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Abstract: Although many chemical gas sensors report high sensitivity towards volatile organic com-

pounds (VOCs), finding selective gas sensing technologies that can classify different VOCs is an 

ongoing and highly important challenge. By exploiting the synergy between virtual electronic noses 

and machine learning techniques, we demonstrate the possibility of efficiently discriminating, clas-

sifying, and quantifying short-chain oxygenated VOCs in the parts-per-billion concentration range. 

Several experimental results show a reproducible correlation between the predicted and measured 

values. A 10-fold cross-validated quadratic support vector machine classifier reports a validation 

accuracy of 91% for the different gases and concentrations studied. Additionally, a 10-fold cross-

validated partial least square regression quantifier can predict their concentrations with coefficients 

of determination, R2, up to 0.99. Our methodology and analysis provide an alternative approach to 

overcoming the issue of gas sensors’ selectivity, and have the potential to be applied across various 

areas of science and engineering where it is important to measure gases with high accuracy. 

Keywords: gas sensors; virtual arrays; volatile organic compounds; selectivity; quantification;  

machine learning; indoor air quality 

 

1. Introduction 

The omnipresence of gases that are harmful to human health and are estimated to 

cause the premature death of about 7 million people worldwide every year [1] has made 

chemical gas sensors a topic of extreme importance. There have been undeniable efforts 

to develop new sensing materials and devices, and to improve their performance. Over 

the past seven decades, extensive research has been conducted to develop gas sensors 

with high sensitivity, selectivity, stability, speed of response, and reliability, and low 

power consumption. Various types of gas sensor technologies, such as photoionization 

detectors, infrared sensors, metal oxide semiconductor sensors, chemiresistors, and field-

effect-based sensors, have been widely investigated and used in real-world applications, 

including medical, environmental, automotive, industrial, and agricultural applications 

[2]. However, from early [3–14] to more recent developments [15–23], the selectivity issue 

has never been properly overcome. 

Electronic noses appear to be promising candidates for selectivity enhancement, 

thanks to elaborated “fingerprint” patterns produced by a group of robust features that 

are unique for each gas and concentration studied [24–30]. By combining manifold fea-

tures and applying machine learning (ML) techniques, it is possible to identify and differ-

entiate between gases of interest, i.e., to enhance selectivity [31–35]. Unfortunately, de-

spite being a potential pathway to overcoming selectivity problems, multi-sensor elec-

tronic noses suffer from high manufacturing costs, complexity, and high levels of power 

consumption. Here, we propose the use of one single sensor, operating in a dynamic mode 

(DM), as a virtual sensor array, and demonstrate the power of the synergy between DM 

operation and ML algorithms as an effective tool to enhance selectivity among similar 
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gases, at the same time as reducing manufacturing costs, hardware complexity, and power 

consumption. To achieve this goal, we selected three short-chain oxygenated volatile or-

ganic compounds (VOCs) that appear sequentially as products and by-products of each 

other, and are very difficult to discriminate. By implementing specific ML algorithms, we 

were able to differentiate between formaldehyde (CH2O), formic acid (CH2O2), and acetic 

acid (CH3COOH), and quantify their concentrations. These three VOCs are widely dis-

tributed compounds produced on a large scale in industrial reactors, and are used as syn-

thesis reagents in many applications [36-38]. Currently, none of the low-cost gas-sensing 

technologies available on the market can differentiate between and quantify the three 

VOCs studied in this work. Therefore, the possibility of measuring such gases with high 

accuracy constitutes a major development for these applications. 

By use of a virtual electronic nose coupled with computing power, we demonstrate 

the possibility of efficiently and cost-effectively discriminating between, classifying, and 

quantifying similar target gases; thus, this research represents a significant step forward 

in the development of selective gas sensor technologies.  

2. Materials and Methods 

2.1. Gas Sensors 

A gas sensitive silicon-carbide-based field effect transistor (SiCFET) prototype and a 

digital temperature and humidity sensor, SHTC1, from Sensirion AG (Stäfa, Switzerland) 

were connected in series to a gas stream and operated simultaneously for all measure-

ments. 

The SiCFETs were manufactured from an n-type 4H-SiC substrate (ca. 350 µm thick-

ness and a doping level of ca. 3 × 1018 cm−3) using the fabrication process described else-

where [36], and a nanostructured porous iridium (Ir) gate deposited by DC magnetron 

sputtering at an argon pressure of 50 mTorr to a total thickness of about 30 nm. The chosen 

catalytic metal promotes the optimal gas sensing mechanisms for the studied gases and 

temperature range. 

