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Abstract: The robotics field has been deeply influenced by the advent of deep learning. In recent
years, this trend has been characterized by the adoption of large, pretrained models for robotic
use cases, which are not compatible with the computational hardware available in robotic systems.
Moreover, such large, computationally intensive models impede the low-latency execution which
is required for many closed-loop control systems. In this work, we propose different strategies
for improving the computational efficiency of the deep-learning models adopted in reinforcement-
learning (RL) scenarios. As a use-case project, we consider an image-based RL method on the synergy
between push-and-grasp actions. As a first optimization step, we reduce the model architecture in
complexity, by decreasing the number of layers and by altering the architecture structure. Second, we
consider downscaling the input resolution to reduce the computational load. Finally, we perform
weight quantization, where we compare post-training quantization and quantized-aware training. We
benchmark the improvements introduced in each optimization by running a standard testing routine.
We show that the optimization strategies introduced can improve the computational efficiency by
around 300 times, while also slightly improving the functional performance of the system. In addition,
we demonstrate closed-loop control behaviour on a real-world robot, while processing everything on
a Jetson Xavier NX edge device.

Keywords: reinforcement learning; neural networks; post-training quantization; quantized-aware
training; optimization

1. Introduction

In recent years, reinforcement learning (RL) has gained increasing traction in robotics [1–4].
This rising popularity is in part attributable to the advances in the deep-learning field in
general [5]. Thanks to this new control paradigm, a high level of robustness and flexibility
can be achieved without the need to engineer complex heuristics for robotic systems [6,7].
Presently, deep learning is a solution adopted in a vast number of fields, becoming a
standard approach for solving tasks that require a high level of generalization. The main
trend in deep learning is to increase the number of model parameters, as well as the training
dataset size, to outperform the state of the art on a vast variety of skills [3,8]. This trend does
not always match the requirements of the field of robotics. Indeed, many robot systems
are usually distributed systems, which have limited resources in terms of computational
power, either due to the necessity to move around in the environment or due to the limit
imposed by economic feasibility [9]. On the other hand, robotic systems interacting with a
dynamic environment require a high feedback rate to be able to process all types of sensory
information without being a bottleneck for the whole system [3,10]. Ideally, we would have
a low-latency system controlled in a closed-loop fashion [7,11]. However, this contrasts
with the trend in the deep-learning community to adopt larger and larger neural network
(NN) architectures to process high-dimensional inputs such as RGBD data [3,12,13]. These
architectures are often pretrained on a broad dataset and become a good starting point
for every specific use case [12,13]. This reduces the overall training process, as only a
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few additional layers that are added to the pretrained architecture of choice need to be
trained from scratch. However, the final performance of the system is directly related to
the similarity between the type of task the pretrained system has been trained for [14]. In
robotic use cases, where use-case scenarios are known and the environment is largely fixed,
pretrained architectures are less beneficial, since each specific use case requires specific
information (i.e., mastery of a specific skill, recognition of only specific types of objects).
Indeed, for these systems, having a widely generalized architecture is not necessarily
the most efficient option, and training a small NN from scratch might suffice [15]. An
anthropomorphic analogy would be having the full potential of a human brain just to
recognize some simple shapes, which would clearly be a waste of potential.

In this paper, we demonstrate that adopting a large pretrained NN architecture can
actually be overkill for a typical RL scenario, and how, with a computationally optimized
model, comparable performance can be reached. Such an optimized model will also result
in a gain in processing latency, making the model at hand feasible for deployment on edge
devices. Deployability on an edge device is of major interest for industrial applications
where resources are often limited and where security issues arise from the upload of the raw
sensory information to the cloud [16,17]. Major latency reduction will also open the model
to a closed-loop integration in the system, making the system itself reactive to changes to
the environment.

The main contribution of the paper is the raising of awareness in the adoption of
pretrained models, demonstrating the potential of ad hoc models for specific robotic
applications. In particular, we focus on an image-based RL method for a robot manipulator
learning to push and grasp objects [12]. We propose different optimization strategies to
reduce the computational load while keeping similar task performance.

1. First, we consider model reduction techniques such as the one adopted in MobileNet ar-
chitectures severely decreasing in the number of layers and parameters of the model [18].

2. Second, we investigate the impact of input image resolution, as this parameter deter-
mines to a large extent the computational complexity both at training and inference
times.

3. Third, we also explore quantization strategies as recently introduced approaches
to decrease the computational effort of NN [19–22]. Quantization can be applied
after the training process, i.e., post-training quantization, or during training, i.e.,
quantization-aware training.

