibration displacement decreases and
turns to a more obvious bimodal gradually. This is because the intensity of energy capture
decreases with the mass effect of finger electrode decreases. When a2 is about 1.5 mm, that
is, the proportions of finger width and outer contour radius of the electrode is about 0.6,
the displacement distribution is relatively uniform while amplitude can be maintained at
a certain level. The vibration displacement nephogram is shown in Figure 4b. It can be
seen that the finger is too narrow to capture vibration energy in fully electroplated region
when a2 is 0.3 mm. In this case, the vibration energy is mainly captured in center by the
circular electrode at bottom, which is the main producer of mass effect, and the vibration
displacement is a simple convex distribution with a minute amplitude. Although the
vibration displacement distribution of the finger electrode is uneven, it provides a design
basis for the multi-finger electrodes.
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3.2. Dot Finger Electrode

A dot electrode is added in the center of partially electroplated region to improve the
middle depression of the single finger electrode, its structure is shown in Figure 2b. In order
to obtain the influence criteria and the optimal geometric size, the different proportions
of dot radius b1 and gap width b2 are simulated systematically in six groups of different
finger and gap sizes as shown in Figure 5.
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electrode: (a–c) Fixed dot electrode radius b1 is 0.2 mm, 0.5 mm, 0.8 mm with different ratio of b1 to
b2; (d–f) Fixed gap width b2 is 0.4 mm, 0.8 mm, 1.2 mm with different ratio of b1 to b2.

Parametric simulations are carried out for b1 when b2 are fixed as 0.2 mm, 0.5 mm,
0.8 mm to analyze the optimum gap width. Figure 5a,b show that when the dot radius is
large compared to the gap width, the partially electroplated region cannot improve vibra-
tion displacement distribution satisfactorily. Although the vibration displacement presents
a convex distribution with small peaks on both sides, the overall vibration displacement
still presents an uneven distribution. As the ratio of b1 and b2 decreases, the vibration
amplitude decreases slightly, but the three peaks distribution becomes more obvious. When
the ratio of b1 and b2 is between 0.25 to 0.5 in Figure 5a and 0.5 to 1 in Figure 5b, the
displacement distribution is relatively uniform. Figure 5c shows that regardless of the
size of b2, the vibration displacement presents a convex distribution with small peak on
both sides and an extremely high peak in middle. This is because the middle dot electrode
dominates the energy distribution due to its large proportion of the electrode area. The
simulated results indicate that the displacement distribution is more uniform when the
point radius is half of the gap width. Significantly, when the ratio of the dot electrode
and the gap width is appropriate, the vibration displacement distribution changes from a
bimodal to a convex gradually with the increase in the radius of the dot electrode. This
trend indicates that there is an optimal dot electrode radius for the three peaks distribution
of mass sensitivity.

A series of parameterized simulations are performed on b1 when b2 is fixed as 0.4 mm,
0.8 mm and 1.2 mm to study the optimal specific size of the dot electrode. When the gap
width increases, the difference between the wave peak and trough will increase gradually,
and the distribution become a concave with a low peak in the middle and large peaks on
both sides, as shown in b1 : b2 = 1 in Figure 5d, b1 : b2 = 0.5 in Figure 5e and b1 : b2 = 0.25
in Figure 5f. The Figure 5d shows when the ratio of b1 to b2 is less than 1, that is, the dot
electrode radius is less than 0.4 mm, the vibration displacement will not change from multi-
peak to extremely uneven convex distribution. When the gap width is 0.8 mm and 1.2 mm,
respectively, the appropriate ratio of b1 to b2 is no more than 1 and 0.5, that is, the dot radius
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is less than 0.8 mm and 0.6 mm, the non-uniformity convex distribution will not appear
even the size of gap width is lager. Meanwhile, the vibration displacements of b1 : b2 = 1
in the Figure 5d, b1 : b2 = 0.5 in Figure 5e and b1 : b2 = 0.25 in Figure 5f confirm that the
radius of dot and gap width should be about 0.5 mm to maintain a uniform distribution
of vibration displacement. In conclusion, in order to maintain a uniform mass sensitivity
distribution of the QCM with dot finger electrode, the radius of the dot electrode should be
about 0.5 mm, which accounts for 0.2 of the electrode area, the gap width should be twice
the dot electrode radius, and the finger width should be about 0.4 of the electrode area.

