
Citation: Lu, W.; Chen, L.; Wang, Z.;

Cao, J.; Ren, T. A High-Accuracy,

High Anti-Noise, Unbiased

Frequency Estimator Based on Three

CZT Coefficients for Deep Space

Exploration Mission. Sensors 2022, 22,

7364. https://doi.org/10.3390/

s22197364

Academic Editors: Giacomo Capizzi,

Grazia Lo Sciuto and Luca Di Nunzio

Received: 23 August 2022

Accepted: 24 September 2022

Published: 28 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A High-Accuracy, High Anti-Noise, Unbiased Frequency
Estimator Based on Three CZT Coefficients for Deep Space
Exploration Mission
Weitao Lu 1,* , Lue Chen 1, Zhen Wang 2, Jianfeng Cao 1 and Tianpeng Ren 1

1 Beijing Aerospace Control Center, Beijing 100094, China
2 Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011, China
* Correspondence: looweitao@126.com

Abstract: Deep space exploration navigation requires high accuracy of the Doppler measurement,
which is equivalent to a frequency estimation problem. Because of the fence effect and spectrum
leakage, the frequency estimation performances, which is based on the FFT spectrum methods, are
significantly affected by the signal frequency. In this paper, we propose a novel method that utilizes
the mathematical relation of the three Chirp-Z Transform (CZT) coefficients around the peak spectral
line. The realization, unbiased performance, and algorithm parameter setting rule of the proposed
method are described and analyzed in detail. The Monte Carlo simulation results show that the
proposed method has a better anti-noise and unbiased performance compared with some traditional
estimator methods. Furthermore, the proposed method is utilized to process the raw data of MEX
and Tianwen-1 satellites received by Chinese Deep Space Stations (CDSS). The results show that
the Doppler estimation accuracy of MEX and Tianwen-1 are both about 3 millihertz (mHz) in 1-s
integration, which is consistent with that of ESA/EVN/CDSN and a little better than that of the
Chinese VLBI network (CVN). Generally, this proposed method can be effectively utilized to support
Chinese future deep space navigation missions and radio science experiments.

Keywords: Doppler; unbiased frequency estimation; CZT; anti-noise ability; Mars exploration

1. Introduction

In deep space exploration, the high-accuracy frequency of the downlink carrier or tone
signal is a very important link to Doppler measurement, which is an essential spacecraft
tracking technique that could support orbit determination of spacecraft and also provide
important data for planetary radio science experiments, such as the measurement of the
gravity field and planetary Radio Occultation (RO) [1]. The required accuracy of frequency
estimation is typically several mHz, of which measurement accuracy is much higher than
in other applications such as communications and the global navigation satellite system
(GNSS). The phase-locked loop (PLL) receiver is used to estimate the frequency and phase
at the deep space station, of which performance is negatively affected by the low Signal-to-
Noise Ratio (SNR) and high dynamics of spacecraft [2,3]. In such situations, whether the
accurate Doppler frequency can be derived or not is a critical requirement for spacecraft
orbit determination. In addition to PLL, the open-loop Doppler measurement technique is
also a preferable choice. In this case, the carrier or tone signal of the deep space probe is
processed by modern signal theory to extract high-accuracy Doppler observables. Currently,
the existing open-loop algorithms have the disadvantages of complicated algorithms or
large computation [4,5] or special hardware platforms [6,7]. Chen et al. (2021) presented a
Doppler frequency retrieving method via local correlation and segmented model, which
was successfully applied to Chinese deep space exploration [8]. At the same time, there is a
little complexity in setting the segment parameters for various dynamics.
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The Doppler measurement in the open-loop mode is equivalent to the frequency
estimation of a complex exponential signal corrupted by white noise, which is a traditional
problem in signal processing. It is generally known that a two-stage search is implemented
in many classical algorithms to improve the estimation performance. Firstly, a coarse search
with an N-point Fast Fourier Transform (FFT) is executed, and then an optimal search is
conducted around the peak determined in the previous stage. Various frequency estimators
have been described in the literature, which can be divided into two groups: iterative
methods and non-iterative methods. Zakharov and Tozer (1999) [9] presented a simple
algorithm that consists of an iterative binary search for the true signal frequency. However,
it is necessary to assign the data value of zeroes to compensate for 1.5 times the length of the
original data in order to approach the Cramer–Rao Low Bound (CRLB) [10]. Aboutanios
and Mulgrew (2005) [11] presented two more efficient iterative frequency estimators by
calculating ±0.5 Discrete Fourier Transform (DFT) coefficients and the asymptotic vari-
ance is only 1.0147 times the CRLB. In another way, the non-iterative methods are more
compact and more effective. Rife et al. (1974) [10] presented a famous estimator by using
the two biggest FFT samples and almost reaches the CRLB when the signal frequency
coincides with a bin center. Quinn (1994) [12] presented a number of estimators that in-
terpolate the true signal frequency using the two DFT coefficients on either side of the
maximum bin. Macleod (1998) [13] also used the three biggest FFT samples for frequency
search. Jacobsen et al. (2007) [14] suggested a simple relation for FFT domain frequency
estimation. The suggestion is based on empirical observations and presented without a
proof. Therefore, Candan (2011) [15] presented a derivation for Jacobsen’s formula and
presented a bias correction, which was effective for high SNR values and could be used
at any SNR level. In order to utilize more signal power, Orguner and Candan (2014) [16]
presented a special estimator which used all the bins in the FFT spectrum for the frequency
estimation. The estimator had an improved performance but needed a high SNR level. In
addition to the FFT spectrum, the Chirp-Z Transform (CZT) is also commonly used for
frequency estimation. Proakis (2021) [17] described the theory of CZT in detail. Further-
more, Granados-Lieberman (2009) [18], Chen (2010, 2021) [8,19], and Zhang (2019) [6] have
already introduced the CZT to improve the frequency estimation performance. The current
methods estimate the frequency, and they are still mostly dependent on searching the peak
line position of the CZT spectrum, meanwhile, making the estimation accuracy directly
constrained by the CZT spectrum resolution. More importantly, the real frequency of the
signal is continuous, and because of the fence effect of CZT, the estimated frequency must
be the integral multiples of the CZT resolution. Therefore, the methods we mentioned
above, which are based on the peak line position searching of the CZT spectrum, are
obviously biased estimators. Herein, we presented the theoretical expressions of frequency
by deducing the mathematic relationship between the three largest CZT spectrum samples
and constructed an unbiased frequency estimator.

