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Abstract: In this paper, we present an assessment framework that can be used to score segments of
physical and digital infrastructure based on their features and readiness to expedite the deployment
of Connected and Automated Vehicles (CAVs). We discuss the equipment and methodology applied
for the collection and analysis of required data to score the infrastructure segments in an automated
way. Moreover, we demonstrate how the proposed framework can be applied using data collected
on a public transport route in the city of Zilina, Slovakia. We use two types of data to demonstrate
the methodology of the assessment-connectivity and positioning data to assess the connectivity and
localization performance provided by the infrastructure and image data for road signage detection
using a Convolutional Neural Network (CNN). The core of the research is a dataset that can be used
for further research work. We collected and analyzed data in two settings—an urban and suburban
area. Despite the fact that the connectivity and positioning data were collected in different days
and times, we found highly underserved areas along the investigated route. The main problem
from the point of view of communication in the investigated area is the latency, which is an issue
associated with infrastructure segments mainly located at intersections with heavy traffic or near
various points of interest. The low accuracy of localization has been observed mainly in dense areas
with large buildings and trees, which decrease the number of visible localization satellites. To address
the problem of automated assessment of the traffic sign recognition precision, we proposed a CNN
that achieved 99.7% precision.

Keywords: cooperative, connected and automated mobility; infrastructure readiness assessment;
connectivity data; positioning data; convolutional neural network

1. Introduction

Connected and Automated Vehicles (CAVs) are expected to bring tremendous social,
economic and environmental benefits, including increased road safety, addressing of road
congestion and decreased environmental impact due to less wasted fuel thanks to improved
vehicle management [1,2]. However, even the strongest supporters of the idea that vehicles
should be as independent of the infrastructure as possible already accept the fact that
automated driving can safely work only in specific Operational Design Domains (ODDs) [3].
Therefore, the physical and digital infrastructure already plays a role in the design and
functioning of CAVs.

The preparation of infrastructure for automated driving is a multifaceted challenge,
including components such as connectivity, provision of localization and mapping services,
machine-readable road signage, and CAV-friendly road geometry and is a time-consuming,
costly task requiring thorough planning. As highlighted in reference [4], automated driv-
ing functions relying on the infrastructure are often regarded from the perspective of a
chicken-and-egg situation—infrastructure investments are postponed in an expectation
that vehicle manufacturers take the lead and implement the related applications and vice
versa. While Automated Driving Systems (ADS) are still under development, some of their
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basic requirements on the physical and digital infrastructure are already clear. Therefore, a
complex assessment framework to help infrastructure providers evaluate the state of the
infrastructure in terms of its readiness to support automated driving can be beneficial to
help identify the essential areas of intervention and plan the investments and the timeline
of infrastructure upgrades.

Artificial Intelligence (AI) is one of the key enabling technologies for the deployment of
CAVs. Being an essential component responsible for a CAVs perception of the environment
and decision making, application of AI in the context of CAVs has been a thoroughly
investigated topic by both academia and industry. Interested readers are referred to the
works of Ma et al. [5] and Li et al. [6] for thorough surveys on the state-of-the-art of
implementing AI in CAVs.

Cybersecurity is another crucial aspect of CAVs operation that needs to be carefully
considered. Ge et al. [7] proposed an algorithm to address the problem of resilient and
safe platooning control of CAVs that are under denial-of-service attacks disrupting the V2V
communication. Khan et al. [8] developed a conceptual system dynamics model to analyze
the cybersecurity of CAVs. The model integrates six critical areas and their corresponding
parameters that either enable or mitigate attacks on CAVs operation.

Several studies have already explored the key requirements on infrastructure for
automated driving and assessed their impact on the performance of CAV operation.
Carreras et al. [9] proposed a classification scheme to classify and harmonize the capa-
bilities of a road infrastructure to support CAVs. Similarly to SAE levels of Driving
Automation [10], the authors propose five levels of infrastructure support ranging from no
support up to support sufficient to facilitate cooperative driving.

Mackenzie et al. [11] performed an assessment of line markings at multiple sites along
Australia’s Great Southern Highway using two vehicles equipped with a lane departure
warning system and two cameras. The authors conclude that the failure to accurately detect
line marking crossing events can be most often attributed to the absence of a marked line,
vehicle travel speed being lower than the speed recommended for system operation by the
manufacturer, bad condition of lane markings and the low line marking retro-reflectivity
and/or daylight brightness.

