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Abstract: By connecting multiple short, local low-density parity-check (LDPC) codes with a global
parity check, the globally coupled (GC) LDPC code can attain high performances with low com-
plexities. The typical design of a local code is a quasi-cyclic (QC) LDPC for which the code length
is proportional to the size of circulant permutation matrix (CPM). The greatest common divisor
(GCD)-based full-length row multiplier (FLRM) matrix is constrained by a lower bound of CPM size
to avoid six length cycles. In this paper, we find a new lower bound for the CPM size and propose an
algorithm to determine the minimum CPM size and the corresponding FLRM matrix. Based on the
new lower bound, two methods are proposed to construct the GC-QC-LDPC code of grith 8 based on
the GCD based FLRM matrix. With the proposed algorithm, the CPM size can be 45% less than that
given by sufficient condition of girth 8. Compared with the conventional GC-LDPC construction, the
codes constructed with the proposed method have improved performance and are more flexible in
code length and code rate design.

Keywords: full-length row multiplier matrix; greatest common divisor; globally coupled LDPC;
large girth

1. Introduction

Channel coding has always been one of the most important underlying technologies in
communication systems. Capacity-achieving codes such as turbo codes, low-density parity-
check (LDPC) codes, polar codes, and quantum codes have been proposed together with
various near-maximum likelihood(ML)-decoding algorithms such as belief-propagation, list-
decoding, guessing random additive noise decoding (GRAND), etc. [1–3]. LDPC codes have
attracted much attention for its low decoding complexity and excellent performance [4–7]. The
structure of quasi-cyclic (QC) LDPC code is relatively simple, so it is beneficial for hardware
implementation. Therefore, QC-LDPC code plays an important role in many communication
protocols, including wireless sensor networks [8–10]. Since regular LDPC codes have lower
error-floor [11] and irregular LDPC codes can be easily obtained by transforming the well-
designed regular codes [12,13], the construction of regular full-ank QC-LDPC codes is a very
popular topic [14–18].

The full-length row multiplier (FLRM) matrix is a typical regular matrix used in con-
struction of QC-LDPC codes. The FLRM matrix consists of multiple circulant permutation
matrices (CPMs) [15–18] arranged in J rows and L columns. The exponent matrix of FLRM
matrix is derived from the product of row coefficient vector and column indexes. Girth
in Tanner graph is one of the most important characters of LDPC codes for it determines
the minimum distance of the code. In addition, short cycles will produce trapping sets,
stopping sets, and absorption sets, resulting in heavy error-floor and performance degra-
dation [19]. Hence, many scholars devote themselves to improving the girth of the LDPC
code [20–22]. It has been shown in [17] that the girth of FLRM codes cannot exceed eight,
since there exist cycles of length eight regardless of the CPM’s size. In [16], the greatest
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common divisor (GCD) scheme was proposed to construct the grith 8 FLRM matrix. As the
general form of CPM, the affine permutation matrices (APMs) can also adopt the GCD
scheme to construct LDPC code of girth 8 [23]. Recently, the authors of [18] optimized the
row coefficient’s vector to find the lower bound of CPM size for each pair of (J, L) and
further confirmed the validity of the GCD construction method for the FLRM matrix with
girth 8.

A globally coupled (GC) LDPC code is a new type of coupled LDPC code proposed
by Juane Li [24] where multiple short local LDPC codes are connected with a set of global
check nodes. As a result, GC-LDPC can effectively realize a long code with multiple short
component codes, avoiding the construction of a completely new longer LDPC code [25].
The GC-LDPC code is adept in correcting erasures clustered in bursts and performs greatly
under additive white Gaussian noise (AWGN) channels and binary erasure channels (BECs).
With local/global two-phase decoding, the decoders of the component LDPC codes are
reusable [26]. In [27], the Reed–Solomon code-based construction of GC-LDPC code was
proposed. In [26], the array dispersion was applied to scale the GC-LDPC code, which
makes the design of the GC-LDPC code more flexible in code-length selection. With the
Reed–Solomon-Like construction [28], local codes and global coupling part of GC-LDPC
code can be constructed separately. In addition, the protograph-based GC-LDPC code [29]
and tail-biting GC-LDPC code [30] perform well. In [26,31], GC-LDPC codes were used for
NAND Flash, and the relative independent structure and local/global two-phase decoding
can reduce the critical path and decoding latency. Recently, ref. [25] proposed the free-ride
coding to realize an implicit GC-LDPC code, and parallel encoding and efficient decoding
algorithms were proposed based on the unique structure of the GC-LDPC code.