In this paper, a high accuracy frequency estimator is proposed. The method can
be conducted in two steps: coarse frequency estimation by FFT spectrum and optimal
frequency estimation by utilizing the mathematic relationship of the three largest CZT
spectrum samples. The Monte Carlo simulations are implemented, and the raw data of
deep spacecraft are processed to verify the performance of the proposed method. The
results show that it has a better performance at anti-noise ability, frequency estimation bias,
and accuracy. This paper is structured as follows. In the following section, we describe the
frequency estimation problem. In Section 3, the proposed method is presented in detail.
Moreover, the statistics performance and parameter setting are analyzed. Furthermore, in
Section 4, the performance of the proposed method is verified and compared with some
traditional estimators by Monte Carlo simulations. In Section 5, the proposed method is
applied to the Doppler measurement of deep spacecraft. Moreover, the error sources are
discussed in the frequency estimation of Tianwen-1. Finally, the conclusions are presented
in Section 6.
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2. Problem Description

An ideal single complex exponential waveform can be modeled as follows:

x(n) = Aej(2π
nk0
N fs

+φ0), n = 0, 1, . . . , N − 1, k0 = N f0/ fs (1)

where A and f 0 are the signal amplitude and frequency, respectively, and φ0 is the initial
phase, f s is the sampling frequency, and N is the sampling points number. Without the loss
of generality, let A = 1. The FFT spectrum of x(n) can be calculated as following:

X(k) =
NFFT−1

∑
n=0

x(n)e−j 2π
NFFT

kn
=

sin(π(k− k0))

sin( π
NFFT

(k− k0))
ej[φ0−(1− 1

NFFT
)(k−k0)π], k = 0, 1, . . . , NFFT − 1 (2)

where NFFT is the length of FFT, so the frequency spectrum resolution ∆ f = fs/NFFT. Let
kp be the peak position of the NFFT-point FFT spectrum, the real frequency, f 0, can be
expressed as f0 = k0∆ f = (kp + δFFT)∆ f , where δFFT ∈ (−0.5, 0.5], meaning the frequency
bias corresponding to the FFT spectrum bins. Once δFFT is estimated, the final frequency
is estimated as f̂0 = (kp + δ̂FFT)∆ f , where δ̂FFT is the estimation of δFFT. So, our goal is to
accurately estimate δFFT.

The classical estimators mentioned in Section 1 mainly use the peak FFT spectrum
and its two neighbors because the three samples occupy most of the signal power [13].
Due to the fence effect and spectrum leakage of FFT, the estimation performance may be
degraded when the signal frequency is located at the bin center or edge. On the other hand,
the second and third peaks of the FFT samples are smaller than the maximum recurrent
peak sample, which limits the estimator’s ability to anti-noise. Moreover, because the
frequency estimator is nonlinear, there is an SNR threshold for keeping the estimation
performance [20].

Different from that, the FFT must be sampled for the entire unit circle of the z-plane
uniformly, and the Chirp-Z transform (CZT) may provide a more centralized capability to
perform a local z-transform that starts from an arbitrary point and samples with arbitrary
uniform spacing, which is very suitable to overcome the low SNR in deep space situation [6].
The spectrum comparison of CZT and FFT is shown in Figure 1. As we can see, the fence
effect and spectrum leakage of CZT are comparatively reduced; meanwhile, the spectrum
resolution is higher than that of FFT. Therefore, in this paper, we propose a novel method
by using the first three CZT samples.
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3. Materials and Methods
3.1. Proposed Estimator

The Z-transform of x(n) is

X(i) =
N−1

∑
n=0

x(n)z−n, i = 0, 1, . . . , M− 1 (3)

where M is the Z-transform length. Let z = AW−k, A= ejθ0 , W = ejϕ0 , we obtain the CZT
of x(n),

X(i) =
N−1

∑
n=0

x(n)e−jn(θ0+iϕ0), i = 0, 1, . . . , M− 1 (4)

where M becomes the spectrum zooming factor, and ϕ0 = 2πL
NM , is the spectrum resolution

of CZT, θ0 = 2π kst
N , is the start frequency of spectrum zooming, kst is the FFT sample index;

and B is the spectrum analysis bandwidth of CZT, B = 2πL/N, L is the spectrum bandwidth
factor.