Magyari et al. [12] conducted a study on sight distances at unsignalized intersections,
comparing the minimum required sight distances between automated and human-driven
vehicles. The authors demonstrated that automated vehicles require 10–40 m shorter sight
distances than conventional vehicles.

Liu et al. [13] identified infrastructure aspects that should be considered to be up-
graded based on the gap between their current state and future requirements of CAVs. The
authors concluded that the main infrastructure intervention areas that currently require
attention should be traffic signs and road markings, communications, pavement structure
and road surface, parking lots, service stations, safe harbor areas, roundabouts, bridges,
drainage and geotechnical aspects.

Nitsche et al. [14] conducted a study about the requirements on road transport
infrastructure for highly automated vehicles focusing on automation Levels 2–4. The
methods used in the study consist of a literature review and an online survey with
54 multidisciplinary experts. The study identified the factors with the largest impact
on the performance of ADS in three categories: lane assistance systems, collision avoidance
systems and speed control systems. The authors also argued that the complex urban envi-
ronments, temporary work zones and poor visibility due to bad weather conditions are the
major infrastructure challenges for automated driving systems.

Madadi et al. [15] carried out an assessment of road network readiness based on a
workshop including experts who judged images of specific infrastructure segments. Each
of the two rounds of judgements was followed by a group discussion and a summary. The
authors conclude that the experts identified many similar issues for different instances of
roads and intersections.
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Although there are numerous approaches already presented in the literature that
aim at assessing the readiness of infrastructure for automated driving, those approaches
are either limited to the assessment of a single performance indicator, do not provide
measurable performance indicators at all, or rely on a per-segment evaluation performed
by experts. Evaluation by a group of experts is both time-consuming and expensive for
evaluating larger infrastructure networks. Moreover, it also brings the challenge of personal
perception and subjective evaluation of readiness, as can be seen from often contradictory
human assessments of the same infrastructure segment.

To allow large-scale, automated assessment of the physical and digital infrastructure
readiness for automated driving, key aspects of the infrastructure contributing to the safe
and reliable operation of CAVs and their minimum requirements in terms of measurable
performance indicators have to be identified. Furthermore, a common methodology for the
collection of required data, their processing and evaluation is essential to be developed,
which, to the best of our knowledge, has not been presented in the available literature yet.

It is noteworthy to mention that the proposed assessment framework does not cover
all the requirements of automated driving, as many of them are still under development.
However, the framework provides a tool to infrastructure providers that can quickly and
cheaply assess the extent to which the already known fundamental requirements are
met and support them with identifying segments and specific interventions needed for
increasing their readiness for automated mobility. The framework presented herein aspires
to contribute toward solving the above-mentioned chicken-and-egg loop by providing a
simple yet robust basis to identify the areas where infrastructure investments are necessary,
regardless of the further developments in automated driving functions down the line.

The scientific and practical contribution of this paper can be summarized as follows:

• We propose a novel assessment framework to help infrastructure operators evaluate
the readiness of physical and digital infrastructure for automated driving based on
a set of indicators derived from the literature review on infrastructure requirements
for CAV;

• We propose a data-collection setup and data processing methodology for collect-
ing and evaluating data on the infrastructure necessary for the application of the
assessment framework;

• We demonstrate the data collection and processing approach as well as the experimen-
tal results on a part of infrastructure in the city of Žilina, Slovakia.

The rest of the paper is organized as follows. The framework for assessment of
physical and digital infrastructure for CAVs is described in Section 2. Section 3 contains a
description of the data collection for connectivity, positioning and image data. The applied
methods and methodology are described in Section 4. The achieved experimental results
are presented in Section 5. Finally, Section 6 concludes by summarizing the results of this
study, its contribution and further suggestions for future research.

2. Framework for Assessment of Physical and Digital Infrastructure Readiness
for CAVs

In this section, we present the framework that we developed to assess the infrastructure
readiness for Cooperative, Connected and Automated Mobility (CCAM). The framework
is based on an extensive literature review of the requirements of CCAM, as well as on
current industry best practices, anticipating the future requirements of various components
of automated driving.