The electrical and gas-sensing characterizations were performed using a SiCFETs 

glued on top of a ceramic heater (Heraeus Sensor-Nite GmbH, Hanau, Germany), and 

next to a Pt-100 temperature sensor. The heater was used to increase the temperature of 

the SiCFETs and to promote gas–solid interactions in the gate material, and the tempera-

ture sensor was used to control the temperature of the gas sensor during measurements. 

The SiCFET chip, the heater, and the Pt-100 were mounted on top of a 16-pin TO8 header; 

they were then spot welded and gold-wire bonded to allow electrical access. 

Current–voltage (I–V) measurements were carried out on eight SiCFET devices be-

fore testing as gas sensors. The I–V characterization was performed at 300 °C, in synthetic 

air (80% N2, 20% O2, at a flow rate of 100 mL/min). All measurements were carried out by 

sweeping the voltage over the drain-source contacts, VDS, from 0 to 5 V at a rate of 0.1 V/s, 

and measuring the drain current, ID. The gate-source voltage, VGS, was kept at 0 V. All gas 

sensor measurements were performed at VDS equal to 4 V, corresponding to the saturation 

region of the sensor, which is the optimal operating point of the device [39]. 

2.2. Operation of the Sensors and Experimental Setup 

The sensors were tested under controlled conditions inside custom-made stainless-

steel chambers with a volume of about 3 mL. The gas flow mixtures introduced into the 

measurement chambers were managed by means of Labview software, which runs a gas-

mixing system with six Bronkhorst mass flow controllers (MFCs). To acquire and record 

the sensor signals during the gas tests, electrical measurements were performed using 

Python software that was developed to command an analogue front-end controller (3S 

GmbH, Saarbrücken, Germany), simultaneously supplying a voltage and measuring the 

current of the SiCFETs, in order to control the heater and to monitor the Pt-100 outcomes. 
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During all measurements, the SiCFETs were operated in DM using a temperature-

cycled operation between 240 and 360 °C, with five steps of 30 °C each maintained for 22 

s, resulting in a total of 110 s per cycle (Figure 1a). The cycles were continuously concate-

nated during the measurements. Since the data acquisition rate is 10 Hz, each cycle has a 

total of 1100 data points. The time length of the steps was optimised for proper sensor 

signal stabilization at each studied temperature while minimizing the total cycle time. A 

stable signal after each temperature variation is necessary to avoid transient behaviour at 

the temperature plateaus; additionally, a short cycle opens up the possibility of imple-

menting this type of procedure in daily-life applications that require relatively short re-

sponse times. The SiCFETs and temperatures studied have been demonstrated to induce 

ultra-high sensitivity in dry air for different VOCs [40] and a considerable difference in 

the relative response at the temperature plateaus (Figure 1b), which is beneficial for later 

discrimination, classification, and quantification. For this reason, we used the aforemen-

tioned temperature range in our measurements. 

  

(a) (b) 

Figure 1. (a) Current evolution of a SiC-based field-effect transistor sensor during a temperature 

cycle between 360 and 240 °C, including the evolution of set and measured temperatures; (b) mean 

values and standard deviations of the relative response, calculated from the virtual sensors at the 

different studied temperatures for 1 ppm formic acid, as an example. By virtual sensor, we mean 

the mean value of the sensor signal at each temperature plateau gathered along consecutive cycles 

to produce an equivalent sensor signal. 

The relative response of the sensors towards adsorbing species is here defined as the 

relative change in the sensor’s current as an absolute value, which is expressed as: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 (%) =
|𝐼𝑎𝑖𝑟 − 𝐼𝑔𝑎𝑠|

𝐼𝑎𝑖𝑟

∙ 100 (1) 

where 𝐼𝑎𝑖𝑟  corresponds to the sensor’s current value when exposed to synthetic air (SA), 

and 𝐼𝑔𝑎𝑠 corresponds to the sensor’s current value when the target gas is introduced into 

the SA gas flow. 

2.3. Gas Measurements 

The sensors were characterised by exposure to different concentrations of CH2O, 

CH2O2, and CH3COOH, randomly varying between 250 and 3000 parts per billion (ppb), 

using dry SA as the carrier gas. The total flow over the sensors was kept at a constant flow 

rate of 100 mL/min. Repetitions of random exposures to the different gas concentrations 

were carried out, instead of sequential increasing or decreasing concentrations, to avoid 

memory effects of accumulated adsorbents that could lead to incorrect conclusions. The 

gas-mixing system was calibrated with the SHTC1 sensor at 20 °C before the SiCFETs 

were tested. The SHTC1 humidity sensor measured <5% RH under dry SA conditions. 
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Therefore, the measurements presented here under dry SA include less than 5% RH. The 

gas measurements included: (i) 240 min of exposure to the carrier gas (SA) to allow the 

device to stabilise the baseline; (ii) 20 min of exposure to the studied gas; and (iii) 40 min 

in dry SA to recover the baseline after gas exposure. 