We can obtain the expression of CZT spectrum by algebraic derivation,

X(i) = ej[φ0+((1− 1
N )(k0−kst−LK/M)] sin π(k0 − kst − Li/M)

sin π
N (k0 − kst − Li/M)

(5)

The magnitude of X(i) is

|X(i)| =
∣∣∣∣ sin π(k0 − kst − Li/M)

sin π
N (k0 − kst − Li/M)

∣∣∣∣ =
∣∣∣∣∣∣

sin Lπ
M

(
i− M

L (k0 − kst)
)

sin Lπ
MN

(
i− M

L (k0 − kst)
)
∣∣∣∣∣∣ =

∣∣∣∣∣ sin Lπ
M (i− k′0)

sin Lπ
MN
(
i− k′0

) ∣∣∣∣∣ (6)

k′0 = M
L (k0 − kst), which stands for the real index of the signal frequency in the CZT

samples. If ip stands for the position of peak of CZT spectrum, and k′0 = ip + δCZT, |δCZT| ≤ 0.5,
then the magnitudes of the three largest CZT spectrum lines are, respectively:

∣∣X(ip)
∣∣ = ∣∣∣∣ sin( Lπ

M δCZT)
sin( Lπ

MN δCZT)

∣∣∣∣ = sin( Lπ
M δCZT)

sin( Lπ
MN δCZT)∣∣X(ip + 1)

∣∣ = ∣∣∣∣ sin[ Lπ
M (1−δCZT)]

sin[ Lπ
MN (1−δCZT)]

∣∣∣∣ = sin[ Lπ
M (1−δCZT)]

sin[ Lπ
MN (1−δCZT)]∣∣X(ip − 1)

∣∣ = ∣∣∣∣ sin[ Lπ
M (1+δCZT)]

sin[ Lπ
MN (1+δCZT)]

∣∣∣∣ = sin[ Lπ
M (1+δCZT)]

sin[ Lπ
MN (1+δCZT)]

(7)

It is easy to know that L ≤ M, and N is usually set to a larger integer number for an
accurate coarse frequency estimation. In Section 3, we set N = 1024 for the Monte Carlo
Simulation. Therefore, it is easy to hold that L � MN. In view of |δCZT| ≤ 0.5, we can
achieve the following approximation, as shown in Formula (8).

sin
(

Lπ

MN
δCZT

)
≈ Lπ

MN
δCZT, sin

[
Lπ

MN
(1− δCZT)

]
≈ Lπ

MN
(1− δCZT), sin

[
Lπ

MN
(1 + δCZT)

]
≈ Lπ

MN
(1 + δCZT) (8)

Therefore, substituting the expression in Formula (8) into Formula (7), we can obtain

∣∣X(ip)
∣∣ Lπ

MN δCZT = sin
(

LδCZTπ
M

)
∣∣X(ip + 1)

∣∣ Lπ
MN (1− δCZT) = sin

[
Lπ
M (1− δCZT)

]
= sin Lπ

M cos LδCZTπ
M − cos Lπ

M sin LδCZTπ
M∣∣X(ip − 1)

∣∣ Lπ
MN (1 + δCZT) = sin

[
Lπ
M (1 + δCZT)

]
= sin Lπ

M cos LδCZTπ
M + cos Lπ

M sin LδCZTπ
M

(9)

We can achieve Equation (10) as follows



Sensors 2022, 22, 7364 5 of 18

∣∣X(ip − 1)
∣∣ Lπ

MN
(1 + δCZT)−

∣∣X(ip + 1)
∣∣ Lπ

MN
(1− δCZT) = 2 cos

(
Lπ

M

)
sin
(

LδCZTπ

M

)
= 2 cos

(
Lπ

M

)∣∣X(ip)
∣∣( Lπ

MN
δCZT

)
(10)

After the elimination of the public factors in Equation (10) and some mathematic
deductions, we can find(

2 cos
(

Lπ

M

)∣∣X(ip)
∣∣− (∣∣X(ip + 1)

∣∣+ ∣∣X(ip − 1)
∣∣))δCZT =

∣∣X(ip − 1)
∣∣− ∣∣X(ip + 1)

∣∣ (11)

Finally, the frequency can be estimated by utilizing Equations (12)–(14).

δ̂CZT =

∣∣X(ip − 1)
∣∣− ∣∣X(ip + 1)

∣∣
2 cos

(
Lπ
M

)∣∣X(ip)
∣∣− (∣∣X(ip + 1)

∣∣+ ∣∣X(ip − 1)
∣∣) (12)

k̂0 = kst +
L
M

(ip + δ̂CZT) (13)

f̂0 =
fs

N

(
kst +

L
M

(ip + δ̂CZT)

)
(14)

The proposed method herein can be conducted in the following three steps:

1. Calculate the FFT of x(n) and make the coarse frequency estimation by searching the
peak position;

2. Set the CZT parameters, including M, kst, and L, and calculate the CZT of x(n);
3. Search the peak position of CZT and make the optimal frequency estimation by using

Formulas (12)–(14).