Since the existing GC-LPDC code cannot achieve girth 8, in this paper, we consider
the construction of a GC-LDPC code based on the FLRM matrix. The main contributions of
this paper are as follows:

1. We find a new lower bound of CPM size P to achieve girth 8 for the GCD-based
FLRM matrix and propose an algorithm that can output the minimum P and the
corresponding FLRM matrix for the given J, L.

2. The two new methods for constructing the GC-LDPC code is proposed based on the
FLRM matrix with a new lower bound.

3. We find that the performance of GC-LPDC is more sensitive to the number of six length
cycles than the girth.

The finding of this study is particularly meaningful for the code designer for they will
have more freedom in choosing P, code length, or code rate. In addition, the simulation
results show that the code constructed with proposed method has improved performances
than the code constructed with existing methods.

The sections of this paper are organized as follows. In Section 2, we discuss cycles in
the FLRM matrix and the new lower bound of CPM’s size P. An algorithm is proposed to
find the smallest P and the corresponding FLRM matrix for a given (J, L). In Section 3, two
code construction methods are proposed for the GC-LDPC code based on the GCD-based
FLRM matrix. In Section 4, we show the simulation results, and we conclude our paper in
Section 5.

2. New Lower Bound of CPM Size

The parity check matrix of the QC-LPDC is generated through a CPM of size P and an
exponent matrix of size J × L. The elements of the exponent matrix E is the product of the
row and column coefficients:

E =


a0b0 a0b1 · · · a0bL−1
a1b0 a1b1 · · · a1bL−1

...
...

. . .
...

aJ−1b0 aJ−1b1 · · · aJ−1bL−1

, (1)
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where ai, and bi are integers with 0 ≤ a0 < a1 < · · · < aJ−1 and 0 ≤ b0 < b1 <
· · · < bL−1. The row coefficient vector is a = (a0, a1, · · · , aJ−1), and the column co-
efficients vector is b = (b0, b1, · · · , bL−1). The column coefficients vector of the FLMR ma-
trix is b = (0, 1, 2, · · · , L− 1). The maximum girth of FLRM codes is eight [17]. The GCD
method [16] is an efficient framework for constructing FLRM codes, attaining girth eight.

The girth of GC-LDPC code is essentially the length of the shortest cycle in E. A cycle
W = {W0, W1, ..., Wl−1} in matrix E is a sequence of the elements of E such that [32]

l/2−1

∑
i=0

(W2i −W2i+1) = 0(modP), (2)

where l ∈ {4, 6, 8, · · · } is the length of cycle.
A length of four cycles in E forms a 2× 2 sub-matrix of E. Let E

′
4 be a 2× 2 sub-matrix

of E, which consists of two distinct rows and two distinct columns of E:

E
′
4 =

[
aibx aiby
ajbx ajby

]
, (3)

where 0 ≤ i < j < J and 0 ≤ x < y < L. E′4 can form a length of four cycles if its elements
satisfy (2). This is equivalent to det(E′4) = 0(mod P). Hence, the condition for E with no
four-length cycle is that all 2× 2 submatrices of E are non-singular. This condition can be
equivalently expressed as follows:

(aj − ai)(by − bx) 6= 0(modP), (4)

for all 0 ≤ i < j < J, and 0 ≤ x < y < L.
A length of six cycles lies in a 3× 3 sub-matrix of E. Consider the following:

E
′
6 =

 aibx aiby aibz
ajbx ajby ajbz
akbx akby akbz

, (5)

where 0 ≤ i < j < k < J, 0 ≤ x < y < z < L. A path of length 6 in E′6 satisfying (2) will
define a cycle of length 6. Similarly to (4), if we define the following:

S1 = (ak − ai)(by − bx) + (ak − aj)(bz − by)
S2 = (ak − ai)(by − bx) + (aj − ai)(bz − by)
S3 = (ak − ai)(bz − by) + (ak − aj)(by − bx)
S4 = (ak − ai)(bz − by) + (aj − ai)(by − bx)
S5 = (ak − aj)(by − bz) + (aj − ai)(by − bx)
S6 = (ak − aj)(by − bx) + (aj − ai)(by − bz),

(6)

then any of S1, S2, · · · , S6 being zero (module P) indicates the existence of P cycles of
length 6. The possible paths of these cycles are illustrated in Figure 1. These cycles can
be classified into two types: the ‘L’ type paths correspond to S1, S2, S3, S4, and the ‘X’ type
paths correspond to S5, S6.

Since ai < aj < ak and bx < by < bz, all S1, S2, S3, S4 are positive and are upper
bounded. A sufficiently large P can guarantee Si(modP) = Si or Si 6= 0(modP) and, thus,
avoid the type ’L’ length 6 cycle.
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Figure 1. Possible paths of length 6 cycles corresponding to (6).

Even with infinite P, ’X’ type cycles may exist for S5, or S6 may equal to zero. Let
na = aj − ai, ma = ak − aj, nb = by − bx, and mb = bz − by. S5 and S6 can be rewritten
as follows.

S5 = −ma ·mb + na · nb, (7a)

S6 = ma · nb − na ·mb. (7b)

For the ’X’ type length 6 cycles, the condition S5 = 0 or S6 = 0 can be equivalently
expressed as the difference ratio as follows.

na

ma
=

mb
nb

, if S5 = 0, (8a)

na

ma
=

nb
mb

, if S6 = 0. (8b)

The condition for the girth 8 FLRM matrix can be derived from the analysis above,
and the conclusion is summarized as (Lemmas 1 and 2 of [16])

(na + ma)/ gcd(na, ma) ≥ L, (9a)

P ≥ (aJ−1 − a0)(L− 1) + 1. (9b)

Equation (9a) is the necessary and sufficient condition for avoiding the type ’X’ cycle
of length 6. However, (9b) is only a sufficient condition to avoid type ’L’ cycle of length 6.

The type ’L’ cycle of length 6 exists if and only if any of {S1, S2, S3, S4} equals 0(modP).
For the sake of simplicity, we use P∗min to denote the lower bound in (9b).

P∗min = (aJ−1 − a0)(L− 1) + 1. (10)

However, (9b) is only a sufficient condition for avoiding the length 6 cycle. It is
possible that, for some P < P∗min, all P < P∗min and all Si 6= 0(modP), i ∈ {1, 2, · · · , 6} for
all 3× 3 submatrices. Thus, the real lower bound is given by the following.

P†
min = argmin

P

{
Si = 0(modP), ∀i, ∀E

′
6

}
. (11)

With the new lower bound P†
min, we can extend condition (9b) to the sufficient and

necessary condition, as stated in the following theorem.
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Theorem 1. The Tanner graph corresponds to the FLRM matrix E and has no ’L’ type cycle of
length 6 if and only if the following is the case:

P ≥ P∗min = (aJ−1 − a0)(L− 1) + 1, (12a)

or

P†
min ≤ P < P∗min and Si(mod)P 6= 0, ∀i, E

′
6 (12b)

for all triples (ai, aj, ak), 0 ≤ i < j < k < J.

We propose the Algorithm 1 shown in the next page to find the minimum. The input
of Algorithm 1 is the the size of FLRM matrix. The algorithm starts from constructing an
FLRM matrix E using the method stated in [16] and E satisfies (9a). This matrix has no
length 6 cycle with S5 = 0 or S6 = 0. Then, we calculate path metrics defined in (6) for
all 3× 3 submatrices and record the results in a accumulated vector Sum where the eth

element, Sum(e), is the number of length 6 paths for which Si = e for some i ∈ {1, 2, · · · , 6}.
An example for Sum is illustrated in Figure 2 with J = 5, L = 20.