2.4. Data Evaluation 

ML techniques were implemented to analyse the results of the acquired data from 

the SiCFETs working in DM. First, a baseline correction was implemented by smoothing 

and standardizing the sensor signal. The smoothing step was implemented to remove as 

much noise as possible and, at the same time, preserve the sensor signal change when 

exposed to the gases of interest. For this purpose, a Savitzky–Golay filter was used [41]. 

The standardization applied here to reduce sensor drift from both the baseline and the 

response of the sensor [42] was auto-scaling, which can be expressed as: 

𝑦𝑖𝑗
𝑠𝑡𝑎𝑛𝑑 =

𝑦𝑖𝑗 − 𝑦�̅�

√ 1
𝑛 − 1

∑ (𝑦𝑗 − 𝑦�̅�)
2𝑛

𝑗−1

∙ 100 
(2) 

where 𝑦𝑖𝑗  and 𝑦𝑖𝑗
𝑠𝑡𝑎𝑛𝑑 are the raw and standardised data values j in a cycle i, 𝑦�̅� is the 

mean value of the data values in the ith cycle, 𝑦𝑗 is the data values of a certain cycle, and 

n is the total number of points in one cycle. 

Feature selection and extraction are some of the most important steps for data eval-

uation. This process is related to each gas or set of gases and the concentrations being 

studied and, therefore, needs to be customised on a case-by-case basis to find the param-

eters that best highlight the particularities in the sensor signals for the different exposures 

under evaluation. In general, many features are extracted, and, among these, the most 

relevant ones are considered for gas discrimination, classification, and/or quantification 

[34,35,43–45]. This process is called a top-down dimensionality reduction and is the sec-

ond step we implemented in our data evaluation process. The features calculated in each 

cycle from the sensor signal were: (i) 55 mean values calculated every two seconds, (ii) 220 

slopes calculated every 0.5 s, (iii) 22 Fast Fourier Transforms (FFT) calculated every five 

seconds, (iv) one integral of the area under the sensor signal of each cycle, and (v) one 

lifting of each cycle. The lifting is the difference between the first and last points in the 

cycle. The total number of features evaluated was 299. The features were evaluated using 

a sequential forward selection (SFS) method and eight features were selected. The selected 

features (Figure 2) are one mean value, five slopes, and two FFT values. 

 

Figure 2. Current evolution of a SiC-based field-effect transistor sensor during a temperature cycle, 

and the features selected for pattern recognition. 
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Classification was performed by implementing LDA [43,46] and 10-fold CV SVM, 

which classifies the data by finding the best hyperplane that separates the different de-

fined groups [47]. To obtain a more robust, stable, and reliable model, all concentrations 

evaluated for each studied gas were included in each defined group [48].  

PLSR was used as quantification technique [49,50]. To improve the reliability of the 

PLSR model, we implemented a 10-fold CV [50]. To test the stability of the trained model 

and to ensure a robust and stable model, the data were randomly split into two groups of 

data sets: the training set and the test data [50]. The training data subset randomly selected 

80% of the data, leaving 20% of the data for the test subset. In this way, the test data were 

classified based on the model established with the training data set. Overfitting was 

avoided by always keeping the number of exposure cycles included much higher than the 

number of components chosen.  

Both the classification and quantification algorithms included error minimization. To 

evaluate the classification error, we used the percentage of misclassified concentrations. 

To evaluate the quantification error, we used the root mean square error (RMSE) and the 

coefficient of determination, R2 [51]. 

3. Results and Discussion 

3.1. Discrimination of Formaldehyde, Formic Acid, and Acetic Acid 

All measurements were performed under dry synthetic air (SA) while maintaining 

the relative humidity (RH) at the lowest possible level to minimise the influence of water 

vapor on the measurements. This choice allowed us to focus on the three VOCs men-

tioned, to specifically understand their effects on the sensor signal and to avoid the risk of 

drawing inaccurate conclusions that might result from cross-sensitivity to RH, which itself 

induces variations in the signal. In this way, we were able to identify and separate the 

contributions of the VOCs, RH, and the combination of RH and VOCs, gaining a better 

understanding of the influence of different gases on the sensor signal, thereby improving 

our prediction power. 