The framework aims to assess the infrastructure in five key areas crucial for CCAM
implementation—connectivity, localization, machine-readable signage, and maps and
object detection. For each area, a set of indicators is presented. A scoring grid mapping a
score to an indicator value is assigned to each indicator. It is worth noting that the number
of indicators selected for assessment of each area, as well as their corresponding assessment
grids, may be subject to change and will be continually revised as new requirements for
CCAM emerge or the currently identified ones are further clarified and quantified. The
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indicators for the current framework version has been selected in regard to the data that
are either available now, or can be collected with a currently available technology. It should
be noted that currently, it is not practical to provide an overarching index for each of the
assessment areas since the level of impact of individual indicators on the performance of
CAVs is not entirely clear yet. Therefore, the infrastructure assessment should be performed
on a per-indicator basis.

The result of an assessment of an infrastructure segment is a numerical index, which
represents the readiness of the evaluated road segment for CAVs deployment in the context
of the corresponding indicator. This index can be useful for objective evaluation of the
current status of infrastructure readiness and for planning and prioritizing future infras-
tructure upgrades, expansion and investments to increase its readiness to CAVs. The
framework is presented in Tables 1–5.

Table 1. The assessment framework—connectivity area.

Indicator Value Score

Communication latency

x < 1 ms 1
1 ms ≤ x < 50 ms 0.75

50 ms ≤ x < 100 ms 0.5
x ≥ 100 ms 0

x < 0.001% 1
Message loss 0.001% ≤ x < 10% 0.5

x ≥ 10% 0

x ≥ 1 Gbit/s 1
24 Mbit/s ≤ x < 1 Gbit/s 0.75

Bitrate per vehicle 8.5 Mbit/s ≤ x < 24 Mbit/s 0.5
300 kbit/s ≤ x < 8.5 Mbit/s 0.25

x < 300 kbit/s 0

Table 2. The assessment framework—localization area.

Indicator Value Score

x > 20 1
15 ≤ x < 20 0.75

Average number of satellites 10 ≤ x < 15 0.5
5 ≤ x < 10 0.25

x ≤ 5 0

x ≥ 4 1
x = 3 0.75

Number of using satellites x = 2 0.5
x = 1 0.25
x = 0 0

x < 0.1 m 1
GNSS lateral localization error 0.1 m ≤ x ≤ 0.2 m 0.5

x > 0.2 m 0

Table 3. The assessment framework—object detection distance area.

Indicator Value Score

Intersection sight distance

Vd = 62.5 km/h
x ≥ 183 m 1

148 m ≤ x < 183 m 0.75
113 m ≤ x < 148 m 0.25

x < 113 m 0
Vd = 112.5 km/h

x ≥ 329 m 1
266 m ≤ x < 329 m 0.75
203 m ≤ x < 266 m 0.25

x < 203 m 0

Infrastructure for remote Yes 1
sensor sharing available No 0
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Table 4. The assessment framework—quality of maps area.

Indicator Value Score

Static and dynamic infrastructure is available on the map and
available to the CAV. Based on the information on the map the
vehicle can perceive microscopic traffic situations in real time.

1

Quality of maps
Digital map with detailed lane information and static road signs is

available. Traffic lights, short-term road works and variable
message signs have to be recognized by AVs.

0.75

Digital map is available but vehicle has to recognize lane geometry
and/or road signs. 0.25

No digital map is available. The vehicle has to recognize road
geometry and traffic signs on its own. 0

Table 5. The assessment framework—machine-readable signage area.

Indicator Value Score

Precision of horizontal signage detection

x ≥ 99% 1
90% ≤ x < 99% 0.5
80% ≤ x < 90% 0.25

x < 80% 0

Precision of vertical x ≥ 98% 1
signage detection x < 98% 0

2.1. Connectivity of Vehicles

It is already a well-accepted fact that connectivity and V2X communication will play
a crucial role in the automation of road transport and addressing its safety challenges. A
good example is a work by Zadobrischi et al. [16], who developed a system for analysis and
management of dangerous situations that can detect a wide range of potentially hazardous
conditions, including driver’s psychosomatic conditions, as well as attributes of nearby
vehicles and pedestrians. The system communicates with various traffic safety elements
through V2X radio frequency (RF) or Visible Light Communication (VLC). In order to share
the detected hazards beyond the nearby connected vehicles in direct RF or VLC reach,
a connectivity infrastructure based on either Dedicated Short-Range Communications
(DSRC) Roadside Units (RSUs), or cellular networks has to be in place.