Overall, we show that the optimization strategies introduced can improve the compu-
tational efficiency by a factor of 300, without affecting the task performance. In addition, we
demonstrate closed-loop control behaviour on a real-world Franka Panda robot, while pro-
cessing everything on a Jetson Xavier NX edge device. An overview of all the optimization
strategies considered in the paper are outlined in Figure 1.

Figure 1. Overview of all the optimization strategies considered.

In the next section, we first give an overview of the robot setup, the problem formulation
and the original RL formulation and model architecture. Next, we present our optimized
NN architectures, as well as different quantization methods considered. In Section 3, we
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extensively evaluate all considered architectures in a simulation environment, and we
demonstrate our approach on a real-world robot setup.

2. Materials and Methods

We start from the original work from Zeng et al. [12], as a prototypical robotic RL
use case. We first describe the general problem setup and Q-learning formulation, and
then elaborate on our optimization steps for obtaining a more computationally efficient
architecture than the original baseline.

2.1. Robotic Setups

The simulated setup consists of a simulated environment in CoppeliaSim [23], which
is the same setup as used by [12]. As shown in Figure 2, it consists of a UR5 robotic
arm, equipped with a two-finger RG2 gripper. The robot is presented with some objects,
i.e., 7 different 3D shapes with randomly assigned colors, inside a limited workspace of
0.448 m2 rendered as a black area in front of the robotic arm. The perception system consists
of a side-view static RGBD camera.

Figure 2. Robotic setups. On the left: the simulation environment consists of an UR5 robotic arm
equipped with a two-finger gripper. An RGBD camera provides a side view of the workspace, which
is delimited by the black square in front of the base of the robot. Objects are presented inside the
workspace. On the right: th hardware environment consists of a Franka Panda robotic arm equipped
with a two-finger gripper. An in-hand RGBD camera is used as a perception system. The workspace
is software-limited to avoid collisions with the surrounding environment. Objects are presented
inside the workspace. For both systems, the robotic arm in use must be able to grasp all the objects
exploiting grasp-and-push actions.

Figure 2 shows our hardware setup, which consists of a Franka Panda robot arm
equipped with an in-hand Intel Realsense D435 RGBD camera. Adopting an in-hand
camera alleviates the limitations of the fixed, limited workspace of a side-view camera,
and opens up a whole set of use cases with closed-loop control such as active vision [24].
The major implication in adopting a moving viewpoint is that the resulting action must be
determined relative to the current camera position, in contrast to using a fixed-reference
camera frame. A standard gripper for the Franka Panda is used. As in the simulated
environment, the robot is presented with different shapes (four in total) with diverse colors.
During training time, the workspace is software-limited and comprises a physical area of
0.448 m2.

The goal of both the simulated and hardware systems is to grasp all the objects in
the workspace. The same set of two primitive actions can be exploited by both robotic
architectures: Push and Grasp. Both actions consist of two hard-coded routines, where
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both take as input the positional parameters q: center of action and kd: orientation. For
the push action, the parameter q represents the starting position of a 10 cm push, whose
direction is given by parameter kd. For the grasp primitive, q denotes the position of the
end effector origin, kd instead represents the orientation of the end effector. Ultimately, each
system must be able to synergistically use both actions to succeed in manually engineered
scenarios such as the ones presented in Figure 5, where exploiting only grasping actions
would result in suboptimal performance.

2.2. Problem Formulation

The push-and-grasp problem can be formalized as a classic reinforcement learning
(RL) formulation, represented by a Markov Decision Process (MDP), denoted with the
tuple {S ,A, T, r, γ}, where S is the set of states, A is the set of actions, T is the state
transition dynamics, r is the reward function, and γ is a discount factor. At each time step,
the agent picks an action at according to a policy π(st), a function of the current state st.
As a result of the action at, the environment transitions to a new state st+1 according to the
state transition dynamics, and provides the agent with a reward rt(st, st+1) based on the
difference between the two consecutive states. In our case, a state consists of RGBD data
acquired by the camera after an action is completed.

The goal of the agent is to maximize the expected sum of future rewards ∑∞
i=t γi−tri(si, si+1),

where γ ∈ [0, 1) is a discount factor over an infinite horizon. It can do so by choosing
actions that maximize the action-value function or Q-function Q(st, at), which represents
the expected return when choosing action at in state st.

2.2.1. Actions

As stated in Section 2.1, the set ψ of possible actions that the agent can perform are
push and grasp. Positional parameter q is obtained by the projection of a pixel p to the
workspace, and parameter kd is a degree value between 0 and 360. This yields us the
following action space:

a = (ψ, q, k)|ψ ∈ {push, grasp}, q � p ∈ st, kd ∈ [0◦, 360◦] (1)

Similar to [12], we use 16 possible rotations for the kd parameter, resulting in a dis-
cretization every 22.5◦. The 16 discretized angles are indicated by the value of k, where
k ∈ [0, 15], corresponding to [0◦, 22.5◦ . . . 337.5◦].