3.2. Analysis of Unbiased Performance

Suppose that the single complex exponential waveform in Formula (1) is contaminated
by Gaussian white noise, which is expressed as follows:

y(n) = x(n) + w(n), n = 0, 1, . . . , N − 1, k0 = N f0/ fs (15)

where the noise terms w(n) is assumed to be zero mean, complex additive Gaussian white
noise with a variance of σ2. Therefore, the SNR can be given as 1/σ2. The CZT of y(n) can
be expressed as follows:

Y(i) =
N−1

∑
n=0

[x(n) + w(n)]e−jn(θ0+iϕ0) = X(i) + W(i), i = 0, 1, . . . , M− 1 (16)

where W(i) is the CZT of w(n). To acquire the unbiased performance of the proposed
estimator, we firstly analyzed the statistical distribution of W(i), which can be expressed as
Formula (17):

W(i) =
N−1

∑
n=0

w(n)e−jn(θ0+iϕ0) = WR(i)− jWI(i) (17)

where WR(i) and WI(i) are the real and imaginary part of W(i), respectively, denoted as:
WR(i) =

N−1
∑

n=0
w(n) cos[n(θ0 + iϕ0)]

WI(i) =
N−1
∑

n=0
w(n) sin[n(θ0 + iϕ0)]

(18)
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It is clear to see that WR(i) and WI(i) can be regarded as a linear combination of a
series of Gaussian white noise sequences. Therefore, WR(i) and WI (i) are also the Gaussian
distribution. The average value and variance of WR(i) are given by:

E[WR(i)] = E[w(n)]
N−1
∑

n=0
cos[n(θ0 + iϕ0)] = 0

E[WI(i)] = E[w(n)]
N−1
∑

n=0
sin[n(θ0 + iϕ0)] = 0

(19)

where E [•] means the expectation operator. Then we can deduce that,

E[Y(i)] = E[X(i)] + E[W(i)] = E[X(i)] (20)

In view of the Gaussian white noise and in the statistical sense, we can find

E[|Y(l)|] = E[|X(l)|], l = ip − 1, ip, ip + 1 (21)

Based on Formulas (7) and (8), Formulas (15) and (16) can obtained,
E
[∣∣Y(ip − 1)

∣∣− ∣∣Y(ip + 1)
∣∣] = E

[∣∣X(ip − 1)
∣∣− ∣∣X(ip + 1)

∣∣]
E
[∣∣Y(ip − 1)

∣∣+ ∣∣Y(ip + 1)
∣∣] = E

[∣∣X(ip − 1)
∣∣+ ∣∣X(ip + 1)

∣∣]
2 cos

(
Lπ
M

)
E
[∣∣Y(ip)∣∣] = 2 cos

(
Lπ
M

)
E
[∣∣X(ip)

∣∣] (22)

Substituting Formula (22) into (12) and carrying out the necessary manipulations, we
find that the mathematical expectation of frequency bias estimation equals its real value,

E
[
δ̂CZT

]
= δCZT (23)

Therefore, the proposed method of frequency estimation is unbiased under the Gaus-
sian white noise condition.

3.3. Analysis of Parameter Setting

As mentioned in Section 2, B is the spectrum bandwidth of CZT, B = L∆f, and L is the
number of FFT spectrum intervals. In order to reduce the calculation capacity and improve
the spectrum resolution of CZT, L should be set to the minimum of reasonable values to
cover the real frequency. The distribution of the FFT spectrum lines with different frequency
biases, δFFT, is displayed in Figure 2. When −0.5 ≤ δFFT < 0, as shown in Figures 1a and 2c,
the real frequency is located between the (kp − 1)th and the (kp)th spectrum line. When
0 < δFFT ≤ 0.5, as shown in Figure 2b,d, the real frequency is located between the (kp)th
and the (kp + 1)th spectrum line. Considering the random effect caused by noise and to
improve the robustness of the algorithm, it is suitable to set L = 2, and the bandwidth of
CZT is centered at kp.
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4. Numerical Simulations and Comparison

The algorithms above were implemented and simulated. The number of samples
used in the simulation is N = 1024. The sampling frequency f s = 1024 Hz, so the spectrum
resolution of FFT is 1 Hz. The base frequency of the signal was f 0 = 120 Hz (the signal
frequency changes from f 0 with a certain step as follows). With the CZT spectrum factor
L = 2, the start and end frequencies of CZT are 119 Hz and 121 Hz, respectively. The
spectrum zooming factor of CZT, M = 10, means the CZT spectrum resolution is 0.2 Hz.
When the frequency bias zone is 0–0.5 Hz, and the frequency changing step is 0.025 Hz,
there are 21 frequency values in total. The frequency estimation error σf and bias ∆f are
calculated as follows: 