Eight features were selected from the signals of five virtual sensors when exposed to 

different concentrations of CH2O, CH2O2, CH3COOH, and SA, and were plotted in a three-

dimensional parallel coordinate heat map for evaluation (Figure 3). Each of the studied 

gases contributed to building the model with about 45 observations. Since it is important 

not just to differentiate between the VOCs but also between the VOCs and SA, we in-

cluded SA in the study, obtaining a total of about 170 observations. Note that features 

three to seven contribute with a higher magnitude to the initial observations that relate to 

CH2O. For the following 45 observations that relate to CH3COOH, features three to five in 

the beginning, and then six to eight, show relevance. For CH2O2, features from three to 

eight are relevant; meanwhile, for dry air, features from one to three are relevant. 

Linear discriminant analysis (LDA) was first used to develop a visual approach to 

the discrimination power of the methodology used. The scatter plot resulting from this 

ML analysis presents a clear trend in the discriminant function (DF) 1 corresponding to 

the complexity of the molecules studied. From left to right, starting with SA where only 

oxygen (O2) can interact with the sensing material, a distribution from less to more com-

plex VOCs can be observed (Figure 4), i.e., the gases in DF1 are ordered as follows: O2, 

CH2O, then CH2O2 and CH3COOH. The difference between CH2O2 and CH3COOH is ev-

idenced by the contributions of DF2 and DF3. In general, CH2O2 presents central DF2 and 

negative DF3 values, while CH3COOH tends to be located in the positive DF2 and positive 

DF3 regions. 

The 10-fold cross-validated (CV) SVM result, represented by a confusion matrix (Fig-

ure 5), is used to gain a measurable understanding of the sensor’s ability to distinguish 

between the studied VOCs. The SVM study reports a validation accuracy of approxi-

mately 91%, and classification rates for all the individual gases were always above 85%. 
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We can observe an impeccable classification of 100% for dry air, 91.2% correct classifica-

tion for CH2O2, 89.7% for CH3COOH, and 85% for CH2O. 

These results support the feasibility of a simplified method that, as a first approxi-

mation, can be used in applications where it is necessary to cost-effectively detect the pres-

ence of one or more gases. Thus, the devices and methodology described here as proof-

of-concept are, in principle, suitable for selective VOC classification. This possibility 

shows promise in the use of sensor-based techniques as a suitable alternative to tradi-

tional, more expensive, and time-consuming techniques, such as gas chromatography. 

 

Figure 3. Three-dimensional representation of the parallel coordinates, showing the values of eight 

features for each observation obtained during the gas measurements. 

 

Figure 4. Linear discriminant analysis results for dry air, formaldehyde, formic acid, and acetic acid. 

The ellipses, as well as the different colours and shapes, are a visual guide to help differentiate each 

gas. 
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Figure 5. Confusion matrix resulting from the classification performed with a linear 10-fold cross-

validated support vector machine model where each group, except for dry air, includes seven dif-

ferent concentrations ranging from 250 to 3000 ppb. 

3.2. Classification of Different Concentrations of Formaldehyde, Formic Acid, and Acetic Acid 

The LDA scatter plots for CH2O and CH3COOH (Figure 6) show clearly separated 

groups for each concentration studied; although they are less clustered for CH2O2 than for 

the other two gases, each concentration presents a clear group in the DF space. For CH2O, 

DF1 shows a distribution from positive to negative values of decreasing concentrations, 

while DF2 also shows decreasing concentrations from positive to negative values. A sim-

ilar situation is observed for CH2O2, except that, in this case, DF1 shows decreasing con-

centrations from negative to positive values. For CH3COOH, a combination of the three 

DFs is necessary to understand the concentration distribution. 

The 10-fold CV SVM classification (Figure 7) reports validation accuracies of 81.4, 

87.9, and 94.7% for CH2O, CH2O2, and CH3COOH, respectively. 