3.3. Dot Multiple-Finger Electrode

The distribution of vibration displacement of dot finger electrode is further improved
by adding a finger on the single finger electrode. The schematic diagram of the dot double-
finger electrode structure is shown in Figure 2c. Firstly, in order to study the optimal
ratio of the finger width c3 and the gap width c2, c4 of the dot double-finger electrode
and its influence on vibration displacement, fixed c2 = c4. Through the research on dot
finger electrode, c1 is set at 0.25 mm. The optimum design can be obtained by studying
the ratio of the gap width to the inner finger width and the specific width of the finger.
Parametric simulations are carried out for c2 and c4 to investigate the influence of gap
width on the overall vibration displacement when the ratio of c3 to c1 are 1, 1.5 and 2 as
shown in Figure 6a–c.
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finger electrode: (a–c) Fixed dot electrode radius c3 is 0.25 mm, 0.375 mm, 0.5 mm with different ratio
of c3 to c2; (d–f) Fixed gap width c2 is 0.25 mm, 0.375 mm, 0.5 mm with different ratio of c3 to c2.

As the finger width exceeds the gap, the vibration displacement starts to shift to
multiple peaks distribution, but it still presents a Gaussian distribution; the partially
electroplated region has little effect. When the ratio of the finger width to the dot radius
increases, the uniformity of vibration displacement distribution becomes worse when the
size proportion is appropriate. Figure 6a shows that the displacement distribution changes
from Gauss to multimodal gradually with the increase in the gap width. Especially, when
finger width is 0.5 to 1 times of gap, the distribution is uniform. The optimum ratio in
Figure 6b,c are between 0.75 to 1.01 and 1 to 2, respectively. The simulated results indicate
that with the increase in the ratio of c3 to c1, the gap width which can maintain a uniform
distribution decreases gradually. In this case, no matter what the ratio of gap to finger
width is, the displacement distribution is uniform only when the ratio of the outermost
finger width c5 to the total electrode radius is about 0.4. It is similar to the ratio of the
finger to the total electrode radius in the dot finger electrode. It illustrates that the dot
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double-finger electrode improves displacement distribution on the basis of the dot finger
electrode. The concave area of distribution is compensated by the added finger rather than
distributing the ratio of the partially electroplated region evenly to unify the distribution of
vibration displacement.

c2 : c1 is set as 1, 1.5, and 2, respectively, to study the influence of finger size and
position on displacement distribution with different c3. With the increase in c3 : c2, the dis-
placement distribution starts to change from three peaks to uniform multi-peak distribution
gradually when the gap width c2 is 0.25 mm. When the effect of the partially electroplated
region becomes more intense, the distribution of displacement becomes a multimodal
jittered distribution with lager difference between peak and trough. Finally, the distribution
of displacement becomes a convex distribution due to the large ratio of the finger width to
the partially electroplated region. The appropriate ratio of c3 and c2 is between 0.48 and 1.
Figure 6d,e show that with the increase in c1, the displacement distribution has become a
more uniform five peaks distribution compared with the original three peaks distribution
when c3 : c2 is about 0.2 and become a jittered distribution compared with the original
convex distribution when c3 : c2 is about 3. The partially electroplated region plays a role
in balancing the excessive mass sensitivity of the whole electrode region when the gap
width is 0.375 mm, and the appropriate ratio of finger and gap width is between 0.51 and
0.986. The displacement distributions shown in Figure 6f are improved compared to the
same ratio of c3 and c2 in Figure 6d,e, which indicates that the large gap width can improve
the distribution of mass sensitivity greatly. In this case, the optimal ratio of finger and gap
is 0.5.

The dot double-finger electrode when a relatively uniform vibration displacement
distribution, which size is c1 = c3 = 0.25 mm, c2 = c4 = 0.5 mm, is selected for further
research. The ratio of c2 and c4 are changed to explore the effect of different ratio between
the gap width on mass sensitivity. The normalized vibration displacement with different
ratio of c2 and c4 are shown in Figure 7. With the increase in c2 : c4, the amplitude of
displacement increases slightly. The distribution of displacement becomes more uniform,
and the difference between peak and trough decreases. However, the displacement distri-
bution will be concave when the ratio of c2 and c4 is large. The decrease order gap width
from central to edge can improve the amplitude of central displacement and make the
peak distribute at the center as much as possible in order to maintain a uniform mass
sensitivity distribution. In summary, the design criteria of the dot double-finger electrode
are the same as that of the dot finger electrode. The width of the outer finger should be
maintained at about 0.4 times of the electrode area, and the gap width should be twice of
finger width. It should be noted that the width of the finger should be kept smaller than
the dot electrode radius, and the gap should obey the decrease order from the center to the
periphery to maintain the uniform distribution of mass sensitivity when design the dot
multi-finger electrode.

According to the summarized design criteria, the vibration displacement in the X1
direction of the dot triple-finger electrode, which is shown in Figure 1, is obtained. The size
of the inner finger and the gap width are 0.15 mm and 0.35 mm, respectively. The radius of
the middle dot electrode and the width of the outer finger are 0.15 mm and 1 mm. Figure 8
shows the vibration displacement distribution comparison of original circular electrode and
dot triple-finger electrode. The results show that the vibration displacement of QCM with
the new interdigital electrode rises faster at the edge of the electrode compared with the
circular electrode. Compared with the circular electrode, the dot triple-finger electrode can
make sensitivity distribution more uniform while maintaining the amplitude at a certain
level. The displacement distribution of dot triple-finger electrode illustrates that the design
criteria are correct and universal. It can be extended to design interdigital electrodes with
more fingers.
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4. Experiment

Interdigital electrodes with a thickness of 100 nm were fabricated by evaporation
coating on AT-cut quartz crystals with a cut angle of 35.25. A series of QCM with dot
double-finger electrode were prepared, and their performance were experimentally tested.
The physical structure is shown in Figure 9. The electrode material is gold, and the specific
dimensions of the quartz crystal and electrode are shown in Table 1.