Algorithm 1 Construct E with the minimum P = P†
min

Require: J, L
Ensure: E and P†

min
1: construct E

′
satisfing (9a) as [18];

2: Initialize Sum = 0; Pinit = aJ−1 × (L− 1)
3: for (∀i, j, k, x, y, z; 0 ≤ i < j < k < J, 0 ≤ x < y < z < L) do
4: For each 3× 3 submatrix, calculate path metric Si, i = 1, 2, · · · , 6 with (6);
5: for (i = 0 : 6) do
6: Sum(Si) + +;
7: end for
8: end for
9: for (e = max{aJ−1, L− 1} : Pinit) do

10: Candidate = True
11: for (r = 1 : Pinit/e) do
12: if Sum(e× r) 6= 0 then
13: Candidate = False; break;
14: end if
15: end for
16: if Candidate = True then
17: Etemp = E

′
(mod)e

18: for (∀i, j, x, y, 0 ≤ i < j < J, 0 ≤ x < y < L) do
19: For each 2× 2 submatrix, calculate determinant D = det

(
E(i,j,x,y)

temp,4

)
20: if D = 0(mod)e then
21: Candidate = False; break;
22: end if
23: end for
24: end if
25: if Candidate = True then
26: P†

min = e; break;
27: end if
28: end for
29: E = Etemp
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Figure 2. An example for the value of Sum for J = 5, L = 20.

If the Tanner graph has no length 6 cycle under CPM size P, then there will be no
path metric such that Si = 0(modP), or Si = rP, for i ∈ {1, 2, · · · , 6} and r ∈ {1, 2, · · · }.
This is reflected in Sum as Sum(P) = Sum(2P) = Sum(3P) = · · · = 0. In Algorithm 1,
the lines 11∼15 check this condition. Note that if the FLRM matrix contains no length
6 cycle, it does not mean that it contains no length 4 cycle. Thus, in lines 17∼23, we
check (4) for all 2× 2 submatrices. The algorithm searches the indices of Sum in range
max{aJ−1, L− 1} ≤ e < P∗min. The new lower bound P†

min is the minimum index of the
zero elements of Sum.

P†
min = argmin

max{aJ−1, L− 1} ≤ e < P∗min,
1 ≤ r < P∗min/e

{Sum(e× r) = 0}. (13)

It is possible that the Tanner graph corresponding to the FLRM matrix has only ’X’
type cycles or only ’L’ type cycles. Combining Theorems 1 and 2, the properties concerning
these cases are summarized as the following theorem:

Theorem 2. The cycles in the Tanner graph corresponding to FLRM matrix E have the follow-
ing properties:

1. If P ≥ P∗min and there exists triple (ai, aj, ak), 0 ≤ i < j < k < J such that
(na + ma)/ gcd(na, ma) < L, then all cycles of length 6 are type ’X’ cycle.

2. If P < P∗min and (na + ma)/ gcd((na, ma) ≥ L for all triples (ai, aj, ak), 0 ≤ i < j < k < J,
then the number of 6 length cycles equals to Sum(P)× P.

For index e, Sum(e) is the number of length 6 cycles under CPM size P = e. It can be
seen from Figure 2 that, as the CPM size increase, the number of length 6 cycles decrease
rapidly. Latter in Section IV, we can see that number of length 6 cycles has critical influences
on the performance.

Some results on the new lower bound P†
min are shown in Tables 1 and 2, where PN

denotes the number of valid P below the original lower bound P∗min in [16]. From these
Tables, it can be seen that the new lower bound is significantly smaller than the original
one. In cases J = 5 and L = 13, the new lower bound P†

min is about 40% lower than P∗min.
In the case of J = 6, the reduction is about 45% for most values of L. The reduction ratio
becomes even larger when J and L increase.
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Table 1. (5, L) girth-eight FLRM code with minimum CPM size.