For the push action, the positional parameter q represents the starting position of a
10 cm push whose direction is given by parameter k. For the grasp primitive, q denotes the
position of the end effector origin, k instead represents the orientation of the end effector.
Ideally, if the geometric center of an object is placed at position pl , the grasp primitive
should be executed with q ≈ pl and k along the shorter dimension of the object.

2.2.2. Rewards

The system is provided with positive feedback after successful completion of an action.
For a successful grasp, the agent receives a reward of +1. A grasp is considered successful
if the width of the robot’s gripper, at completed grasping routine, is greater than zero.
A successful push yields a reward of +0.5. The push action at is considered successful if
the difference in the depth maps between st and st+1 is larger than a specific threshold.
The interaction between push-and-grasp actions is not enforced in any way; the system
must learn to predict the benefit of concatenating push-and-grasp actions by itself.

2.3. Processing Pipeline

We adopt a deep Q-Network (DQN) approach [25], in which the Q-function is approx-
imated by a neural network. Here we focus on the processing pipeline, and details about
each specific neural network implementation proposed in this work will be presented
in Section 2.6. Figure 3 shows the processing pipeline of the system. The input is an
RGBD heightmap of resolution of 640× 640 px. The heightmap is obtained by an affine
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transformation of the original perspective captured by the camera sensor present in the
setup in use. The edges of the heightmaps are aligned with respect to the boundaries of the
agent’s workspace. To take into account the different rotations, the input is expanded and
rotated k times, once for each rotation factor.

Figure 3. Data pipeline in the system. Each complete forward pass consists of 16 distinct forward
passes through the NN. The input heightmaps (RGBD data) are rotations of the correspondent k value.
The output of the system is 2 Q-value maps per each forward step, for a total of 32 maps. Out of these,
the k map, of the action, presenting the maximum pixel Q-value identify the chosen action to perform.

This input is then processed by the deep Q-network, which outputs two sets of Q-
value maps, respectively, for the push and for the grasp actions. The resolution of each
Q-value map is 20× 20 px, which we up-sample to a 320× 320 px resolution. Thus, the
complete output consists of 32 Q-value maps, 16 of them representing the push Q-value
maps, and 16 for the grasp ones. As mentioned in Section 2.2.1, every pixel p of the
heightmap corresponds to a specific location q in the physical workspace. Each Q-value
map hence represents the expected return for specific action at each specific location q. Out
of the 32 Q-value maps, the pixel p(xt, yt) with the maximum expected reward is picked,
resulting in:

arg max
at

Q(st, at) = arg max
ψ,k,p

Qψ,k(p(xt, yt)) (2)

2.4. Training

As in [12], the deep Q-network is trained at each iteration t to estimate the state-value
function using the Huber loss function:

Lt = Hub
[
Qθt(st, at)− rt(st, st+1)− γ max

at+1
Qθ−t (st+1, at+1)

]
(3)

where θt are the parameters of the neural network at iteration t, and the target network
parameters θ−t are held fixed between individual updates. We pass gradients only through
the single-pixel p from which the value predictions of the executed action at were computed.
All other pixels at iteration t backpropagate with 0 loss.

We train by stochastic gradient descent (fixed learning rates of 10−4, momentum of 0.9,
and weight decay 2e−5) . To stabilize the training procedure, an experience replay buffer is
implemented. We opted for prioritized experience replay [26] using stochastic rank-based
prioritization for sampling. An exploration strategy is adopted to guarantee a balanced
exploration of the entire action set ψ. We use ε-greedy exploration, with ε initialized at 0.5
then exponentially decreased over training to 0.1. Discount factor γ is set to 0.5.

When training on the simulated environment, initially 10 objects are spawned ran-
domly in the central area of the workspace, and the robot is free to perform every action
within the workspace. Once the workspace is empty, or the robot has performed 10 con-
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secutive actions without receiving any reward, the environment is automatically reset and
10 new objects are spawned. Over training time, the spawn area reduces quadratically over
iterations. On the one hand, during the initial part of the training, this exposes the agent
to scenarios where the objects are farther apart, which is an ideal scenario for learning to
perform both primitives separately. On the other hand, the decrease in spawn area later
during training facilitates the exposure to scenarios where more objects are next to one
another, requiring a synergy between push and grasp to be learned.

For training on the real-world setup, a set of 16 different objects are used. The setup is
equipped with a bottom-less bin useful for an automatic reset. The environment is reset
in the case of an empty workspace, or in the case that the robot has performed more than
10 consecutive unsuccessful actions and the number of points with a non-zero depth value
is greater that a specific threshold. This strategy is adopted to avoid continuous resets of
the system in the early stages of the system, while still helping the system to not become
stuck in later stages of the training, were few remaining objects can disrupt the correct
training trajectory.