We would like to point out that the assessment framework for the connectivity area is
technology agnostic, i.e., communication infrastructure based on any current (e.g., DSRC,
4G- or 5G-based Cellular-V2X, VLC), or future communication technology can be consid-
ered for V2X communication as long as it meets the corresponding performance indicators.

The values of indicators used to evaluate the connectivity area are based on the already
identified requirements for V2X communications as well as on projected bandwidth needs
for AVs. While the amount of data collected by SAE Level 5 AV’s sensors is expected to
be huge [17], it is important to note that the majority of these raw measurements will be
processed and utilized locally.

The lowest possible boundary of the bit rate has been set to 300 kbit/s. This bit rate
corresponds to a connected vehicle broadcasting Cooperative Awareness Messages (CAM)
with a maximum length of 1500 bytes while receiving CAMs from one neighboring vehicle
at the same time with a message generation frequency of 10 Hz. If the infrastructure is not
able to support this level of service, then no deployment of Cooperative ITS is possible,
and therefore, the score of such an infrastructure segment would be equal to zero. On the
contrary, if the 300 kbit/s bit rate is available for each vehicle at the given road segment, a
score of 0.25 is awarded, indicating that at least a basic CAM service is available.

To achieve a score of 0.5, the infrastructure segment has to allow at least bi-directional
sharing of sensory information on top of the basic CAM service. A sharing of footage from
one automotive-grade camera with a resolution of 1280 × 1080 capturing a fairly complex
scene, including buildings and vegetation, at 30 frames per second encoded by H.265 codec,
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including one 128 kbit/s audio track has been assumed. The resulting bit rate necessary to
facilitate such traffic is 8.5 Mbit/s.

An infrastructure segment with a score of 0.75 is able to facilitate at least a bi-directional
sensor sharing of one camera and a LIDAR sensor as well as a basic CAM service. From
collected data, we empirically estimated the average bit rate of a 16-ray automotive LIDAR
sensor to 7.66 Mbit/s. Therefore, the resulting minimum bit rate per vehicle necessary to
achieve a score of 0.75 is 24 Mbit/s.

It is widely accepted that highly automated vehicles will utilize communication links
with bit rates beyond 1 Gbit/s for extensive sensor sharing and operational data exchange.
Therefore an infrastructure segment providing this level of service is awarded a score of 1.

To achieve the highest score in the message loss indicator, the communication infras-
tructure has to demonstrate at least 99.99% availability of service. On the contrary, if the
average packet loss is above 10%, it might mean a steady information loss from more than
one communicating vehicle, which, depending on the specific message content, might be
unacceptable. Therefore, such a segment receives a score of zero.

The last evaluated indicator within the connectivity area is communication latency.
The indicator values corresponding to the scores were derived from the networking and
connectivity requirements of V2X communication services presented in [18].

2.2. Localization of Vehicles

Precise localization is a fundamental element of automated driving. Global Navigation
Satellite Systems (GNSS) have become common tools to determine the precise location of
vehicles and other road participants. Within the localization area of the framework, we
evaluate four indicators (see Table 2) that provide insight into the availability and precision
of the localization achievable by the GNSS at the given infrastructure segment.

Most GNSS techniques work with as few as five satellites. However, the redundancy
is important for a number of reasons. First, the large number of satellites increases GNSS
availability by providing service even if local obstructions block a significant part of the
sky—a situation very common, especially in urban environments. Second, as demonstrated
in [19], the performance of a three-constellation system, which sees only satellites more than
32 degrees above the horizon is equivalent to a single-constellation system in an open-sky
scenario. Third, GNSS systems are developed independently, which allows performing
cross-checking between constellations, enabling integrity guarantees [20]. Therefore, the
average number of satellites as well as the number of available constellations a GNSS
receiver can see when driving along the evaluated road segment are important indicators
impacting the availability and performance of the localization service.

The values of the GNSS lateral localization error indicator corresponding to individual
scores were derived using a methodology described in [21]. The lateral localization error
below 0.1 m means that the vehicle is capable of determining its lane on a local road reliably
(assuming a lane width of 3 m and a curvature of 20 m). If the lateral localization error is
below 0.2 m, the vehicle is capable of determining its lane reliably on a highway (assuming
a lane width of 3.6 m and speed of up to 137 km/h). If the lateral localization error is above
0.2 m, the vehicle might not be capable of determining its lane reliably.

