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Abstract: Thermal infrared hyperspectral imager is one of the frontier payloads in current hyper-
spectral remote sensing research. It has broad application prospects in land and ocean temperature
inversion, environmental monitoring, and other fields. However, due to the influence of the pro-
duction process of the infrared focal plane array and the characteristics of the material itself, the
infrared focal plane array inevitably has blind pixels, resulting in spectral distortion of the data
or even invalid data, which limits the application of thermal infrared hyperspectral data. Most of
the current blind pixels detection methods are based on the spatial dimension of the image, that
is, processing single-band area images. The push-broom thermal infrared hyperspectral imager
works completely different from the conventional area array thermal imager, and only one row of
data is obtained per scan. Therefore, the current method cannot be directly applied to blind pixels
detection of push-broom thermal infrared hyperspectral imagers. Based on the imaging principle of
push-broom thermal infrared hyperspectral imager, we propose a practical blind pixels detection
method. The method consists of two stages to detect and repair four common types of blind pixels:
dead pixel, dark current pixel, blinking pixel, and noise pixel. In the first stage, dead pixels and
dark current pixels with a low spectral response rate are detected by spectral filter detection; noise
pixels are detected by spatial noise detection; and dark current pixels with a negative response slope
are detected by response slope detection. In the second stage, according to the random appearance
of blinking pixels, spectral filter detection is used to detect and repair spectral anomalies caused
by blinking pixels line by line. In order to verify the effectiveness of the proposed method, a flight
test was carried out, using the Airborne Thermal-infrared Hyperspectral Imaging System (ATHIS),
the latest thermal infrared imager in China, for data acquisition. The results show that the method
proposed in this paper can accurately detect and repair blind pixel, thus effectively eliminating
spectral anomalies and significantly improving image quality.

Keywords: thermal infrared; hyperspectral imager; blind pixel

1. Introduction

Hyperspectral thermal infrared data contains rich spectral information that can reveal
the radiation changes in detail and reflect the unique diagnostic characteristics in the
thermal infrared spectrum. It provides more reasonable assumptions and constraints and
has important research value and application prospects [1]. Hyperspectral thermal infrared
remote sensing can be widely used in geological mapping, resource exploration, surface
temperature detection, urban heat flow analysis, environmental monitoring, land object
classification, and other fields, and it has become an important research direction and a
breakthrough point in the field of thermal infrared remote sensing [2,3].

For the development of hyperspectral thermal infrared sensors, due to the limitations
of key technologies, such as area array infrared focal planes, low-temperature optical
systems, and fine spectroscopy, the current spaceborne hyperspectral thermal infrared
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sensors generally use non-imaging modes. In contrast, airborne hyperspectral thermal
infrared sensors can overcome these limitations, and imagers can be used to simultaneously
acquire image and spectral data [1]. However, due to the influence of the production
process of the infrared focal plane array and the characteristics of the material itself, the
infrared focal plane array inevitably has blind pixels, resulting in spectral distortion of
the data or even invalid data, which seriously affects the image quality and subsequent
application of data [4,5].

According to the response characteristics, blind pixel can be divided into four types:
(1) Dead pixel, which has no response to the input radiation, and always outputs a constant
value; (2) Noise pixel, which contains extremely noisy and fluctuating value; (3) Dark
current pixel, which appears white in a dark environment, but behaves normally in a bright
environment; and (4) Blinking pixel, which has the characteristics of random flickering.
In a certain period of time, the output level of the blinking pixel fluctuates greatly, and
sometimes it tends to be normal. It is difficult to distinguish it from normal pixels in the
average value of multiple frames, but its standard difference is greater than normal pixels.