2.5. Testing

The test set for the simulated environment consist of 10 hand-crafted challenging
scenarios where a synergy between push and grasp is required to complete the task. Some
of the scenarios are shown in Figure 4. For the real setup, similarly to the simulated
one, we opted for a test set of six challenging hand-crafted scenarios made with the
same objects used during the training procedure. In addition, the real robot setup is also
tested on a second set of four challenging compositions made with novel, unseen objects.
These scenarios are shown in Figure 5. Since our policies are greedy and deterministic
during test time, it is possible that the agent becomes stuck repeatedly executing the same
unsuccessful action, as no change is made to the environment. The original work [12]
adopted a continuous training setting, where backpropagation is also performed at test
time with a low learning rate, to continually integrate new information, and update the
network. Due to the fact that we considered a static quantization method as a possible
optimization strategy, which requires the architecture to be fixed, we opted for a different
heuristic to solve this issue. In practice, we check if the same action at is to be repeated
consecutively at the same location with the same orientation, we select the second-best
action. If the agent succeeds in grasping all the objects in the workspace, the scenario is
considered successful. If any of the objects are pushed outside the workspace area, or the
system performs 10 consecutive faulty actions, the scenario is considered failed.

Figure 4. Examples of test scenarios for the simulated environment. Objects are tightly packed forcing
the need for synergy between push-and-grasp primitives.
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Figure 5. Examples of test scenarios for the real-world setup. Objects are tightly packed, forcing the
need for synergy between push-and-grasp primitives. On the first row is a challenging composition
made with toy blocks used in training. On the second row is a challenging composition made with
novel objects.

2.6. Architectures

We compare several NN architectures to parameterize the deep Q-network. We start
with the baseline of [12], and propose several optimizations thereafter.

2.6.1. Baseline

The original architecture proposed by [12], named VPG (Visual Pushing for Grasping),
consists of two separate NNs, of which the first outputs the grasp values and the latter
push values. The input of both networks is the heightmap of the workspace as an RGBD
frame. Both the NNs have the same architecture shown in Figure 6, and they consist of two
DenseNet-121 pretrained on Imagenet [27], followed by channel-wise concatenation and
two additional 1× 1 convolutional layers interleaved with nonlinear activation functions
(ReLU) and spatial batch normalization [28]. One DenseNet receives as input the color
(RGB) data, of resolution 640× 640 px, while the second receives a cloned 3-channel depth
(DDD) of the same resolution.

The baseline method consists of 32 million trainable parameters and requires 92 billion
Multiply-ACcumulate (MAC) operations for processing a single image, which puts a big
strain on resource use during both training and inference. For example, on an NVIDIA
Titan X GPU, the mean average time for a single forward pass is around 150 ms, leading
to an overall of 2.5 s considering the 16 rotations. Running the same architecture in an
energy-efficient or cost-efficient device is not possible without a severe impact on both
latency and memory requirements. Therefore, we redesigned the architecture. Instead of
considering two separate NNs for the two distinct actions, we opted for a single architecture
with two output channels for push and grasp, and avoided the use of large, pretrained
DenseNet blocks.

2.6.2. Single-FCN

We propose a single Fully Convolutional Network (FCN) for processing the RGBD
inputs, as shown in Figure 6. Our network expects a single, four-channel tensor of RGBD
data as input, avoiding data splitting. Furthermore, the architecture only consists of
basic ConvBN building blocks, each made of a convolutional layer followed by batch
normalization and a nonlinear activation function (ReLU). Two of these ConvBN blocks
are grouped into five layers, named ConvBN1, ConvBN2, etc. At the start of every layer,
a stride of 2 is used, halving the spatial resolution. This reduces the resolution from an
initial 640× 640 px of the input down to 20× 20 px. The output is then up-sampled to be
mapped back to a coordinate q in the workspace. At the start of each layer, we stride and
hence reduce the spatial resolution, and double the number of channels. The maximum
depth of the system is 256 channels. The kernel size used in the convolution layers is
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parameterized with respect to the input resolution of each layer, i.e., for a resolution greater
than 160× 160 px, it is fixed at 5× 5, for all the lower ones at 3× 3. The architecture results
in a total of 1.3 million parameters and around 3.5 billion MAC operations, 25 times fewer
parameters and 26 times fewer MAC operations with respect to the baseline method.