L a0a1a2a3a4
P∗

min

Lower Bound in [18]

P†
min

New Lower Bound

PN

Number of P Below P∗
min

5 0, 1, 5, 11, 12 49 49 0

6 0, 1, 8, 9, 14 71 63 1

7 0, 2, 7, 11, 16 97 67 5

8 0, 1, 8, 11, 18 127 111 4

9 0, 2, 9, 13, 20 161 103 9

10 0, 1, 10, 11, 23 208 143 8

11 0, 1, 11, 18, 23 231 165 8

12 0, 1, 14, 15, 26 287 221 10

13 0, 2, 13, 17, 28 337 199 21

14 0, 1, 14, 17, 30 391 285 19

15 0, 1, 17, 18, 32 449 368 16

16 0, 1, 16, 23, 33 496 407 15

17 0, 1, 17, 22, 35 561 357 21

18 0, 1, 18, 23, 37 630 529 21

19 0, 1, 19, 32, 39 703 595 21

20 0, 1, 20, 23, 42 799 525 41

Table 2. (6, L) girth-eight FLRM code with minimum CPM size.

L a0a1a2a3a4a5
P∗

min

Lower Bound in [18]

P†
min

New Lower Bound

PN

Number of P Below P∗
min

6 0, 2, 7, 11, 16, 18 91 63 7

7 0, 2, 7, 11, 16, 18 108 67 8

8 0, 1, 8, 11, 18, 19 134 134 0

9 0, 2, 9, 13, 20, 22 176 103 13

10 0, 1, 10, 11, 23, 24 217 217 0

11 0, 1, 11, 14, 24, 25 251 251 0

12 0, 2, 13, 17, 28, 30 331 199 24

13 0, 2, 13, 17, 28, 30 361 199 26

14 0, 1, 14, 17, 30, 31 404 315 1

15 0, 2, 15, 19, 32, 34 477 259 34

16 0, 5, 16, 23, 34, 39 586 357 49

17 0, 1, 17, 22, 38, 39 625 399 4

18 0, 1, 18, 23, 40, 41 698 501 6
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Table 2. Cont.

L a0a1a2a3a4
P∗

min
Lower Bound in [18]

P†
min

New Lower Bound
PN

Number of P Below P∗
min

19 0, 2, 19, 23, 40, 42 757 403 53

20 0, 1, 20, 23, 42, 43 818 693 1

High-rate LDPC codes require sufficiently large L. The lower bound P∗min in [16,18]
is roughly in line with L2 × b(J − 1)/2c since a2i > L× i and aJ−1 are very close to aJ−2
for even J. The code length N = P× L ≈ L3 × b(J − 1)/2c grows with L3. With the new
lower bound P†

min, the limitation on N can be greatly reduced, which is significant for the
construction of high-rate girth-8 QC-LDPC with small FLRM matrix sizes.

Note that when J ≤ 4, we have P∗min = P†
min for all L. This is because aJ−1− a0 is small;

hence, the summations of the paths are enough to iterate over all available values under
(aJ−1 − a0)(L− 1) + 1.

3. Construct Girth-8 GC-LDPC with New Lower Bound

In general, the parity check matrix of the GC-LPDC has the following structure:

Hgc =


H0

L
H1

L
. . .

Ht−1
L

HG

, (14)

where Hi
L, i = 0, 1, · · · , t− 1 is the local parity check matrix of ith local codeword, and HG

is the global parity check that connects all local codes together. The GC-LDPC codeword
can be decoded globally with Hgc, or it firstly decodes each local codeword with Hi

L and
then decodes the entire codeword with HG. Figure 3 illustrates the Tanner graph of GC-
LDPC code with a general structure. The circle/square symbol indicates the variable/check
nodes, respectively. From Figure 3, it can be seen more intuitively that local codes update
and exchange information through the global check node.

0 1t 

Local part

Global part

Figure 3. GC-LDPC’s Tanner graph.

3.1. Review of the Construction of GC-LDPC Code

The GC-LDPC code is generally derived from the well-designed J × L regular matrix
with girth six. The designed matrix is then deformed into the GC-LDPC code using
displacement, masking, and dispersion.