σf =
1

Nδ NMC

Nδ

∑
i=1

NMC
∑

j=1

(
f̂i − fi

)2

∆ f =
1

Nδ NMC

Nδ

∑
i=1

NMC
∑

j=1

(
f̂i − fi

) (24)

where Nδ is the number of frequency values, herein Nδ = 21, and NMC is the Monte Carlo
simulation times, herein NMC = 10000. f i = f 0 + δi means the true frequency value when the
frequency bias changes, and δi = (i − 1) × 0.025 Hz. The CRLB on each SNR condition can
be calculated by using Formula (25) [10]

fCRLB =

√
6 fs

2π(N1.5 − N0.5)SNR0.5 (25)

where N is the data length of the integration time and SNR is the Signal-to-Noise Ratio.
Figure 3 displays the simulation results on the frequency estimation bias and error

under three SNR conditions. As depicted in Figure 3a, the frequency bias randomly
distributes around 0 Hz when the frequency bias changes and the mean bias of the three
SNR conditions are −0.1918 mHz, 0.0327 mHz, and −0.0621 mHz, respectively, which
shows that the proposed estimator here is unbiased. From Figure 3b, we can find that the
frequency estimation error almost reaches the CRLB, especially when the SNR values are
comparatively high, such as SNR = −10 dB and 0 dB here. The ratios of the frequency
estimation error to the CRLB are 1.0905, 1.0173, and 1.0095 when SNR = −18 dB, −10 dB,
and 0 dB, respectively.
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Figure 3. The estimation performance of proposed method under different SNR situations, (a) Fre-
quency estimation bias, (b) Frequency estimation error.



Sensors 2022, 22, 7364 8 of 18

Furthermore, the frequency estimation performances were compared with traditional
algorithms, including Quinn (1994) [12], Rife (1974) [10], MacLeod (1998) [13], Aboutanios
and Mulgrew (2005) [11], and Candan (2011) [15], as well as the CRLB [10]. The simulation
conditions were set as mentioned above. There are 21 frequencies in total for each SNR
condition, and the final estimation bias and error are the mean value of all the 21 frequency
conditions. Figure 4 shows the frequency estimation error and bias of the proposed and the
five traditional estimators.
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The results in Figure 4 can be analyzed from the following three aspects.

(1) Anti-noise ability. As can be noted from this figure, there is a visible threshold effect
except for the proposed method. Taking MacLeod’s (1998) [13] method as an example,
when SNR is higher than −13 dB, the estimation bias and error are significantly
decreased, and the error is very close to CRLB. While the estimation bias and error of
the proposed estimator are more stable, even when the SNR is lower than −13 dB,
showing that the proposed estimator has a high anti-noise ability.

(2) Estimation bias. When the SNR is larger than the threshold, which is about −13 dB in
this simulation, the estimation bias of MacLeod (1998) [13] and Candan (2011) [15]
is significantly decreased, and the mean biases are 0.1 mHz and 1 mHz, respectively.
There are obvious biases for Quinn (1994) [12], Rife (1974) [10], and Aboutanios and
Mulgrew (2005) [11] under the same simulation conditions. However, the estimation
bias of the proposed method is about 1 mHz when SNR = −20 dB, and the mean
estimation bias of all the simulation SNR conditions is about 0.06 mHz, which means
that the bias performance of the proposed method is comparatively better.

(3) Estimation error. Figure 4b shows that the frequency estimation errors of the five
traditional algorithms tend to stable. Among them, the Macleod (1998) [13] algo-
rithm has the best performance with a variance of about 1.1626 times of CRLB. The
estimation errors of Candan (2011) [15] and Rife (1974) [10] are about 1.5352 and
2.8760 times of CRLB.But the variances of the proposed method are about 1.2323,
1.0168 and 1.0131 times of CRLB when SNR = −20 dB, −10 dB and 0 dB, respectively.
The results in Figure 4b show that the proposed method is much closer to CRLB
compared with other five methods.

From what has been discussed above, we may reasonably arrive at the conclusion that
the proposed method has a better anti-noise ability, frequency estimation bias, and accuracy.

5. Results

In this section, the raw data obtained from the Mars Express and Tianwen-1 orbiter
observation experiment were utilized to evaluate the frequency estimation performance
when the two probes were both orbiting Mars. The observation experiments were simulta-
neously implemented by CDSN, which consists of three Chinese deep space stations, the
Jiamusi (JM) station, the Kashi (KS) station, and the Argentina (AG) station [8].

Compared with the Monte Carlo simulation, the most significant difference in per-
forming high-accuracy frequency estimation with digital raw data is the downlink signals
of typical non-stationary due to the relative motion between the spacecraft and ground
stations. The abovementioned frequency estimators, including the proposed method,
are suitable for processing stationary signals with a constant frequency. Therefore, it is
necessary to eliminate the Doppler Effect before frequency estimation [21].