Figure 6. At the top: VPG architecture from the original work. Each ConvBN block represents a
concatenation of a convolutional layer, followed by a batch normalization layer and a linear rectifier
(ReLU). The input of the first DenseNet-121 architecture is RGB data, the second DenseNet-121
network receives as an input a cloned version of the depth data (DDD). The output consists of a single
channel of 20 × 20 px that corresponds either to the push or the grasp Q-value map. The full system
consists of two instances of the presented architecture, one for grasp primitives and the other for push
primitives. At the bottom: Single-FCN architecture. Each ConvBN block represents a concatenation
of a convolutional layer, followed by a batch normalization layer and a linear rectifier (ReLU). The
input of the network is RGBD data, with a resolution of 640 × 640 px. The output consists of two
channels of 20 × 20 px, which correspond to the push and grasp Q-value maps.

2.7. Input Resolution

A second optimization strategy that we considered is the reduction of the input
resolution to the network. Different resolutions have been tested to a minimum of 80× 80 px.
The striding applied at each convolutional layer has been adapted to always have an overall
output of resolution 20× 20 px. We also considered variations in the number of block layers,
starting from the complete configuration shown in Figure 6. We did some ablation studies
removing the first layers ConvBN1 and ConvBN2. We refer to the ablated architecture
without layer ConvBN1 as 4L, and for the one lacking both ConvBN1 and ConvBN2 as 3L.
The original architecture of single-FCN corresponds then to 5L. Throughout the manuscript,
we name each architecture based on the input resolution and the number of major layers
present in the architecture (e.g., the proposed architecture shown in Figure 6, will be named
FCN 640-5L).

Table 1 gives an overview of the number of MACs required by each architecture, while
varying both the input resolution and the number of layer blocks. It is clear that those
parameters have a big impact on the number of MACs. Please note that given the same
input resolution, we have a higher number of MACs when decreasing the number of layers
in the model. Although this might seem counterintuitive, this is the consequence of a
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higher-resolution space applied to a higher number of channels (e.g., when considering
architecture 4L, the initial resolution of 320 is applied directly to 32 channels, instead of 16
for the original 5L structure.)

Table 1. Number of MAC operations for each individual architecture considered.

Resolution 5 Layer Blocks (5L) 4 Layer Blocks (4L) 3 Layer Blocks (3L)

640 × 640 3.49 G - -
320 × 320 1.14 G 2.43 G -
160 × 160 616.66 M 872.66 M 1.4 G

80 × 80 532.18 M 550.1 M 616.66 M

2.8. Quantization

Quantizing weights down to int8 (8-bit integer, int8) values, has several advantages.
When moving from 32 to 8 bits, the memory required to store the tensors decreases by a
factor of four while the computational cost for matrix multiplication reduces quadratically
by a factor of 16 [19]. Of course, this comes at the cost of a reduced precision, which might
affect task performance. We consider two quantization methods: one where we quantize
the NN weights post hoc using post-training quantization, and one where we take into
account the quantization of the weights during training.

2.8.1. Post-Training Quantization

Post-training quantization (PTQ) takes a trained full-precision model (32-bit floating
point, fp32) and quantizes (to an 8-bit representation, int8) its weights to lower-precision
values [19]. Uniform affine quantization is used to transform the fp32 values into int8
ones [29]. The process consists of first extracting the maximum and minimum values in
the fp32 working range. The obtained range r is divided by 2n to obtain the scale factors,
with n the number of bits we are quantizing to, i.e., for an int8 quantization n = 8 yields
28 − 1 = 255 intervals. A parameter known as zero-pointz is used to ensure that the real
zero value is quantized properly. Once the quantization parameters are defined, we can
proceed with the quantization process. Starting from a floating-point value x, we map it to
the unsigned integer grid {0, . . . , 2n − 1}:

xint = clamp
(⌊ x

s

⌉
+ z; 0, 2n − 1

)
(4)

where b.e is the rounding operator to the nearest integer and the clamp function is defined as:

clamp(x; a, c) =


a, x < a
x, a ≤ x ≤ c
c, x > c

(5)

We can perform a de-quantization step [19] to obtain the approximate value of x in the
original floating-point notation by:

x̂ = s(xint − z) (6)

Any value of x outside the range r is clipped to b or c accordingly, which is known
as clipping error. Increasing the range r will reduce the amount of clipping errors. However,
increasing the range r also leads to an increase in rounding errors, i.e., the difference between
x̂ and x.

This quantization method is well suited for use cases where the working range of
values is limited and fixed [19]. Moreover, the rounding error must be sufficiently low to
guarantee a flawless conversion process. For our application, we opted for the quantize
package provided in PyTorch [30]. The quantization process consists of three main passages:
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1. Fusing; Since we are considering a static model, it is beneficial to fold the batch
normalization layers into the convolutional layer. Besides reducing the computational
overhead of the additional scaling and offset, this prevents extra data movement.