In [24], the GC-LDPC code is constructed on GF(q), and the matrices are provided by
the following:
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B1 =


α0 − 1 α − 1 · · · αq−3 − 1 αq−2 − 1

αq−2 − 1 α0 − 1 · · · αq−4 − 1 αq−3 − 1
...

...
. . .

...
α − 1 α2 − 1 · · · αq−2 − 1 α0 − 1

,

B2 =


1 1 · · · 1
1 β · · · βp−1

...
...

. . .
...

1 βp−1 · · · (βp−1)
p−1

,

(15)

where α is a primitive element over GF(q), β = αe, andq− 1 = pe. Any 2× 2 submatrix of
B1 and B2 is non-singular, which guarantees that B1 and B2 are free of length 4 cycles.

A Reed–Solomon code has been used in [27] to construct the GC-LDPC code on GF(2s).
Let α be the primitive element of GF(2s), 2s − 1 = c× n, c is the primitive factor of 2s − 1,
and γ = αc. The elements of vector s = (1, γ, γ2, ..., γn−1) are the cyclic elements over
GF(2s) with order n. Since the n’s smallest prime factor is ps > d, BRS(d, n) given by
the following:

BRS(d, n) =


1 γ · · · γn−1

1 γ2 · · · (γ2)
n−1

...
...

. . .
...

1 γd · · · (γd)
n−1

 (16)

and it satisfies the 2× 2 constraint (4). The construction methods above are based on a
matrix satisfying the 2× 2 constraint, and then we obtain all local codes and global parts
using segmentation, masking, and re-organization.

The Reed-Solomon-Like construction is proposed in [28] which makes the design of
GC-LDPC code more flexible. The local and global codes can be individually designed
as follows:

RS(a, b, d) =


γ0 γa γ2a · · · γa(b−1)

γ0 γ2a γ4a · · · γ2a(b−1)

...
...

...
. . .

...
γ0 γad γ2ad · · · γda(b−1)

, (17)

where a denotes the scaling factor, and b and d are the numbers of columns and rows of
RS(a, b, d).

To avoid the length 4 cycles between global and local parts, the number of rows of
local codes and global check should be constrained to dL <

⌊
bL
aL

⌋
and dG < min{aL},

respectively, where the subscript L and G indicate that the parameter belongs to local codes
or global part. With the same set of parameters, the codes derived from above methods
have a similar performance. For this reason, only the Reed–Solomon-Like method is used
as the comparison scheme since this construction method is more flexible.

3.2. GCD-Based GC-LDPC Code

The GC-LDPC can be obtained through the matrices designed above with some
operations without changing the property of the cycle. In the following, we will apply the
GCD method to construct girth eight GC-LDPC codes.

Construction 1. We generate the girth 8 FLRM matrix through Algorithm 1 for the code with column
weight L. The number of rows, di

L, i ∈ [0, t), and dG is set in accordance to the code rate’s requirement.
The first dLMax rows of the matrix are split into Ei

L, where dLMax = max(di
L) ≤ L− dG. Finally, Ei

L
is rearranged into diagonal forms, as shown in Figure 4.
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Figure 4. Illustration of construction 1.

With Construction 1, the code rate is given by r1 ' 1−∑(di
L)/J. Increasing r1 requires

an increase in J. Since the lower bound of P increases rapidly with the increase in J, the code
length N = Pmin × J will soon become unacceptable. To address this problem, we provide
Construction 2 as follows.

Construction 2. In Construction 2, the FLRM matrix generated via Algorithm 1 is split into
two parts, namely EG and EMax

L , with size the as 1 × J and (L − 1) × J, respectively. Then,
the two sub-matrices are copied t times and interleaved along columns, as shown in Figure 5II.
According to the requirements of each sub-matrix, each interleaved copy is cut, and then global and
local sub-matrices are obtained as illustrated in Figure 5II. At last, these matrices are rearranged
into the form as illustrated in Figure 5III.
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Figure 5. Illustration of Construction 2.
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The rate of this code is r2 = ∑(di
L)/(t × J). In case di

L = L− 1, the code rate is
r2 = [t(L− 1) + 1]/(t× J). The global part is limited to having a dG = 1 row to ensure that
no new cycles occur in the global part.