It is worth noting here that the precision of the map also has to be factored in when
evaluating the lateral localization precision. We assumed an equal error budget for the
GNSS and the map.

2.3. Object Detection

The distance and reliability of object detection play a crucial role in automated driving
as it is one of the key inputs into the CAV’s decision-making. Currently deployed CAVs
use a multitude of sensors for object detection and advanced algorithms to classify those
objects and assign them meaning. Most commonly used technologies use Light Detection
and Ranging (LIDAR), Radio Detection and Ranging (RADAR) and camera sensors.
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These sensors are usually embedded in the vehicle, but the infrastructure too can
support the object detection either by transmitting information from sensors deployed
along the road to the CAVs, hence extending their sensing capability beyond the onboard
sensors’ line-of-sight, or by its geometry that accounts for the limitations of CAV sensing
technologies.

An important attribute of the road infrastructure affecting the ability of CAV to detect
other vehicles in time and prevent potentially dangerous situations, especially in an urban
setting, is Intersection Sight Distance (SD). According to the methodology presented in the
study [12], the required intersection sight distance along a major road SD for an automated
combination truck can be computed as:

SD = 0.278 Vdtc −
Vd(tR1 − tR2)

3.6
, (1)

where tc is an acceptable time gap to enter the major road, Vd is the design speed of the
major road in km/h, tR1 is the reaction time of a conventional vehicle in seconds, tR2 is
the reaction time of automated vehicle in seconds.

The critical gaps for various vehicle types (passenger car, single-unit truck, combina-
tion truck) and maneuver types (left turn, right turn, crossing) are provided in the American
Association of State Highway and Transportation Officials Green Book [22]. From the road
design point of view, we consider the worst-case scenario of a combination truck trying
to perform a left turn at a STOP-controlled intersection. In such a scenario, the value of tc
is 11.5 s.

Dixit [23] estimated the value of an automated vehicle’s reaction time to 0.8 s, while
Guzek [24] provided the human driver’s reaction time on the brake pedal in the range
between 1.2 and 2.2 s. We assume the difference in human-driven and automated vehicle’s
reaction times of 1 s, a reasonable assumption commonly used in many studies, e.g.,
Schoettle [25]. However, it is worth noting that some studies, e.g., Rossi [26], point out
that in the case when a driver has to take over the driving tasks from a Level 4 automated
vehicle, the reaction time of the driver is, in fact, much larger than in the case of a manually
driven vehicle. We do not consider this phenomenon for sight distance calculations.

In Table 3, we present the values of SD calculated for a passenger car, single-unit truck
and combined truck for speeds of 50 and 90 km/h, which are the usual speed limits for
urban roads and rural roads in Europe, respectively. It is worth noting here that the speed
limit is usually set in the range of 80–90% of the road’s design speed. Therefore, Vd of
62.5 and 112.5 km/h was considered for computing the indicator values for urban and
rural roads, respectively. A highway scenario has not been considered as the maneuvers
performed on the highway are different from the ones performed on urban and rural roads,
i.e., no left turns or crossings are allowed there.

The infrastructure segment that satisfies the SD criteria for the combination truck
is assigned a score of 1 in the framework. An intersection that satisfies the criteria for a
single-unit truck is assigned a score of 0.75. An intersection that satisfies the minimum SD
criteria for a passenger car is assigned a score of only 0.25 since its ability to provide safe
maneuvering space to any larger vehicle type than a passenger car might be severely limited.

The indicator “Infrastructure for remote sensor sharing available” refers to the ability
of the infrastructure to sense the traffic situation at the assessed road segment and share
its sensor data with the CAVs heading to that segment before they are able to detect
the situation with their onboard sensors. An example might be a pedestrian crossing
equipped with a radar sensor and Infrastructure-to-Vehicle communication capability to
share information about the presence of pedestrians in an area where the CAV’s sensor
detection range might be limited due to obstacles or road geometry.

2.4. Quality of Maps

Just as conventional vehicles, CAVs use outdoor structured roads whose basic at-
tributes such as location and geometry are a priori known. These static road data can be
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pre-created and provided to the vehicle. In combination with GNSS, inertial navigation
and odometry allow the vehicle to perform high-precision (centimeter level) positioning in
real-time, reducing the complexity and cost of the CAV’s systems significantly [27]. Once
the vehicle establishes its precise position on the road, it can use the a priori information
from the map to make decisions about maneuvers and navigation, some of which would
not be possible relying only on the sensor-based road model recognition methods [28].
Therefore, high-precision maps are considered one of the core enabling technologies for
automated driving.