2. Calibration; The network is fed with random samples from the training dataset,
for which we track the maximum and minimum values both at weight level and
activation level. These values are instrumental for determining the maximum and
minimum of the range r.

3. Deployment; The weights of the model are finally quantized. At every forward pass,
the input of the model is quantized and then fed to the network. The output of the
model is then de-quantized to the initial floating-point notation.

2.8.2. Quantization-Aware Training

A last type of optimization that we consider is quantized-aware training (QAT). In con-
trast to post-training quantization, we now directly train a quantized model. Training using
a quantized model helps to mitigate the approximation introduced by the quantization
process, thus generally resulting in better performance when compared with PTQ meth-
ods [22]. We now start with a pretrained float32 model and further fine-tune, to improve
the obtained performance. As most of the hardware adopted for the training process only
supports floating-point representation, we insert so-called “fake” quantization blocks in the
model during training. These quantization blocks produce a floating-point representation
of the int8 quantized weight and activation values, and allow for backpropagation.

Backpropagating through a quantized model raises a major issue since the gradient
of round-to-nearest operation in Equation (4) results in either zero or an undefined value,
which translates to the impossibility to train the model [19]. A solution to this issue comes
from the adoption of straight-through estimator (STE) [31]. Using this approximation, we
can now compute the derivative of Equation (5), which results in:

∂x̂
∂x

=

{
1, a ≤ x ≤ c
0, otherwise

(7)

Using this gradient, we can now backpropagate though the quantization block.

2.9. Closed-Loop Control

To demonstrate the potential of an optimized NN model, we deployed a closed-loop
pipeline based on the trained optimized models. For this, we use our real-world setup,
with the processing being executed on a Jetson Xavier NX from NVIDIA. In terms of
performance, this dedicated hardware is in line with common edge devices that can be
found also in industry. It maintains low energy consumption, while being optimized for
inference on a GPU architecture. For NN inference, we use hardware acceleration using the
tensorRT back end from NVIDIA, which also supports int8 representations.

The robotic arm is now moved by a Cartesian velocity controller, with the target
velocity proportional to the current distance of the end effector with respect to the target
pose. The closed-loop pipeline continuously updates the target pose based on the best
graspable pose provided by model inference of the latest camera data. In addition, the low-
level control software smooths the raw output signals, to avoid discontinuities in the control
signal. In this case, when the system is presented with a single object that is manually
moved by a human operator, the robot arm will reach for the object and follow along with
the operator movement, resulting in a more intuitive and flexible human–robot interaction.
This type of control strategy requires high refresh rate for the control signal, as a low refresh
rate would result in jerky movements, non-ideal for the mechanical maintenance of the
robotic arm and in general not a save condition for collaborative robots.

3. Results

We performed a series of experiments to test the performance of the different ar-
chitectures proposed. The goal of the experiments is to show: (i) preservation of the
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grasp-and-push accuracy reached by the baseline method; (ii) preservation of performance
in testing scenarios, where synergy is required to solve the proposed human-engineered
scenarios; and (iii) the reduction in computation time due to our optimizations.

3.1. Metrics

We test all architectures after training by presenting both the simulated and real system
with challenging human-engineered scenarios that have not been seen during training time,
as mentioned in Section 2.5. For the simulated system, each test scenario is performed
n = 5 times. Performance metrics are (1) the average % completion rate over the n test runs,
which measures the ability of the policy to finish the task by picking up all objects without
failing consecutively for more than 10 attempts, and without pushing any of the objects
outside the workspace area; (2) the average % grasp success rate per completion; and (3) the
% action efficiency, defined as # objects in test scenario

# action before completion , which describes how readily the policy
in use is able to solve the problem at hand, without performing unnecessary actions (e.g.,
multiple pushes). For all the metrics considered, a higher value is better. For the real-world
setup, each scenario is presented once. Performance metrics are the same considered for
the simulated environment. In conjunction with these metrics, the computational effort is
evaluated by measuring the forward time (i.e., the time required for the input data to be
processed by the network) on a standard hardware platform.

3.2. Training

Before looking at test performance, we compare the evolution of the grasp-and-push
success rate as training progresses. In the simulation environment, we train both the
baseline VPG and FCN-5L with 10 objects, and average the performance over three random
seeds. Figure 7 shows the performance during training, and both VPG and FCN 640-5L
reach a similar level of grasp accuracy at convergence. The push action (dashed line) is
learned faster by the FCN 640-5L, but again similar levels are reached by both architectures
at the end of training. For the grasp action, the VPG has a steeper learning curve, reaching
a maximum value of grasp accuracy that is slightly higher than the FCN 640-5L. Please
note that the average forward time of the baseline architecture is around 35 times the FCN
640-5L one, which leads to a significant speedup of the training process.