If necessary, the column cyclic mask can be used in the construction to reduce the
column’s weight. Let m = (m0, ..., mJ−1)

T be the binary cyclic mask vector. The elements
of cyclic mask matrix M are given by Mi,j = m(i+j+c)(mod J), i ∈ [0, J), j ∈ [0, L) where c is
the randomly selected initial offset. For example, if all local codes have the same size of
5× 8, the weight of m is Mn = 1; then, with the randomly generated m = (0, 0, 1, 0, 0)T

and c = 0, the mask matrix is constructed as follows:

M =


0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1

, (18)

where the entries with value ’1’ indicate the positions to be masked in local codes Hi
L of the

same positions.
The focus of the code’s construction is to achieve girth 8. For the decoding of LDPC

codes, the short cycles will lead to inappropriate messages passing among nodes or error
propagation. Moreover, these short cycles can form the local structure of trapping set and
stopping set. All these issues will cause performance degradation. Therefore, the LDPC
code should be carefully designed to avoid short cycles.

4. Simulation Results

In this section, we use simulations to verify the proposed GC-LDPC code. All codes in
this section were simulated in the AWGN channel with BPSK modulations. The min-sum
algorithm with a scaling factor 0.55 is used in decoding, and the maximum iteration number
of local/global decoding is 50.

We also use the extrinsic information transfer (EXIT) chart to compare the conventional
GC-LDPC code and the proposed codes. The mutual information is given by the following:

I = 1−
∫ ∞

−∞

1√
2πσ2

e−
(u−σ2/2)

2

2σ2 log
(
1 + e−u)du, (19)

where σ2 is the variance of the LLR value.

4.1. Comparison of Grith 8 and Grith 6 GC-LDPC Codes

In the following, the proposed code is referred to as code1. We use notation code2,
code3, and code4 to denote the baseline codes used for the comparison. The details of
these codes are as follows.

code1: The construction of code1 begins with Algorithm 1, which outputs the matrix
E of size J × L = 4× 20 and the minimum CPM size of P = Pmin = 400. Then, we perform
Construction 2 with the number of local matrices as t = 2 and the size of local matrices
as 3× 20. The girth of code1 is 8, the size of the exponential matrix is 7× 40, the code
length is N1 = 16,000, and the code rate is r1 = 0.829. The column weight of local matrices
is wL = 3, and the column weight of the entire matrix is ww = 4.

code2: This code is constructed with a Reed–Solomon-Like scheme [28]. E comprises
three RS(3, 131, 3) local matrices and one RS(1, 393, 1) global matrix. Then, the code was
slightly changed to match the parameters with code1. Finally, the size of exponential
matrix is 7× 40, the CPM size as 393, the code length is N2 = 15,720, and the code rate is
r2 = 0.834.

code3: This code is constructed to observe the relationship between the performance
of GC-LDPC code and the number of length 6 cycles. We construct the grith 6 FLRM
matrix B with the vector of row indices a = (0, 1, 2, 3) and the vector of column indices
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b = (0, 1, . . . , 19). The CPM size is P = 400, the size of exponential matrix is 7× 40, the code
rate is r3 = 0.825, and the code length is N3 = 16,000. According to Theorem 2 , this code
has no length 4 cycle and no ’L’ type length 6 cycle. All 3× 3 sub-matrices involve a large
number of length 6 cycles of type ’X’. According to the statistics data obtained in simulation,
there is a total of 1.08× 107 length 6 cycles in code3.

code4: The matrix E of code4 is constructed with the GCD method as in code1.
The CPM size is P = 393, the code rate is r4 = 0.825, and the code length is N4 = 15, 720.
This code only has type ’L’ length 6 cycles. It was observed from the results of Sum in
Algorithm 1 that the code has 3.2× 103 length 6 cycles.