Obviously, the available maps come with different levels of precision and provide
different richness of additional information about the infrastructure, ranging from the
provision of basic static data on road geometry to highly dynamic high-definition maps
updated in real-time and reflecting the current traffic situation.

Table 4 presents the indicator for the Quality of maps framework area with suggested
map attributes and corresponding scores.

It is worth noting here that for the purpose of assessment, the score of a road segment
without a fully updated map should correspond to the real state at the time of the data
collection, i.e., if the traffic signs on the map are not up-to-date, the segment should be
scored as there were no traffic signs on the map available at all.

2.5. Machine-Readable Signage

Road segments where either no high-definition map is available or where a mixed
traffic of conventional and CAV traffic is expected, CAVs need to detect and recognize
road signage using their own sensors. Numerous studies, e.g., [29,30], conclude that the
features of road markings that are key for their recognition by human drivers, such as
retroreflectivity and contrast, are also important in the case of marking detection by CAVs.

Table 5 presents the assessment framework and indicators proposed for the Machine-
readable signage area of infrastructure assessment.

We consider two indicators within this assessment area—precision of horizontal
signage detection and precision of vertical signage detection by an automated detection
system. We detail the CNN used to evaluate the precision of vertical signage detection
indicator from the collected sample data in Section 4.2. In this article, we will consider
only vertical marking (vertical signs). Road traffic participants will also be included in the
neural network training process.

Waykole et al., in [31], conducted an extensive literature review on lane detection and
tracking algorithms for advanced driver assistance systems. The authors conclude that
the lane detection and tracking efficiency rate under dry and light rain conditions is near
99% in most scenarios. Therefore, we adopt this value of precision for the infrastructure
segment to be scored by a score of 1. To achieve a score of 0.5, a segment of infrastructure
has to provide road markings clear enough to allow precision of detection in the range
between 90% and 99%, which is equivalent to a precision of a lane detection and tracking
system operating during the night at isolated highways. When the precision of horizontal
signage detection is between 80% and 90%, the infrastructure markings only provide a
performance equivalent to a vanishing point detection system operating on unstructured
roads. Such an infrastructure segment is awarded a score of 0.25.

Due to the high variation in detection results in different testing environments, the
evaluation of the precision of horizontal signage detection is a complex problem on its own,
requiring an extensive definition of test scenarios, which is out of the scope of this paper.
Therefore, we refer the interested reader to the relevant works summarized in [31] and
relevant automotive standards such as [32] for further details on measurement methodology
and test settings.
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3. Data Collection and Processing

In this section, we interpret the technical parameters of used data systems and describe
the parameters of positioning and the connectivity dataset. We also describe the system for
the collection of image data.

3.1. Connectivity and Positioning Data

To collect the connectivity and positioning data, a Mikrotik LtAP LTE6 wireless access
point and a Single-Board Computer (SBC) were used. LtAP LTE6 is a compact wireless
access point with built-in GPS. LTE connectivity was enabled by the Mikrotik R11e-LTE6
LTE modem connected to miniPCIE slot integrated in the Mikrotik LtAP LTE6 access point,
as shown in Figure 1. The used LTE modem belongs to the LTE CAT6 category and provides
a maximum download speed of 300 Mb/s and an upload speed of 50 Mb/s. The collection
system block diagram is shown in Figure 1.

For LTE transmission, an external 3dB wideband monopole LTE antenna with a
resonant frequency from 698–2690 MHz and an input impedance of 50 Ω was used. For
GPS reception, a Mikrotik ACGPSA external 26 dB, 50 Ω antenna with a resonant frequency
of 1575.4 MHz was used. To ensure effective communication, we installed both antennas
on the top of the testing vehicle’s roof, as illustrated in Figure 2.

Figure 1. Collection system block diagram [33].

Figure 2. Antenna placement view.

3.1.1. Positioning Data

The used device supports GPS, GLONASS, BeiDou and Galileo GNSS standards. The
following telemetry of GNSS was collected as is shown in Figure 3—GPS coordinates,
number of satellites used, Dilution of Precision (DOP) and fix quality.



Sensors 2022, 22, 7315 10 of 28

Figure 3. Block scheme of the position dataset.