5.1. The Elimination of Doppler Effect

Assume that the frequency of the deep spacecraft downlink signal satisfies the n-order
polynomial model as follows,

f (t) = antn + an−1tn−1 + . . . + a1t + a0 (26)

where {ai}, i = 0, 1, . . . , n are the frequency model coefficients. Considering phase is the
time integral of frequency, we can achieve the corresponding phase model,

ϕ(t) = 2π
∫

f (t)dt + ϕ0 = 2π

(
an

n + 1
tn +

an−1

n
tn−1 + . . . +

a1

2
t2 + a0t

)
+ ϕ0 (27)

Now the signal model can be constructed as Formula (28),

x(t) = ej(2π
∫

f (t)dt+ϕ0) = ejϕ(t) (28)
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In order to obtain the model coefficients in Formula (26), we should process the
measured raw data. Assume the observation time length is T, and the sampling interval
is Ts. The frequency of the raw data is coarsely estimated at the integration time Tp, and
the number of frequency estimation is K = [T/Tp], where [x] denotes the nearest integer
number of x. The estimation results are remarked as:

F̂ =
{

f̂k

}
, k = 1, 2, . . . , K (29)

The time scale can be constructed at Tp interval, tscale = (i + 0.5)Tp, i = 0, 1, . . . , K− 1.
Combine Formulas (26) and (29), and the frequency model can be obtained by using the
Least Square Method,

{ân, ân−1, . . . , â1, â0} (30)

Next, construct the time scale of the raw data at the sampling interval Ts, t′scale =
(i + 0.5)Ts, i = 0, 1, . . . , N − 1, where N = [T/Ts], denotes the total points of the sampled
raw data. Let â0 = 0, and the phase model and signal model can be constructed as follows:

ϕmdl(t) = 2π
∫

fmdl(t)dt + ϕ0 = 2π

(
ân

n + 1
tn +

ân−1

n
tn−1 + . . . +

â1

2
t2
)

(31)

xmdl(t) = e−jϕmdl(t) (32)

Finally, we can find the residual data xres(t):

xres(t) = x(t)xmdl(t) = ej(2πa0t+ϕ0+2π fbias(t)t) (33)

where f bias(t) is the frequency bias caused by the inaccuracy of the frequency model, which
can be nearly eliminated by iterative processing, when this is performed, the residual data
xres(t) become a nearly stationary signal and can be processed by the proposed method, then
a0 in Formula (33) can be accurately estimated, which combines with the frequency model
in Formula (30) to generate the frequency estimation of the spacecraft’s downlink signal.

5.2. Mars Express Experiment

Before the first Chinese Mars exploration mission of Tianwen-1 was carried out, the
China National Space Administration (CNSA) cooperated with the European Space Agency
(ESA) to verify and confirm the Mars probe navigation ability of CDSN in 2020. MEX,
which was launched on 2 June 2003, and has been orbiting Mars since December 2003 [22],
was utilized to test and verify the feasibility of orbit measurement and orbit determination
at the distance between Earth and Mars by CDSS. The data used herein were provided
with the MEX observation experiments undertaken on 28 June 2020, from the JM and
KS stations. The data were sampled and recorded with 0.5 MHz bandwidth and 8-bit
quantification, whose format was the Delta-DOR Raw Data Exchange Format (RDEF) [23].
The sky frequency of the downlink signal is in the X band (about 8.4 GHz). The FFT
spectrum of MEX at the JM station is shown in Figure 5, in which the sole peak strands
for the carrier of the downlink signal. The carrier signal is utilized to estimate the high
accuracy of the Doppler frequency using the proposed method.

After the elimination of the Doppler effect, the estimation of the residual frequency
is shown in Figure 6a, which is the estimation of a0 in Formula (33). In order to show the
details of the stochastic characteristics, the estimation result minus its average value is
shown in Figure 6b. We can see that the residual frequency results are mostly located in
a region of ±10 mHz, indicating that the residual signal after Doppler effect elimination
is comparatively stationary. The frequency estimation error in the presented situation is
about 3.52 mHz.
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Figure 5. Spectrum of MEX observed at the JM station on 28 June 2020, with sampling frequency of
500 kHz (a) the whole spectrum (b) the enlarged view of carrier zone.
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The Doppler measurement results of the MEX obtained by the proposed method in
this paper were compared with that of the MEX obtained by the Very Long Baseline Array
(VLBA), European VLBI Network (EVN), and the Chinese VLBI network (CVN) as well as
CDSN [3,6,8], respectively, as shown in Table 1. For quantitative comparison, the Doppler
frequency results of MEX by the proposed method were obtained within 1-s integration.
The average accuracy Doppler frequency is 3.14 mHz in 1-s integration.

Table 1. Frequency error of MEX (mHz, 1 s integration).

Station EVN/VLBA CVN CDSN CDSN (This Work)

Accuracy 3.2 7.0 3.3 3.52 2.86 3.14

Remark Ref. [3] Ref. [6] Ref. [8] JM KS Average

The study by Rosenblatt et al. (2008) [3] showed that the Doppler accuracy of the MEX
obtained by ESA and NASA was about 3.2 mHz in 1-s integration. These measurement
results were obtained by the digital baseband receivers of ESA and NASA in the closed-loop
mode. The study by Zhang et al. (2019) [6] showed that the average 7.0 mHz precision of
MEX in 1-s integration was obtained by CVN. All of the above results of the MEX Doppler
accuracy are displayed in Table 1; here, we can see that the accuracy of the proposed
method in this paper is approximately consistent with EVN and VLBA, as well as with
the previous work at CDSN, while is about two times better than CVN. Since the raw data
processed in references [3,6,8] and in this paper were sampled and recorded by different
ground station assemblies, the comparison results have proven to be feasible and effective
for the frequency estimation of the proposed method.