Figure 7. Comparison in training performance between the baseline architecture VPG (based on the
DenseNet-121 architecture) and the proposed single-FCN with an input resolution of 640 × 640 px in
the simulation environment. The solid line represents the grasping performance (success rate over
the previous 200 iterations), while the dashed line represents the push performance.
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3.3. Testing

Here, we present the results of the testing scenarios for both the simulation and the
real-world setup.

Simulation Environment

We benchmark the results of the proposed architectures on their performance on the
simulated test scenarios. Results are shown in Figure 8. Despite the large differences in
number of parameters and MAC operations, there are no significant differences in terms of
grasp accuracy. Only when scaling down the input resolution to 80× 80 px do we witness
a slight decrease in performance, probably due to the higher loss of information about
key features of the image. In terms of completion performance, the differences are more
apparent, but there is no clear pattern. We notice how the FCN 640-5L architecture performs
slightly better compared to baseline, which does not coincide with the success rates reached
at the end of the training process shown in Figure 7. This illustrates that there are more
subtle factors to consider than just the grasping performance for the overall performance
of the system. By observing how these different policies behave in the different scenarios,
it is evident that although a specific policy has learned to grasp isolated objects with a
high success rate, and at the same time also to successfully push clusters of objects, when
exposed to a test scenario, the key factor is the balance between the two. This means that
the decision process has not been optimized for the long horizon yet, and that synergies
between actions are not learned properly. For example, referring to policies that had a poor
completion rate, we noticed how these tend to prefer push actions also on isolated objects,
leading to an increased probability of pushing these outside the workspace area. Jointly
considering both completion and grasp accuracy performance, architecture FCN 160-4L is
the one that overall gave the best performance.

Figure 8. Comparison over testing scenarios between the proposed architectures. Error bars represent
the standard deviation over five distinct runs of the testing procedure.

We also investigated the performance after static quantization. As a target architecture
for the PTQ process, we opted for the FCN 160-4L. As introduced in Section 2.8.1, after the
first step of fusing the convolutional layers with the normalization ones, we proceed with
the calibration step, using 1000 RGBD images taken randomly from the whole training
dataset. As shown in Table 2, both systems perform similarly. We can conclude that the
approximations introduced by the quantization process do not have a significant impact on
either grasping or pushing performance, nor the synergy between the two.
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Table 2. Testing results for quantized system on a simulated environment.

Methods Grasp Accuracy % Action Efficiency % Completion %

FCN 160-4L 66.4 ± 8.5 47.3 ± 5.2 83.6 ± 7.6
FCN 160-4L PTQ 65.3 ± 2.9 51.4 ± 6.5 85.4 ± 10.4

3.4. Computation Time

We benchmark the proposed architectures based on the inference time. We opted for
an NVIDIA Jetson Xavier NX board since in terms of computational power it resembles
a device that can be found as an edge device on industrial machinery [9]. Each test has
been run exploiting hardware acceleration provided by the Jetson board. In particular,
we used the TensorRT library as software interface to the accelerators, which provides both
accelerator interfaces for FP32 and INT8. Since the quantization method (PTQ or QAT)
did not impact the latency, we just denote the quantized architecture as FCN 160-4L INT8.
The results are shown in Figure 9. The inference time considers a single forward pass
through the neural network, but during a complete execution step the system forward k
times through the network, where k corresponds to the number of orientations considered,
in our case k = 16. This results in a complete forward time of about 6.10 s for the VPG
architecture, compared to 0.17 s for FCN 640-5L. After quantization, a minimum of 0.016 s is
obtained, which corresponds to 62 Hz. For comparison, the maximum frequency observable
by the human eye is 60 Hz.

Figure 9. Comparison over forward time of the proposed architectures.

Real Environment

For the real robot setup, we opted for architecture FCN 160-4L, due to the best per-
formance reached during the simulation testing. We trained the proposed architecture on
the real robot for 2000 training steps, on a set of 16 objects randomly placed. In addition,
we also test the PTQ version of this model. As introduced in Section 2.8.1, in this case
we first fused the convolutional layers with the normalization ones, after which we per-
formed the calibration step using 1000 RGBD images taken randomly from the complete
real robot training dataset. Finally, we also trained a third model with QAT. As mentioned
in Section 2.8.2, it is advised to start from a pretrained model. We opted for the FCN 160-4L
model previously trained in the real robot and further fine-tuned for 200 training steps.