These results confirm that our methodology is reliable and appropriate for classifying 

the VOCs of interest. This opens up the possibility of extensively validating the proposed 

method with other target gases, and using it in any applications where it is important to 

discriminate and quantify gas concentrations with a high level of accuracy. In industrial 

applications, this method can be used to optimise processes or monitor reaction rates. In 

other applications, such as on-demand controlled ventilation and automated systems, it 

can be used to reduce energy and power consumption while guaranteeing thermal com-

fort, safety, and healthy air quality. 
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(a) (b) 

 
(c) 

Figure 6. Linear discriminant analysis for (a) formaldehyde, (b) formic acid, and (c) acetic acid. The 

ellipses, as well as the colors and shapes, are a visual guide to help differentiate each concentration. 
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(a) (b) 

 

(c) 

Figure 7. Confusion matrix results from a 10–fold cross–validated support vector machine classifi-

cation analysis performed for concentrations from 0.25 to 3 ppm for (a) formaldehyde, (b) formic 

acid, and (c) acetic acid. 

3.3. Quantification of Formaldehyde, Formic Acid, and Acetic Acid 

The additional step implemented for better VOC quantification is a 10-fold CV partial 

least square regression (PLSR) for each of the studied gases (Figure 8). The trained model 

fits the concentration of the three gases well, with the highest accuracy for CH2O, as indi-

cated by the coefficient of determination, R2, equal to 0.96 for CH2O, 0.87 for CH2O2, and 

0.99 for CH3COOH. A possible explanation for this observation concerns the nature of 

the molecules themselves, and the sensitivity that the gas sensor presents towards these 

different molecules at this range of temperatures. In our previous study [52], we demon-

strated that CH2O reports the highest and CH3COOH the lowest relative response values, 

due to the differences in molecular mass, both with real and, as in this case, virtual sensors. 

Therefore, if the chemical gas sensors studied here present higher sensitivity to CH2O, it 

is reasonable to suggest that this improves the detection and quantification of differences 

in concentrations of this gas. Consequently, the opposite is true of CH3COOH. Since a 

wide concentration range can include a saturation regime or different slopes of the ad-

sorption isotherms, as seems to happen here for concentrations above 2 parts per million 
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(ppm), the accuracy of the models could be enhanced by extending the concentration 

range studied and performing separated PLSR analysis, focusing on different concentra-

tion range regions. 

These results further confirm that the methodology implemented here can be used to 

quantify different VOCs. A continuous concentration scale can be obtained where new 

and unknown concentration data points, which are not measured directly, can be extrap-

olated. 

  

(a) (b) 

 

(c) 

Figure 8. Results of partial least square regression for (a) formaldehyde, (b) formic acid, and (c) 

acetic acid. 

3.4. Comparison with a Best-in-Class Commercial Gas Sensor 

To further demonstrate the pivotal importance of our proposed method, we used a 

best-in-class low-cost commercial TVOC sensor for laboratory tests under controlled con-

ditions. We verified that the measured gas concentrations obtained with the commercial 

TVOC sensor (Figure 9a) did not match with the gas concentrations supplied by our gas 

mixing system when measurements were performed in dry SA (<5% RH). Such a mis-

match between the supplied and measured gas concentrations increased considerably 

when the measurements were performed in humid conditions (Figure 9b), disregarding 
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the possibility of biased results in dry conditions due to lack of water vapor in the ambient. 

It is worth mentioning that the gas bottles with diluted VOCs, used upon arrival, were 

certified with stable ppm concentrations for at least one year, and that the MFCs in our 

gas mixing system were calibrated less than one year before these measurements. These 

results demonstrate the uncertain reliability of the chemical gas sensors currently availa-

ble on the market, and the need to find robust methods of improving data quality. More-

over, it is important to underline that the data processing technique used by the commer-

cial sensor is not selective, i.e., it does not identify which gas is being measured. In con-

trast, our algorithms allow for the classification of the studied VOCs with a 91% success 

rate. Therefore, the quantification results here presented, obtained with our prototypal 

chemical gas sensor, can be considered satisfactory and a step forward in the state of the 

art. 

  

(a) (b) 

Figure 9. Calibration profile of a commercial TVOC sensor when exposed to different concentrations 

of formaldehyde (CH2O), formic acid (CH2O2), and acetic acid (CH3COOH), diluted in (a) dry syn-

thetic air and (b) 30% relative humidity (RH). Note: the results in (b) are presented in log scale for 

a better visualization of the considerable mismatch between the supplied and measured concentra-

tions. 

4. Conclusions 

This study demonstrates that the proper selection and implementation of a sensor’s 

operation mode, the features to be studied, and machine learning techniques are crucial 

for overcoming the selectivity issues of chemical gas sensors. We achieved 91% correct 

classification of three similar VOCs and synthetic air, which was used as the carrier gas. 