In terms of blind pixel detection, there are currently two main methods, the calibration
method and the scene-based method. The calibration method involves obtaining images of
uniform incident radiation by imaging a reference source, and using difference detection
or sequence statistics for blind pixel detection [6,7]. In the sequence image statistical
method, the pixel responsibility and noise at different temperatures are calculated first,
and the value of each pixel is compared with the average responsibility or noise voltage.
Those over 10 times the average or less than 1/10 of the average are considered as blind
pixels [6]. Li [7] proposed a temporary mean outlier extraction (TMOE) detection algorithm
for the characteristics that the gray value of blind pixels is basically fixed and abnormal. In
the repair of blind pixels, an algorithm based on correlated pixel weighted interpolation
is proposed. Li et al. [8] proposed an improved TMOE algorithm, which obtains the
time-domain average background image from continuous infrared images and uses the
threshold to extract blind pixels. The scene based method detects the position of blind pixels
directly from the actual imaging data according to the difference between the response
characteristics of blind pixels and normal pixels and applies the two-dimensional space
method of windowing template. Zhang et al. [9] eliminated the influence of band noise on
blind pixel detection by using the multi-directionality of dual density dual tree complex
wavelet and generalized Gaussian distribution based on uniform background, and then
used 3σ Criterion for blind pixel detection. Huang et al. [10] proposed a blind pixel
detection method based on dynamic scenes. The bright and dark spots in the image are
used as targets, and the blind pixels are detected by an iteratively modified background
prediction model. Zheng et al. [11] proposed a blind pixel detection method based on
small sliding window. On the basis of non-uniform correction and edge filtering, the mean
and median values as well as the first-order gradient were calculated. Gradient weighted
calculation of pixels were carried out. Finally, the weighting calculation was performed,
and the threshold was set to compare with the original pixel for blind pixel detection.
Currently, blind pixel detection is mostly based on the spatial dimension, which is suitable
for a single-band area array image.

However, the current method cannot be directly applied to blind pixel detection of
push-broom thermal infrared hyperspectral imagers. The push-broom thermal infrared
hyperspectral imager works completely different from the conventional area array thermal
imager. For the conventional area-array thermal imager, each frame is an image with a
dimension of m × n (m, n are the number of lines and samples of the image, and both
are greater than 1). On the data obtained at different times, pixels at the same location
are collected by the same detector. Therefore, on the image of the conventional area array
thermal imager, the influence of the blind pixel extends in the time dimension but appears
as a random pattern in the spatial dimension. In contrast, the push-broom thermal infrared
hyperspectral imager obtains an image with a dimension of 1 × n × z (1 line, n samples,
z bands) per scan. The data at the same sample comes from the same detector. Therefore,
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on thermal infrared hyperspectral images, the data corruption caused by blind pixel has
obvious features distributed across each line at the same sample position, and appears as
randomness in the spectrum. Therefore, it is difficult to use the current method to detect
blind pixel of push-broom thermal infrared hyperspectral imager.

At present, there are few published studies on blind pixel detection for push-broom
thermal infrared imagers. Zhang [12] has used spectral angle matching to achieve blind
pixel detection. However, this method requires black body data at more than three different
temperatures. It is only suitable during comprehensive instrument testing in the laboratory,
but it is not applicable when obtaining data from field flight. Herein, we proposed a
blind pixel detection method for push-broom thermal infrared hyperspectral imagers and
applied it to the data acquired by ATHIS. Results on laboratory and on-board data show
that the proposed method could accurately detect and repair blind pixel, thus effectively
eliminating spectral anomalies and significantly improving the image quality.

2. Data and Materials
2.1. ATHIS

The ATHIS is a push-broom thermal infrared hyperspectral imager. The instrument is
designed with 155 spectral bands, the spectral resolution is 38 nm, and the plane grating
is used for spectroscopy. The designed spectral response range is 8.0–12.5 µm, and the
detection sensitivity is better than 0.17 K @300 K on average. ATHIS has a field of view
angle of 40◦ and a spatial resolution of 2 mrad. The size of the detector area array used by
ATHIS is 320 × 256. As shown in Figure 1, ATHIS does not use all pixels as the imaging
area. In the spectral dimension, some pixels are used to monitor the dark background. This
design can largely eliminate the influence of the overall drift of the pixel value caused by
the dark background during the operation.
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Figure 1. Schematic diagram of ATHIS data cube.