5.3. Tianwen-1 Experiment

Tianwen-1 is the first Chinese deep probe to Mars in Martian science research, which
was launched on 23 July 2020 [24]. The raw data were recorded when the CDSS supported
the navigation mission of Tianwen-1. We selected the observation conducted by the JM
and KS stations on 26 February 2021, to verify the proposed method further. At that time,
Tianwen-1 was on an elliptical orbit with a periastron of ~280 km, apastron of ~57,815 km,
and an orbital period of ~49.0 h. The sampling frequency was 100 kHz, the quantification
bit number was 8, and the data format was RDEF. The spectrum of Tianwen-1 is shown
in Figure 7, which was observed by the KS station. The carrier signal in the spectrum
is apparent.
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Figure 8 shows the residual frequency estimation of the Tianwen-1 raw data at the JM
station on February 26. Table 2 displays the estimation results of both stations with different
integration times, from which we can see that the Doppler estimation errors of the proposed
method at the JM station are 2.97 mHz in 1-s integration, 1.86 mHz in 5-s integration, and
1.41 mHz in 10-s integration, respectively. Moreover, the Doppler estimation RMS at the
KS station are 3.06 mHz in 1 s-integration, 1.85 mHz in 5 s-integration, and 1.55 mHz in
10 s-integration, respectively. The results are consistent with that of Chen et al. (2021) [8]. It
is concluded that the frequency estimation results with an accuracy of about 3 mHz in 1-s
integration can provide high accuracy orbit determination of the Mars probe and will be
helpful for future Chinese deep space radio science experiments.
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Figure 8. The residual frequency estimation of Tianwen-1 raw data at JM station.

Table 2. The frequency estimation results of Tianwen-1 (observed on 26 February 2021).

ID Station Estimated
SNR (dB)

Integration
Time (s)

Estimation
Error (mHz)

CRLB
(mHz)

1
JM 4.1

1 2.97 0.77
2 5 1.86 0.07
3 10 1.41 0.02
4

KS 2.3
1 3.06 0.95

5 5 1.85 0.08
6 10 1.55 0.03

Moreover, the Signal-to-Noise Ratios (SNR) of the received signal at both stations
are also estimated, which are about 4.1 dB at JM and 2.3 dB at KS, respectively. The
corresponding CRLB of frequency estimation was calculated and is displayed in Table 2.
There are big gaps between the frequency estimation error and the CRLB.

The CRLB reflects the lower band of an unbiased estimation under the white noise
condition. The thermal noise of the antenna’s receiver is usually modeled as Gaussian
white noise. Therefore, as the integration time progresses, the impact of thermal noise
is reduced, and consequently, the frequency estimation error is lower. Considering the
gap between estimation error and the CRLB, we deduce that the thermal noise is not the
dominant error factor for the frequency estimation in Tianwen-1.

5.4. Error Sources Discussion

The main error sources of the Doppler estimation in deep space exploration include
phase scintillation, thermal noise, and frequency stability of the oscillator at the station [25].
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The total analyzed error of frequency estimation caused by the above three factors, σf, can
be calculated as follows:

σf =
√

σ2
f ,PS + σ2

f ,Wnσ2
f ,FS (34)

The phase scintillation is acquired by the downlink carrier when passing through the
solar corona and introduces a random error to the Doppler measurement, which can be
approximated by the following equation,

σf ,PS =


(

0.53Cband
Tp0.35[sin(θSEP)]

2.45

)0.5
, 0◦ < θSEP ≤ 90◦(

0.53Cband
Tp0.35

)0.5
, 90◦ < θSEP ≤ 180◦

(35)

θSEP is the Sun-Earth-Probe angle (SEP) and Tp is the estimation integration time.
The constant parameter Cband depends on the working mode and frequency band. If the
spacecraft transmits a signal which is transmitted from the ground and the ground-based
reference for the Doppler is the same one that drives the transmitter, the observation mode
is “two-way”. Three-way Doppler measurement is analogous to two-way mode, except
that the downlink carrier is received at a different station than that from which the uplink
carrier was transmitted. On the observation date of Tianwen-1, the KS station transmitted
the uplink signal to Tianwen-1 in the X band and received the coherent frequency from
Tianwen-1 in the X band, too. This means that the observation of the KS station utilized
a two-way mode. At the same time, the JM station received the downlink signal in the X
band by the three-way mode. In the two-way or three-way mode, the Cband takes values of
5.5 × 10−6 when both the uplink and downlink frequency are in the X band.

The SEP angle during the observation of Tianwen-1 is about 78◦, as shown in Figure 9.
The corresponding frequency error caused by the phase scintillation is depicted in Figure 10.
We can see that the errors are 1.754 mHz, 1.324 mHz, and 1.172 mHz for the 1 s, 5 s, and
10 s integration time, respectively.
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Figure 9. The SEP (Sun–Earth–Probe) of Tianwen-1 during observation period.

The second error factor is thermal noise on both the uplink and downlink for the
two-way and three-way mode in the Phase-locked-loop situation. As mentioned before,
the thermal noise is always modeled as Gaussian white noise, and the error performance
of the proposed method is no more than 1.0102 times that of CRLB when SNR is higher
than 0 dB. Therefore, the white noise performance of the Tianwen-1 observation can be
evaluated by the CRLB and has also been displayed in Table 2.
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Figure 10. The frequency estimation error caused by phase scintillation (two-way and tree-way mode,
X band). (a) full range of SEP angle; (b) enlarged view of SEP angle.