We achieved correct classification between 81 and 95% for different concentrations of 

these VOCs, and quantification with coefficients of determination (R2) between 0.87 and 

0.99, depending on the gas species. Therefore, this detailed study of the responses of the 

gas sensor, when operating in a dynamic mode in synergy with an iterative process of 

feature extraction, enhances the outcomes both qualitatively and quantitatively, i.e., it op-

timises discrimination, classification, and quantification. Due to the widespread produc-

tion, use, and emissions of formaldehyde, formic acid, and acetic acid, our work can po-

tentially benefit many fields and application scenarios. Future work will include an ex-

tended characterization of mixtures of VOCs, the influence of RH on the model, and the 

implementation and application of our algorithms in operational environments. 

Author Contributions: Conceptualization, G.D.-G. and D.P.; methodology, G.D.-G. and D.P.; soft-

ware, G.D.-G.; validation, G.D.-G.; formal analysis, G.D.-G.; investigation, G.D.-G.; resources, D.P.; 

data curation, G.D.-G.; writing—original draft preparation, G.D.-G.; writing—review and editing, 



Sensors 2022, 22, 7340 12 of 13 
 

 

G.D.-G. and D.P.; visualization, G.D.-G. and D.P.; supervision, D.P.; project administration, D.P.; 

funding acquisition, D.P. All authors have read and agreed to the published version of the manu-

script. 

Funding: This research was funded by the EU’s H2020 research and innovation program under 

grant agreement No. 814596 (SensMat) and by Sweden’s innovation agency Vinnova, grant number 

2019-02095. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data presented in this study are available on reasonable request 

from the corresponding author. 

Acknowledgments: The authors wish to thank Jan Ybrahim for the valuable scientific discussions 

on multivariate statistics, and SenSiC AB for the supplied SiCFET sensors. 

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the 

design of the study; in the collection, analyses, or interpretation of the data; in the writing of the 

manuscript; or in the decision to publish the results. 

References 

1. WHO. Global Air Quality Guidelines; World Health Organization: Geneva, Switzerland, 2021. 

2. Jung, H.-T. The Present and Future of Gas Sensors. ACS Sens. 2022, 7, 912–913. 

3. Heilan, G.; Mollwo, E.; Stöckmann, F. Electronic Processes in Zinc Oxide. Solid State Phys. 1959, 8, 191–323. 

4.  Seiyama, T.; Kato, A.; Fujiishi, K.; Nagatani, M. A new detector for gaseous components using semiconductive thin films. Anal. 

Chem. 1962, 34, 1502. 

5. Bergveld, P. Development, Operation, and Application of the Ion-Sensitive Field-Effect Transistor as a Tool for 

Electrophysiology. IEEE Trans. Biomed. Eng. 1972, 19, 342–351. 

6. Lundström, I.; Shivaraman, S.; Svensson, C.; Lundkvist, L. A Hydrogen−Sensitive MOS Field−Effect transistor. Appl. Phys. Lett. 

1975, 26, 55. 

7. Williams, D.E. Solid State Gas Sensors; Moseley, P.T., Tofield, B.C., Eds.; Adam Hilger: Bristol, UK, 1987. 

8. Sberveglieri, G. Gas Sensors: Principles, Operation, and Developments; Springer-Science & Business Media: Berlin, Germany, 1992. 

9. Gerblinger, J.; Hardtl, K.H.; Meixner, H.; Aigner, R. High-Temperature Microsensors. In Sensors Set: A Comprehensive Survey; 

Gopel, W., Ed., VCH-Verlag: Weinheim, Germany, 1995; p. 181. 

10. Shimizu, Y.; Egashira, M. Basic Aspects and Challenges of Semiconductor Gas Sensors. MRS Bull. 1999, 24, 18–24. 

11. Then, D.; Ziegler, C. Cantilever-Based Sensors. In Encyclopedia of Nanoscience and Nanotechnology; Nalwa, H.S., Ed.; American 

Scientific Publishers: Valencia, Spain, 2004; p. 499. 

12. Gurlo, A.; Bârsan, N.; Weimar, U. Gas Sensors Based on Semiconductiong Metal Oxides. In Metal Oxides: Chemistry and 

Applications; Fierro, J.L.G., Ed.; CRC Press: Boca Raton, FL, USA, 2004; p. 683. 

13. Yamazoe, N. Toward Innovations of Gas Sensor Technology. Sens. Actuators B Chem. 2005, 108, 2–14. 

14. Lundström, I.; Sundgren, H.; Winquist, F.; Eriksson, M.; Krantz-Rülcker, C.; Lloyd-Spetz, A. Twenty-Five Years of Field Effect 

Gas Sensor Research in Linköping. Sens. Actuators B Chem. 2007, 121, 247–262. 