The performance parameters of QCM were tested by energizing interdigital electrodes
and bottom circular electrode with an impedance analyzer and probe platform simultane-
ously, as shown in Figure 10. In order to maintain a well contact between the measuring
probe and the electrode, the QCM was measured on the stage of an industrial microscope.
The bottom circular electrode and the top interdigital electrode are in close contact with
to the two probe bases, respectively, through a conductive gel on the objective table. The
QCM was measured by the network analyzer in range of 9.75 MHz~10.25 MHz with an
accuracy of 0.0025 MHz. All tests were performed in a clean room at room temperature.
The results are shown in Table 2.
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Table 1. Dimensions of quartz crystal and double-finger electrode.

Object Parameters Size (mm)

Quartz crystal plate Thickness 0.17
diameter 13.69

Interdigital electrode

Dot radius c1 0.25
Gap width c1, c4 0.5
Finger width c3 0.25
Outer finger c5 1
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The equivalent dynamic resistance R1 represents the energy loss of the quartz crystal
resonator and reflects the vibration damping of resonator. The static capacitance c0 is
the additional capacitance caused by the gold electrode plated on both sides of quartz
crystal and represents the electrostatic coupling between the two electrodes. The quality
factor Q is the ratio of the stored peak energy to the energy consumed in each cycle, which
is a measure of the energy loss in the resonator and reflects the overall performance of
the resonator. A high Q value and a low c0 value usually represent a high-performance
resonator. The dynamic resistance of a 6 MHz QCM with circular electrodes is generally
about 50 Ω, while the dynamic resistance of the prepared QCM is about 4520 Ω. The reason
for the high resistance may be that the width of lead electrode, which is in contact with the
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probes, is undersized (0.2 mm). The resistance measured is inaccurate due to poor contact
between probes and electrodes. The material of probes is tungsten, and a conductive gel is
used to keep the probes in contact with the bottom and top surface electrodes which cause
excessive contact resistance. Such resonators may stop vibration when operating in some
special environments, especially in liquid environments. The admittance of three groups of
QCM with significant differences in quality factors were studied, as shown in Figure 11.
The disordered degree of the crest of the admittance curve can reflect the degree of modal
coupling. The admittance wave peak of group three and nine are sharp. The peaks of the
stray mode are small, and the disturbance between the stray mode and the fundamental
mode are mild. The close distance between the stray mode and the fundamental mode
will aggravate the modal coupling problem. The distribution of admittance peaks of the
group one is disordered, and the modal coupling problem is serious. In a word, although
the resistance of the prepared QCM is large and it may stop vibration in some specific
environments, the quality factors are all around 53,973, and the mode coupling level can be
accepted. The resonator, which is manufactured with the design criteria of uniform mass
sensitivity, shows a satisfactory performance and can be well-applied in the manufacturing
of hydrogen atmosphere sensors and other practical engineering tools in the future.

Table 2. Measurement characteristics of QCM with double-finger electrode.

Serial
Number

Resonant
Frequency

(MHz)
Quality Factor Dynamic

Resistance (Ω)

Static
Capacitance

(pF)

1 10.068 57,710 2686 1.13
2 10.068 53,140 5372 1.05
3 10.066 78,680 3239 1.21
4 10.063 43,640 5006 1.18
5 10.067 74,160 3054 1.17
6 10.067 43,420 6394 1.14
7 10.067 46,690 4965 1.08
8 10.068 46,950 5859 1.11
9 10.065 41,370 4108 1.07

Average 10.067 53,973 4520 1.13
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5. Conclusions

In this paper, the design criteria are summarized by analyzing sensitive structural
parameters of the interdigital electrode. The theoretical calculation and simulation show
that the design of the three types of electrodes is the same, instead of redistributing the
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size and position of fingers and gaps evenly to unify the distribution of mass sensitivity.
A large dot electrode will cause the vibration displacement to be a pronounced convexity
distribution. When the finger width is half the gap, the mass sensitivity can be distributed
more evenly. The average quality factor of the QCMs with dot double-finger electrode,
which are manufactured with the criteria, is 53,973. The performance and noise level of
admittance can satisfy the engineering application well. The interdigital electrode proposed
in this paper is expected to provide design reference for the engineering application of
QCM with uniform mass sensitivity distribution.
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