2.2. Data Acquisition

The data obtained from the laboratory and the flight were used to verify the proposed
blind pixel detection and repair method, respectively. In the laboratory, we use Ces200-06
low-275 black body as the radiation source. By adjusting the temperature of the black
body, images of black body at different temperatures can be obtained. The size of the black
body is 20 × 20 cm, which can cover the ATHIS field of view. The non-uniformity is better
than ±0.0 ◦C (@23 ◦C), the temperature measurement error is ±0.15%, and the black body
stability is ±0.05% within 30 min.
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Most dead pixels and dark current pixels could be detected in the laboratory because
their positions are relatively stable. However, the location of the blinking pixel is change-
able and needed to be detected in flight. In this regard, we conducted blind pixel detection
during flight. The flight test was carried out in Dongyang City, Zhejiang Province, China
(Figure 2). The relative altitude of the aviation experiment was 2000 m, and the corre-
sponding ground spatial resolution was 2 m. The ATHIS instrument is placed on a specific
gyro-stabilized platform (Leica Geosystems PAV80) and is simultaneously equipped with a
high-precision IMU (PosPac 610 Applanix). A real-time calibration black body is installed
under the platform for the radiation calibration of the instrument during flight.
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3. Proposed Approach

As shown in Figure 3, there are two stages for blind pixel detection and repair. In the
first stage, the detection of pixels of dead, noise, and dark current is performed based on
the data of ATHIS calibration black body. The mask of blind pixels is obtained and used to
repair the ATHIS images. The data of warm and cold black body are generally acquired in
the gap of flight switching to achieve full optical path calibration. In the second stage, the
abnormal spectra caused by the blinking pixel in the hyperspectral data cube are repaired,
which is mainly based on the spectral dimension filtering.
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3.1. Spectral Filtering Detection

As shown in Figure 1, for a frame of data cube acquired by ATHIS, the line direction
of the ATHIS focal plane is the spatial dimension, and the direction along band index is the
spectral dimension. The process of spectral filtering detection is divided into the following
steps.

(1) On the temporal dimension of the obtained warm and cold black body data cubes,
the average values are calculated, respectively.

DNbb(i, k) =
1

NL,bb

NL,bb

∑
j=1

DNbb(i, j, k) (1)

where, DNbb(i, j, k) is the data cube of calibration black body, the values of bb are cbb
and wbb, which denote the warm and cold black body, respectively. I, j and k mean
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the i-th column, j-th row and k-th band. DNbb(i, k) is the 2D data of calibration black
body after the average on the temporal dimension.

(2) Spectral filtering was performed on DNbb(i, k). A combination of median filtering
and Savitzky–Golay (SG) filtering was used. This operation could avoid the influence
of a large abnormal value for the SG filter and obtain a more accurate trend line. The
calculation method is

DNbb, f iltered(i, ·) = SG{median[DNbb(i, ·)]} (2)

where DNbb, f iltered(i, ·) is the data after spectral filtering, and median(·) and SG(·) are
the median and SG filter functions. The window size of the median filter and the SG
filter was set to 5 for the best effect after many tests. The polynomial degree of SG
filtering was set to 2.

(3) Then, the difference between DNbb(i, k) and DNbb, f iltered(i, k) was calculated. DNbb(i, k)
and DNbb, f iltered(i, k) were the data sets of the black body before and after filtering,
respectively. The difference is calculated as follows:

DNbb,di f f (i, k) = DNbb(i, k)− DNbb, f iltered(i, k) (3)

(4) The criterion of 3σ was used to extract a blind pixel mask on the DNbb,di f f (i, k) column
by column. The mask was noted as mask1(i, k).

mask1(i, k) =
{

1 DNbb,di f f (i, k) > 3σbb(i)
0 DNbb,di f f (i, k) ≤ 3σbb(i)

(4)

where σbb(i) is the root mean square of the i-th column of the black body data. σ(i)
could be calculated as follows:

σbb(i) =

√√√√ 1
NB

NB

∑
k=1

DN2
bb,di f f (i, k) (5)

where NB is the number of ATHIS bands.

3.2. Spatial Noise Detection

Spatial noise detection is mainly to evaluate the noise status of each pixel. If the noise
exceeds the threshold, it is judged as a blind pixel.

(1) To calculate the spatial distribution of the noise of the detector, we first calculated the
noise of each detection unit itself. The calculation method is:

Noisebb(i, k) =

√√√√ 1
NL,bb

NL,bb

∑
j=1

[DNbb(i, j, k)− DNbb(i, k)]2 (6)

(2) Then, we calculated the absolute deviation between the noise of each pixel in each
band and the average noise of all the pixels in the band.

Noisebb,AD(i, k) =
∣∣Noisebb(i, k)− Noisebb(k)

∣∣ (7)

where Noisebb,AD(i, k) is the absolute deviation of the pixel noise, and Noisebb(k) is
the average noise of all pixels in one band.