15. Huang, X.-J.; Choi, Y.-K. Chemical Sensors Based on Nanostructured Materials. Sens. Actuators B Chem. 2007, 122, 659–671. 

16. Jimenez-Cadena, G.; Riu, J.; Xavier Rius, F. Gas Sensors Based on Nanostructured Materials. Analyst 2007, 132, 1083–1099. 

17. Yamazoe, N.; Shimanoe, K. Receptor Function and Response of Semiconductor Gas Sensor. J. Sens. 2009, 2009, 875704. 

18. Aleixandre, M.; Gerboles, M. Review of Small Commercial Sensors for Indicative Monitoring of Ambient Gas. Chem. Eng. Trans. 

2012, 30, 169–174. 

19. Kim, H.-J.; Lee, J.-H. Highly Sensitive and Selective Gas Sensors using P-Type Oxide Semiconductors: Overview. Sens. Actuators 

B Chem. 2014, 192, 607–627. 

20. Neri, G. First Fifty Years of Chemoresistive Gas Sensors. Chemosensors 2015, 3, 1–20. 

21. Chmela, O.; Sadílek, J.; Domènech-Gil, G.; Samà, J.; Somer, J.; Mohan, R.; Romano-Rodríguez, A.; Hubálek, J.; Vallejos, S. 

Selectively Arranged Single-Wire Based Nanosensor Array Systems for Gas Monitoring. Nanoscale 2018, 10, 9087–9096. 

22. Domènech-Gil, G.; Gràcia, I.; Cané, C.; Romano-Rodríguez, A. Nitrogen Dioxide Selective Sensor for Humid Environments 

Based on Octahedral Indium Oxide. Front. Sens. 2021, 2, 672516. 

23. Baur, T.; Amann, J.; Schultealbert, C.; Schütze, A. Field Study of Metal Oxide Semiconductor Gas Sensors in Temperature Cycled 

Operation for Selective VOC Monitoring in Indoor Air. Atmosphere 2021, 12, 647. 

24. Persaud, K.; Dodd, G. Analysis of Discrimination Mechanisms in the Mammalian Olfactory System using a Model Nose. Nature 

1982, 299, 352. 

25. Wilson, A.; Baietto, M. Applications and Advances in Electronic-Nose Technologies. Sensors 2009, 9, 5099. 



Sensors 2022, 22, 7340 13 of 13 
 

 

26. Domènech-Gil, G.; Hrachowina, L.; Pardo, A.; Seifner, M.S.; Gràcia, I.; Cané, C.; Barth, S.; Romano-Rodríguez, A. Localized and 

In-Situ Integration of Different Nanowire Materials for Electronic Nose Applications. Proceedings 2018, 2, 957. 

27. Chen, J.; Gu, J.; Zhang, R.; Mao, Y.; Tian, S. Freshness Evaluation of Three Kinds of Meats Based on the Electronic Nose. Sensors 

2019, 19, 605. 

28. Wilson, A. Application of electronic-nose technologies and VOC-biomarkers for the noninvasive early diagnosis of 

gastrointestinal diseases. Sensors 2018, 18, 2613. 

29. Nurputra, D.K.; Kusumaatmaja, A.; Hakim, M.S.; Hidayat, S.N.; Julian, T.; Sumanto, B.; Mahendradhata, Y.; Saktiawati, A.M.I.; 

Wasisto, H.S.; Triyana, K. Fast and noninvasive electronic nose for sniffing out COVID-19 based on exhaled breath-print 

recognition. NPJ Digit. Med. 2022, 5, 115. 

30. Tonezzer, M.; Le, D.T.T.; Duy, L.V.; Hoa, N.D.; Gasperi, F.; Duy, N.V.; Biasioli, F. Electronic noses based on metal oxide 

nanowires: A review. Nanotechnol. Rev. 2022, 11, 897–925. 

31. Schütze, A.; Baur, T.; Leidinger, M.; Reimringer, W.; Jung, R.; Conrad, T.; Sauerwald, T. Highly Sensitive and Selective VOC 

Sensor Systems Based on Semiconductor Gas Sensors: How to? Environment 2017, 4, 20. 

32. Feng, S.; Farha, F.; Li, Qingjuan; Wan, Yueliang; Xu, Yang; Zhang, T.; Ning, Huansheng. Review on Smart Gas Sensing 

Technology. Sensors 2019, 19, 3760. 

33. Chen, H.; Huo, D.; Zhang, J. Gas Recognition in E-Nose System: A Review. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 169–184. 