The Dilution of Precision (DOP) is an important factor in determining positional
errors in a GPS system. It is the collection of satellites’ geometry constellation from which
signals are actually received. Basically, four satellites are the minimum required value
to determine a complete positional fix in three dimensions. DOP is calculated using
geometrical correlations between the position of the GPS receiver and the positions of
the GPS satellites. The exact locations of these satellites relative to the receiver have an
effect on the positional error. If the GPS receiver communicates with satellites spread
throughout the sky, the calculated position will be more accurate, and the DOP value will
be low. However, when satellites are close to each other, the calculated position will be less
accurate, and the DOP value will be high [34,35]. In the following table, the DOP value
rating is shown (Table 6).

Table 6. DOP value rating [34].

DOP Value Rating

<1 Ideal
1–2 Excellent
2–5 Good
5–10 Moderate

10–20 Fair
>20 Poor

The following metrics are used to describe DOP. Position Dilution of Precision (PDOP),
Horizontal Dilution of Precision (HDOP), Vertical Dilution of Precision (VDOP) and Time
Dilution of Precision (TDOP).

PDOP describes the number of satellites used that are spread in the sky. The more
satellites directly above GPS receiver are used, the lower the PDOP value is. The effect of
DOP on the horizontal position is described by HDOP. The HDOP and horizontal position
(latitude and longitude) are better when more GPS satellites are used. The effect of DOP on
the vertical (altitude) position is referred to as VDOP. The time difference between the GPS
satellites’ and the GPS receiver’s internal clocks are represented by TDOP. A low TDOP
value represents more accurate time synchronization. Because DOP metrics are derived
from convergence, they are not independent. For example, a high TDOP value represents
worse clock synchronization, and it has an effect on positional error [34,36,37].

The type of signal or technique used by the GPS receiver to establish its location is
represented by the GPS fix status telemetry. The number of GPS satellites and techniques
used by the GPS receiver are used to determine the GPS fix type technique. In general, the
fix quality rating is given by numbers ranging from one to five, as Table 7 shows. The fix
quality number represents the type of GPS technique that was used to determine location.
Each technique has a different accuracy. The used GPS technique can be GPSFix, Differential
GPS (DGPS), Precise Positioning System (PPSFix), Fixed Real Time Kinematic (RTK Fixed)
or Float Real Time Kinematic (RTK Float). The GPSFix describes a basic GPS technique
or Standard Positioning Service (SPS). SPS is a standard service provided to any user
worldwide, without qualification or restrictions. Based on US security interests, the accuracy
of this service is determined by the US Department of Defense [34,37]. Unlike GPSFix, the
DGPS technique utilizes a network of ground stations used to broadcast the divergence
between indicated position by GPS satellites and the real known position. PPSFix stands
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for most precise localization technique provided by GPS. Only the Federal Government
and military have access to this service, which is encrypted. The RTK Fixed technique is
used to optimize position accuracy calculated by DGPS. The technique is based on carrier
phase measurement of the GPS, GLONASS, Galileo. Thanks to high accuracy, this technique
is used for geodetic measurement purposes. On the other hand, RTK Float is a similar
technique as RTK Fixed but with low accuracy. The accuracy is decreased by skipping the
phase initialization process, which increases the speed of position calculation [34,38,39].

Table 7. GPS FIX status enumeration and technique accuracy [34,38,39].

FIX Quality Technique Accuracy (m)

1 GPSFix 15
2 DGPS 0.1
3 PPSFix <0.03
4 RTK Fixed 0.01–0.02
5 RTK Float 0.75–0.2

3.1.2. Connectivity Data

The following telemetry of LTE communication was collected, as is shown in Figure 4.
Communication latency, bandwidth, Signal Interference Noise Ratio (SINR), Received Sig-
nal Strength Indicator (RSSI), Reference Signal Received Quality (RSRQ), Reference Signal
Received Power (RSRP), E-UTRA Absolute Radio Frequency Channel Number (EARFCN),
Cell Identification (Cell ID), Channel Quality Indicator (CQI) and Rank Indicator (Ri).

Figure 4. Block scheme of the connectivity dataset.

Our priority was to emulate the Cellular-V2X (C-V2X), as there is currently no DSRC-
and VLC-enabled communication infrastructure available along the investigated route. We
set up SBC to send communication packets periodically to a virtual server. We chose a
packet length of 300 bytes and period of 100 ms since these values are commonly used to
represent a transmission of CAM [40]. The virtual server re-sent the packet back to SBC, as
is shown in Figure 5.