(3) The criterion of 3σ was used to extract the blind pixel mask on the Noisebb,AD(i, k).
The mask was noted as mask2(i, k).

mask2(i, k) =
{

1 Noisebb,AD(i, k) > 3σbb,Noise(k)
0 Noisebb,AD(i, k) ≤ 3σbb,Noise(k)

(8)
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where σbb,Noise(k) is the root mean square of the k-th band in the absolute deviation
data. The σbb,Noise(k) could be calculated as

σbb,Noise(k) =

√√√√ 1
NS

NS

∑
i=1

Noise2
bb,AD(i, k) (9)

where NS is column number of ATHIS, representing the pixel number in the spatial
dimension.

3.3. Response Slope Detection

Dark current pixels often have low response rates or negative response. Therefore, the
pixel response slope could be used to detect the dark current pixels. The response slope
detection mainly includes the following steps.

(1) To eliminate the drift of pixel values caused by the changes in the background radia-
tion of the instrument, the pixels in the ATHIS background monitoring area shown
in Figure 1 were selected, that is, the five bands with stable spectral responses. The
warm and cold black body data are corrected based on the average value of all frames
of the cold black body data.

DNwbb,corr(i, k) = DNwbb(i, k) + 1
5NS

250
∑

k=246

NS
∑

i=1
DNcbb(i, k)

− 1
5NS

250
∑

k=246

NS
∑

i=1
DNwbb(i, k)

(10)

where DNwbb,corr(i, k) is the 2D data of the warm black body after dark background
correction.

(2) The response slope of each detector unit could be calculated according to the black
body data after the process of (10).

Slope(i, k) = regress[X(i, k), Y(i, k)] (11)

For the airborne calibration black body, the X(i, k) and Y(i, k) were

X(i, k) = [DNcbb(i, k), DNwbb,corr(i, k)]

Y(i, k) = [Lcbb(k), Lwbb(k)]
(12)

where Slope(i, k) is the response slope of the pixel at the i-th column and the k-th band,
regress(·) is the regression function, X(i, k) is the vector of the pixel values of the black
body after dark background correction, and Y(i, k) is the vector of black body radiance
corresponding to X(i, k).

(3) The third mask noted as mask3(i, k) could be extracted as follows:

mask3(i, k) =
{

1 Slope(i, k) < 0
0 other

(13)

3.4. Blind Pixel Repairing in First Stage

After the aforementioned detection, three blind pixel masks were obtained. The union
of these three masks was taken to get the final blind pixel mask, which was noted as
mask(i, k).

According to mask(i, k), the average of the non-blind pixels in the 3 × 3 neighborhood
of each abnormal pixel was selected as the value of the abnormal pixel. If there were no
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non-anomalous pixels in the 3 × 3 neighborhood Aw, the search window was expanded
until the average value of the non-blind pixels could be obtained.

DNbb,rep1(i, k) = mean[DNbb(i′, k′)]

i′, k′ ∈ Aw, mask(i, k) = 1
(14)

The coefficients of radiometric calibration could be calculated using the black body
data after blind pixel repairing as:

[a(i, k), b(i, k)] = regress
[
Xrep1(i, k), B(k)

]
(15)

where a(i, k) and b(i, k) are the slope and intercept of the radiometric calibration function.

Xrep1(i, k) =
[

DNcbb,rep1(i, k), DNwbb,rep1(i, k)
]

(16)

B(k) = [Bcbb(k), Bwbb(k)] (17)

B(k) is the warm and cold black body’s radiance in the corresponding band, and it
can be calculated according to the black body temperature and spectral response function.

The blind pixels of the push-broom imaging detector always formed stripe noise on a
specific band of aerial data. According to mask(i, k), a method similar to (14) was used to
repair the pixels of the corresponding band and position in the ATHIS image to obtain the
repaired aerial image data DNimg,rep1(i, j, k). In this way, the dead pixels, noise pixels, and
dark current pixels in the imaging data with relatively stable response characteristics were
repaired.

3.5. The Second Stage

The response characteristics of the blinking pixels were unstable, and it was difficult
to detect all of them using warm-cold black body data. Based on DNimg,rep1(i, j, k), we used
the spectral filtering method to detect the abnormal bands in the spectrum of each pixel
caused by the blinking pixels frame by frame. The linear interpolation was used to repair
the values of the abnormal bands. The second stage was completed, and the final repair
data DNimg,rep2(i, j, k) were obtained.