34. Ye, Z.; Liu, Y.; Li, Q. Recent Progress in Smart Electronic Nose Technologies Enabled with Machine Learning Methods. Sensors 

2021, 21, 7620. 

35. Marco, S.; Gutierrez-Galvez, A. Signal and Data Processing for Machine Olfaction and Chemical Sensing: A Review. IEEE Sens. 

J. 2012, 12, 3189–3214. 

36. Bahmanpour, A.M.; Andrew, H.; Akshat., T. Critical Review and Exergy Analysis of Formaldehyde Production Processes. Rev. 

Chem. Eng. 2014, 30, 583–604. 

37. Andrushkevich, T.V.; Popova, G.Y.; Danilevich, E.V.; Zolotarskii, I.A.; Nakrokhin, V.B.; Nikoro, T.A.; Stompel, S.I.; Parmon, 

V.N. A New Gas-Phase Method for Formic Acid Production: Tests on a Pilot Plant. Catal. Ind. 2014, 6, 17–24. 

38. Bulushev, D.A.; Ross, J.R.H. Towards Sustainable Production of Formic Acid. Chem. Sus. Chem. 2018, 11, 821–836. 

39. Puglisi, D.; Eriksson, J.; Andersson, M.; Huotari, J.; Bastuck, M.; Bur, C.; Lappalainen, J.; Schütze, A.; Lloyd Spetz, A. Exploring 

the Gas Sensing Performance of Catalytic Metal/Metal Oxide 4H-SiC Field Effect Transistors. Mater. Sci. Forum 2016, 858, 997–

1000. 

40. Puglisi, D.; Eriksson, J.; Bur, C.; Schuetze, A.; Lloyd Spetz, A.; Andersson, M. Catalytic Metal-Gate Field Effect Transistor Based 

on SiC for Indoor Air Quality Control. J. Sens. Sens. Syst. 2015, 4, 1–8. 

41. Schafer, R.W. What Is a Savitzky-Golay Filter? IEEE Sig. Proc. 2011, 28, 111–117. 

42. Pearce, T.C.; Gutierrez-Osuna, R.; Nagle, H.T.; Kermani, B.; Schiffman, S.S. Signal Conditioning and Preprocessing. In Handbook 

of Machine Olfaction; Pearce, T.C., Schiffman, S.S., Nagle, H.T., Gardner, J.W., Eds.; Wiley-VCH: Weinheim, Germany, 2003; pp. 

105–132. 

43. Gutierrez-Osuna, R. Pattern Analysis for Machine Olfaction: A Review. IEEE Sens. J. 2002, 2, 189–202. 

44. Yan, J.; Guo, X.; Duan, S.; Jia, P.; Wang, L.; Peng, C.; Zhang, S. Electronic Nose Feature Extraction Methods: A Review. Sensors 

2015, 15, 27804–27831. 

45. Bur, C. Selectivity Enhancement of Gas Sensitive Field Effect Transistors by Dynamic Operation. Ph.D. Dissertation, Linköping 

University, Sweden, 2015. 

46. Klecka, W.R. Discriminant Analysis; Quantitative Applications in the Social Sciences Series; SAGE Publications: New York, NY, 

USA, 1980. 

47. Cristianini, N.; Ricci, E. Support Vector Machines. In Encyclopedia of Algorithms; Kao, M.Y., Ed.; Springer: Boston, MA, USA, 

2008; pp. 415–420. 

48. Bur, C.; Andersson, M.; Lloyd Spetz, A.; Schütze, A. Detecting Volatile Organic Compounds in the ppb Range with Gas Sensitive 

Platinum Gate SiC-Field Effect Transistors. IEEE Sens. J. 2014, 14, 3221–3228. 

49. Wold, S.; Sjostrom, M.; Eriksson, L. PLS-Regression: A Basic Tool of Chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. 

50. Hastie, T.; Tibshirani, R.; Friedman, J. Model Assessment and Selection. In The Elements of Statistical Learning, 2nd ed.; Springer: 

New York, NY, USA, 2009; Volume 1, p. 241. 

51. Montgomery, D.C. (Ed.). Fitting Regression Models. In Design and Analysis of Experiments, 5th ed.; John Wiley & Sons Inc.: New 

York, NY, USA, 1997; pp. 392–422. 

52. Domènech-Gil, G.; Puglisi, D. Benefits of Virtual Sensors for Air Quality Monitoring in Humid Conditions. Sens. Actuators B 

Chem. 2021, 344, 130294. 