We tested the real-world setup with each of the three models described above for
challenging scenarios as shown in Figure 5. The results on the set of scenarios with training
objects are presented in Table 3.
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Table 3. Results for real robot setup tested on toy blocks challenging scenarios. Optimized 160-4L
architecture is considered. Both Post-Training Quantization (PTQ) and Quantized-Aware Training
(QAT) are explored.

Methods Grasp Accuracy % Action Efficiency % Completion %

FCN 160-4L 56.4 50.0 100.0
FCN 160-4L PTQ 62.0 58.3 100.0
FCN 160-4L QAT 57.2 49.3 100.0

Best performance in terms of both grasping accuracy and action efficiency are reached
by the PTQ model. This is surprising since a static quantization process is typically expected
to deteriorate the performance of the native model [19].

In addition, we also tested scenarios with novel, unseen objects. Results for this
testing regime are presented in Table 4. Overall, the system has some good generalization
properties to novel objects. The synergy between push and grasp is also exploited with
novel objects. As a demonstration, we provided some videos as Supplementary Material.

Table 4. Results for real robot setup tested on novel objects challenging scenarios.

Methods Grasp Accuracy % Action Efficiency % Completion %

FCN 160-4L 61.5 50.0 100.0
FCN 160-4L PTQ 63.9 56.8 100.0
FCN 160-4L QAT 64.9 53.2 100.0

3.5. Closed Loop

Finally, we performed a qualitative test on the closed-loop system. Again, starting from
the pretrained FCN 160-4L model we quantized it using a static approach. The quantization
is carried out using torch2trt library. Torch2trt is a converter for PyTorch models to a Ten-
sorRT model. In the conversion process, different precision formats can be adopted. As for
the PTQ process carried out using the PyTorch Quantization module, a calibration process
is required. We opted for a dataset of 500 training images for this calibration process.

Considering the whole processing pipeline, described in Section 2.3, necessary for
achieving both the best grasping pose and rotation setting (over 16 levels of discretization),
we reach an average of 22.3 FPS (Frames Per Second) in the overall processing. This rate of
update leads to a smooth closed-loop control. If we would consider the original fp32 FCN
160-4L model, performance overall would drop to an average of 10.2 FPS. For comparison
if we would consider the initial baseline, performance would drop to 0.2 FPS.

A video of the closed-loop system is available in the Supplementary Materials, which
demonstrates the performance achieved by the quantized system.

4. Discussion

In this paper, we presented different optimization strategies for a robotic manipulator
RL use case. First, we significantly reduced the complexity of the model proposed by [12]
by avoiding bloated, pretrained models and sharing layers for different action modali-
ties. Second, we proposed some further optimizations by lowering the input resolution
to the system and by varying the number of convolutional layers. Finally, we opted for a
post-training quantization method on the best-performing proposed architecture. When
comparing the baseline method to the final quantized model, we have an improvement,
in terms of computational performance, of around 300 times. This is without affecting
the performance of the system’s functional metrics. We did not find a significant gain
in performance using quantized-aware training (QAT) compared to post hoc quantiza-
tion. Additional research is required to further quantify the impact of quantization-aware
training in a reinforcement-learning context.

Our work shows that, despite the huge potential of adopting deep-learning techniques,
and especially in the context of deep-reinforcement learning for robotics, care needs to
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be taken when designing and evaluating such systems. Notwithstanding the merit of
pretrained models, it must be taken in consideration whether such a model is the best
suited architecture for a given use case. Additionally, the obtained rewards of an agent
are not necessarily reflective of its performance in particular test scenarios. Finally, a two
orders of magnitude speedup can be achieved by optimizing and quantizing the model,
which is crucial for enabling closed-loop control systems.

As our work targets the robotics use case of pushing and grasping in a reinforcement-
learning setting, this will prove useful in various applications, such as pick and place,
bin emptying, or product sorting. Introducing a push actuation can improve the overall
efficiency of the system by reducing the number of faulty grasp attempts. In addition,
closed-loop control is of utmost important for robotic systems operating in dynamic environ-
ments, where objects can move during interaction. Especially in human–robot collaboration
scenarios, it is crucial that the robot can sense and react to the human’s actions at a very low
latency. Moreover, using the optimization methods introduced opens the door for more
affordable and energy-efficient edge devices for inference.

In this work, we mainly focused on the computational optimization of an RL system.
It would be of interest for further work to extend the current work with the optimization
aspect on the converge timing for the training process of such system. In particular, a
relationship between the decrease for converge timing and the computational performance
would be of interest. Simulation to reality (sim2real) methods would be the main focus of
the proposed track [32,33]. Possible lines of experimentation would be related to limiting
the data pipeline to either RGB or depth data, to measure the impact of the sim-to-real data
processing for both data streams (RGB and depth) independently.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22197382/s1.
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