4. Results and Discussion
4.1. Results of First Stage for Blind Pixel Detection

It is not feasible to verify the results of blind pixel detection with simulated data.
However, it is difficult to know the number and location of blind pixels in advance from
measured data. Therefore, we mainly compare and analyze the distribution characteristics
and quantity of blind pixels in the mask. Figures 4 and 5 are the blind pixel masks extracted
from the data of calibration black body in the laboratory and in the flight test, respectively,
by different methods. It can be seen that the methods of the national standard (GB/T
17444-2013) and Zhang-2020 [12] can only detect blind pixels in the imaging area, but
cannot detect blind pixels in the dark background monitoring area. Our method in this
paper can perform blind pixel detection on two regions at the same time. In addition, the
Zhang-2020 method requires more than three black body data at different temperatures so
it cannot be used for blind pixel detection on on-board black body. From the perspective
of the number of detected blind pixels, it is different on each data. On the one hand, it is
due to the change of the blinking pixel; on the other hand, the threshold of the blind pixel
detection algorithm is calculated based on actual data, so the threshold calculation results
of different data are different, which also leads to the difference in the number of blind
pixels. From the perspective of the distribution and number of blind pixels, the results
of GB/T 17444-2013 and our method conform to the characteristics of random scattered
distribution. The clustered distribution of blind pixels detected by the Zhang-2020 method
does not meet the characteristics of blind pixel distribution, and there is a false alarm rate.
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The number of blind pixels detected by GB/T 17444-2013 is relatively small, only over 100
(Table 1). The comprehensive analysis shows that the blind pixel types detected by GB/T
17444-2013 are mainly dead pixels and noise pixels, and a small part is dark current and
blinking pixels. The Zhang-2020 method can detect dead pixel, noise pixel, dark current
pixel, and a few blinking pixels. The proposed method in this paper detects dead pixel,
noise pixel, dark current pixel, and most blinking pixels.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 16 
 

 

types detected by GB/T 17444-2013 are mainly dead pixels and noise pixels, and a small 
part is dark current and blinking pixels. The Zhang-2020 method can detect dead pixel, 
noise pixel, dark current pixel, and a few blinking pixels. The proposed method in this 
paper detects dead pixel, noise pixel, dark current pixel, and most blinking pixels. 

  

 

 

Figure 4. The extracted mask from black body data in laboratory using different methods. (a). GB/T 
17444-2013; (b). zhang-2020; (c). Our method. 

  
Figure 5. The extracted mask from on-board black body data using different methods. (a). GB/T 
17444-2013; (b). our method. 

  

Figure 4. The extracted mask from black body data in laboratory using different methods. (a). GB/T
17444-2013; (b). zhang-2020; (c). Our method.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 16 
 

 

types detected by GB/T 17444-2013 are mainly dead pixels and noise pixels, and a small 
part is dark current and blinking pixels. The Zhang-2020 method can detect dead pixel, 
noise pixel, dark current pixel, and a few blinking pixels. The proposed method in this 
paper detects dead pixel, noise pixel, dark current pixel, and most blinking pixels. 

  

 

 

Figure 4. The extracted mask from black body data in laboratory using different methods. (a). GB/T 
17444-2013; (b). zhang-2020; (c). Our method. 

  
Figure 5. The extracted mask from on-board black body data using different methods. (a). GB/T 
17444-2013; (b). our method. 

  

Figure 5. The extracted mask from on-board black body data using different methods. (a). GB/T
17444-2013; (b). our method.



Sensors 2022, 22, 7403 10 of 15

Table 1. Number of detected blind pixel using different methods.

Method Black Body in Laboratory On-Board Black Body

GB/T 17444-2013 119 100
Zhang-2020 1534 —
Our method 1819 (736) a 1404 (555) a

a 736 and 555 are the number of blind pixels in the imaging region.