Figure 6a compares simulated bit error rate (BER) and frame error rate (FER) perfor-
mance of code1∼code4. From this figure, we can see that the proposed code1 has the best
performance, code4 is in the second position, and code3 is the worst. Note that code1,
code3, and code4 are all constructed with the GCD method. The difference mainly lies
in the number of length 6 cycles, which is 0, 1.08× 107, and 3.2× 103 for code1, code3,
and code4, respectively. The comparison in Figure 6a indicates that the performance of
the GC-LDPC code is seriously affected by the number of length 6 cycles. The reason that
code3 has the worst performance is that this code contains more length 6 cycles than other
codes. It is worth noting that although the girth of code1 is 8, while the girth of code2 and
code3 is 6, the performance of code1 is only slightly improved compared to the other two.
The EXIT charts of codes 1, 2, 4 also indicate that the GCD-based GC-LDPC and Reed–
Solomn-Like GC-LDPC have nearly the same performance. An interest observation from
Figure 6 is that the dominant factor affecting the error rate’s performance is the number of
length 6 cycles rather than the girth. Therefore, the designer does not have to guarantee
girth 8. The more important concern should be the number of length 6 cycles. In other
words, it may not be necessary to select a P corresponds to the zero element of Sum in
Algorithm 1. A P value for which ∑

r
(Sum(P× r)) is relatively small may be sufficient.
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Figure 6. Comparison of the GC-LDPC codes with different numbers of 6-cycles. (a) BER/FER
performances. (b) EXIT chart.

4.2. GC-LDPC Code with Minimum Size CPM

In this section, we consider some GC-LDPC codes for which GCD-based FLRM
matrices are generated with L and a selected from Tables 1 and 2. The code is constructed
with Construction 2 mentioned in the last section, and the column cyclic mask is used to
mitigate the column’s weight.

case 1 J = 5

In this case, we consider two codes, code5 and code6, with parameters listed in
Table 3.



Sensors 2022, 22, 7335 13 of 15

Table 3. The parameters of code 5 and 6.

J × L P N r t

code5 5× 14 285 11, 970 0.692 3

code6 5× 16 407 19, 536 0.731 3

In the AWGN channel, the best range of column weight is wc = [3, 4]. We use the
column cyclic mask of Mn = 1 to reduce wc to 3. The masked codes are denoted as code5
mask1 and code6 mask1. The code rate of code5 mask1 is r = 0.69, and it is r = 0.729 for
code6 mask1. Figure 7 indicates that both the original codes and the masked codes have
shown good BER/FER performances without an error floor. Note that code 5 has short
lengths but improved performances than code 6. This is because code 5 has a smaller code
rate. With a code length as large as code 5, the performance is dominated by the code rate.
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Figure 7. Performance of code5, code6, code5 mask1, and code6 mask1 for J = 5. (a) BER. (b) FER.

case 2 J = 6

In this case, the 6× 13 FLRM matrix is used to construct code7 with Construction 2.
The CPM size is P = 199, the number of the local codes is t = 3, the code length is N = 7761,
and the code rate is r = 0.591. The column cyclic mask of weight Mn = 1 or 2 is applied,
and the masked codes are denoted as code7 mask1 and code7 mask2. The code rate of
masked codes are both r = 0.59. The simulated error rate performance is shown in Figure 8.
This results indicates that the GC-LPDC codes with different column weight requirements
can be obtained using the method of GCD-based FLRM matrices and column cyclic masks,
and these codes have good performances without ab error floor.
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Figure 8. Performance of code7, code7 mask1, and code7-mask2 for J = 6. (a) BER. (b) FER.
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5. Conclusions

In this paper, we show that the lower bound of CPM’s size can be even lower than what
we known from the previous literature. An algorithm is proposed to find the minimum
size of CPM for the GCD-based FLRM matrix. Based on this algorithm, two construction
methods were proposed to construct girth 8 GC LPDC codes. In addition, we find that the
dominant factor that affects the performance is the number of length 6 cycles rather than
the girth. With the proposed algorithm, the CPM size can be 45% less than that given by a
sufficient condition of girth 8. Compared with the conventional GC-LDPC construction,
the codes constructed with the proposed method have better performances and are more
flexible in code length and code rate design.
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