The third error factor is the frequency stability of the oscillator at the station, which can
be depicted as the Allan deviation of the carrier’s frequency source [26]. The Turnaround
Light Time (TLT) for the Tianwen-1 observation is about 20 min. Moreover, the tradi-
tional Allan deviation of the hydrogen maser at 1000 s is about 2 × 10−15. The Doppler
measurement error caused by frequency source stable, σf,FS, can be calculated as the follow-
ing formula,

σf ,FS =
√

2 + log2(M) fskyσA(τ) (36)

where f sky is the sky frequency of downlink carrier, M equals to TLT/τ, and σA(τ) is the
Allan deviation at time interval of τ. Therefore, the frequency estimation error caused by
frequency source stability in the Tianwen-1 observation is about 0.03 mHz.

Based on the above analysis, we can achieve the total analyzed error by using the
Formula (34). For simplicity, only the results at the JM station are shown in Table 3. As
we can see, the total analyzed errors are obviously smaller than the estimation errors.
The ratios of the total analyzed error to estimation error are about 65%, 71%, and 83%,
respectively. That is, the longer the integration time is, the closer the total analyzed error
is to the estimation error. Since the thermal noise is related to the integration time, it
is reasonable to deduce that the thermal noise performance of the proposed method is
not comparable to but worse than CRLB when processing the raw data from the deep
spacecraft. On the one hand, the thermal noise during the observation is possibly not
ideal Gaussian white noise. On the other hand, the residual frequency of the raw data
after the Doppler Effect elimination is still probably randomly changing, as depicted in
Figures 6 and 8, which means that the residual signal is not ideally stationary. Therefore,
CRLB could not perfectly reflect the thermal noise effect in this situation.

Table 3. The comparison of estimation error and total analyzed error at JM station.

ID
Integration

Time
Phase

Scintillation
Thermal

Noise
Frequency

Source Stable

Total
Analyzed

Error

Estimation
Error

1 1 s 1.754 mHz 0.77 mHz
0.03 mHz

1.916 mHz 2.97 mHz
2 5 s 1.324 mHz 0.07 mHz 1.326 mHz 1.86 mHz
3 10 s 1.172 mHz 0.02 mHz 1.173 mHz 1.41 mHz

In addition to the above three error factors, the terrestrial troposphere and ionosphere
may also induce frequency estimation errors because of their temporal and spatial variety.
It is known to all that tropospheric and ionospheric delay change with the observing
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elevation angle, changes with the motion of spacecraft. This means the tropospheric and
ionospheric delay changes along with the motion of spacecraft during the observation.
Figure 11 shows the tropospheric and ionospheric delay during the observation at the
JM station, which is measured using the water vapor radiometer and the GNSS receiver
with a sampling time of 1 s. It is easy to find that the tropospheric delay is time-varying,
and the difference of tropospheric delay changes obviously with a random error of about
11.8 ps/s, which corresponds to a frequency error of about 95.6 mHz for the X band signal,
much larger than that of frequency estimation error in Table 2. This is because, apart from
the real variety of tropospheric delay, the water vapor radiometer has its own measuring
accuracy and probably covers up the real variety of tropospheric delay. There is a similar
phenomenon for the ionospheric delay but with a random error of about 7.2 mHz. Even so,
it is reasonable to say that the tropospheric and ionospheric delay are also the error sources
of the frequency estimation of the deep spacecraft downlink signal.
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Figure 11. The tropospheric and ionospheric delay at JM station during the observation (a) tro-
pospheric delay; (b) difference of tropospheric delay; (c) ionospheric delay; (d) difference of iono-
spheric delay.

6. Conclusions

This paper presents a novel frequency estimator for Doppler measurement in deep
space exploration. The proposed method is carried out with an FFT-based coarse frequency
estimation and a fine estimation by utilizing the mathematic relation of the three CZT
coefficients around the peak lobe. Firstly, the theoretical algorithm and signal processing
procedures are described in detail. Monte Carlo simulations were implemented, and the
results show that the unbiased frequency estimation error closely follows the CRLB in a
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lower SNR region in comparison to the previous estimators, including Rife (1974) [10],
Macleod (1998) [13], Aboutanios and Mulgrew (2005) [11], and Candan (2011) [15], which
indicate that the proposed frequency estimator has a better performance at anti-noise
ability, frequency estimation bias, and accuracy. Then, the proposed method was utilized
to process the received raw data of MEX and Tianwen-1 at the CDSS. The results show
that the frequency estimation error of MEX and Tianwen-1 are both about 3 mHz in 1 s
integration time. The accuracy of the Doppler frequency retrieving of MEX is consistent
with ESA/EVN and is about two times better than CVN. Additionally, we evaluate the
main error sources, including phase scintillation, frequency stability, and thermal noise,
finding that phase scintillation is the dominant error source. However, there are some
uncertain factors to be analyzed, such as the effects of tropospheric and ionospheric delay.
Generally speaking, the proposed method herein can be effectively utilized to apply to
future Chinese deep space navigation missions and can be a powerful support for radio
science experiments in deep space exploration.
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