After processing by our method, almost all the blind pixels in the data cube of on-
board black body have been repaired (Figure 6). Not only the blind pixels in the imaging
region but also those in the background monitoring region have been well repaired.
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4.2. Results of the Second Stage for Blind Pixel Dection

Figures 7 and 8 are the thermal infrared hyperspectral data cubes obtained by ATHIS
before and after the blind cell repair. The blinking pixel usually appears as an uninterrupted
obvious line on the image, such as the bright line in Figure 7a. This is mainly due to the
intermittent response of the blinking pixel, which causes the value of the pixel in the image
of some frames to be normal, while the value of the pixel in other frames is abnormal.
Therefore, in the process of detecting and repairing the spectral abnormality caused by the
blinking pixel, the response value of the blinking pixel in all frames should not be arbitrarily
regarded as abnormal, but the original information can be retained as much as possible
by analyzing frame by frame. Comparing the profile of line and sample (Figure 7b,c) and
the spectrum (Figure 7d) of the pixel, it can be seen that the abnormal value of the pixel
caused by the blinking pixel is difficult to be identified in the spatial dimension, but easier
to be identified in the spectral dimension. The spectral filtering method we use achieves
this goal. After the processing of the proposed method, the sudden change of pixel value
starting from the Line 5250 is corrected (Figures 7b and 8b). The bright line caused by the
detector’s blinking unit is removed, that is, the abnormal value of the pixel in each frame is
repaired (Figures 7a and 8a).
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4.3. Inversion of Temperature and Emissivity

Figures 9 and 10 are the emissivity and temperature images obtained by inversion of
different temperature and emissivity separation (TES) algorithms, respectively. Figures 9a–c
and 10a–c are the inversion results based on the data before the blind pixel repair. Figures
9d–i and 10d–i are the results based on the data after blind pixel repair. We selected several
TES algorithms with higher accuracy reported in recent years for comparison. There are
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mainly automatic retrieval of temperature and emissivity using the spectral smoothness
method (ARTEMISS) [13], wavelet transform method for separating temperature and
emissivity (WTTES) [14], and resolution-degrade-based spectral smoothness (RDSS) [15]. It
can be seen from Figures 9 and 10 that there are a large number of light and dark strips in
the temperature and emissivity images obtained from the data before blind pixel repair. The
Zhang-2020 method requires black body data at three different temperatures to perform
blind pixel detection, but the airborne radiation calibration process only has black body data
at two temperatures. Therefore, Zhang-2020 is not applicable for on-board data processing.
By comparing the repaired results of GB/T 17444-2013 and our proposed method, we can
see that there are still a certain number of strips in the emissivity and temperature images
retrieved from the data repaired by GB/T 17444-2013 method. While, there are no strips
in the result images obtained from the blind pixel repaired data by the proposed method
(Figures 9 and 10).
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Figure 10. The temperature retrieved by the commonly used TES algorithms based on the ATHIS
data before (a–c) blind pixel repair, (d–f) blind pixel repair by GB/T 17444-2013 method and (g–i)
blind pixel repair by the proposed method. (a,d,g: ARTEMISS; b,e,h: WTTES; c,f,i: RDSS.).

The influence of the blind pixel on the inversion result is not only the strip noise on
the image but also the peak of the emissivity spectrum and the overall deviation of the
emissivity value in the spectral dimension. Figure 11 shows the emissivity spectrum of
roads and roofs on the result image. The emissivity value deviates, and its corresponding
temperature also deviates greatly from the true value (the emissivity is theoretically between
0 and 1). Although the spikes in Figure 11a can be removed by spectral filtering in the
post-processing of the results, the deviation of emissivity cannot be corrected. From this
point of view, under the current inversion technology, repairing blind pixel is crucial for
the inversion of temperature and emissivity.
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5. Conclusions

Considering the imaging principles and characteristics of ATHIS, we proposed a novel
real-time method for blind pixel detection and repair. This method obtains the blind pixel
mask by performing spectral filtering detection, spatial dimensional noise detection, and
response slope detection on the calibration black body data cube and then repairs the blind
pixels with stable characteristics, such as dark current noise and dead pixels. Then, the
spectral filtering method is used to repair the blind pixels with large randomness, such as
blinking pixels. We applied the proposed method to the thermal infrared hyperspectral data
obtained in the field flight experiment to test the method. The experimental results show
that the proposed method effectively removes the striped noise on the image caused by the
blind pixels of the detector and significantly improves the image quality and the inversion
accuracy of temperature and emissivity. This method can not only remove and repair the
blind pixels of the data obtained by ATHIS but also has a very important reference value
for the blind pixel removal of other push-broom thermal infrared hyperspectral imagers.
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