Each sent and received packet was marked with a time stamp by Network Time
Protocol. The two-way latency communication (∆t) was calculated depending on packet
transmit time (ttx) and packet received time (trx), as shown in equation:

∆t[ms] = trx − ttx . (2)

Signal Interference Noise Ratio (SINR) represents the signal quality based on the
strength of the wanted signal compared to the unwanted interference and noise. The
SINR is a metric used in cellular networks to determine if a particular frequency resource is
acceptable for maintaining a communication link. The network employs SINR to track radio
link and handover failures. In systems that employ multiple access technologies based on
frequency division, the scheduler can take SINR into account while allocating frequency
resources [41]. It is a signal quality metric that is established by the User Equipment (UE)
manufacturer instead of the 3GPP specifications. The basic SINR mathematical expression
is shown in Equation (3):
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SINR[dB] =
S

I + N
, (3)

where S stands for the strength of the usable signals. I stands for interference power of
signals or channel interference signals from other cells. N stands for background noise,
which is proportional to measurement bandwidths and receiver noise coefficients. Table 8
shows the standard SINR values and signal quality category.

Figure 5. Emulated CV2X Mode 3 communication scheme.

Table 8. Performance indicator standards for SINR [42].

Range (dB) Category

10 to 30 Excellent
3 to 10 Good
0 to −3 Fair

−20 to −3 Poor

Higher SINR values can affect the spectral efficiency as it enables the receiver to decode
a higher Modulation Coding Scheme (MCS). To provide the best possible User Experience,
the network operator attempts to optimize SINR at all locations, either by transmitting at a
greater power or by avoiding interference and noise [43].

SINR optimization can aid in achieving higher cell capacity by allowing higher QAM
modulation, which results in greater peak data rates, fewer missed calls, and an overall
better quality of user experience [44].

Received Signal Strength Indicator (RSSI) is an LTE metric that states how much overall
wideband power measured in symbols have been received, including all interference and
thermal noise. UE does not send RSSI values to eNodeB. It may be easily calculated using
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RSRQ and RSRP, which are instead reported by UE. The value is measured in dBm. RSSI is
defined as [45]:

RSSI[dBm] = S + I + N , (4)

where S, I and N are the same parameters as in the SINR equation.
Reference Signal Received Power (RSRP) and Refence Signal Received Quality (RSRQ)

are two main key signal level and quality indicators for current LTE networks. When
a UE goes from cell to cell in a cellular network and conducts handover, it performs a
measurement of the reference signal strength and quality of serving and neighbor cells for
successful execution of the handover process. In essence, it is the power of the received
signal from eNodeB by UE [42]. Based on RSRP, it is possible to compare the strengths
of signals from individual cells in LTE networks. The measurement process is shown
in Figure 6.

Figure 6. RSRP measurement.

Figure 6 shows eNodeB and UE, which receive the reference signal from the eNodeB.
The closer the UE is to the eNodeB location, the stronger the received signal. The reporting
range of RSRP is defined from −140 to −44 dBm with 1 dB resolution [42]. Table 9 shows
the standard RSRP values and signal quality category.

Table 9. Performance indicator standards for RSRP [46].

Range (dBm) Category

−80 to −44 Excellent
−90 to −80 Good
−100 to −90 Fair
−110 to −100 Poor
−140 to −110 Very Poor

The RSRP calculation is shown in Equation (5), where N stands for Number of PRBs
(Physical Resource Blocks) [42,47,48].

RSRP[dBm] = RSSI − 10 ∗ log(12 ∗ N). (5)

RSRQ telemetry parameter is the proportion of RSRP to wideband power. RSRQ
represents signal quality received by the UE. The signal, noise, and interference received
by the UE also have an effect on the RSRQ [40,42]. The following equation [42] is used for
RSRQ calculation, where N stands for Number of Physical Resource Blocks (PRBs).

RSRQ[dB] = N ∗ RSRP/RSSI, (6)

The reporting range of RSRQ is defined from −3 to −20 dB. Table 10 shows the
standard RSRQ values and signal quality category.
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Table 10. Performance indicator standards for RSRQ [42].

Range (dB) Category

−10 to −3 Excellent
−12 to −10 Good
−14 to −12 Fair
−17 to −14 Poor
−20 to −17 Very Poor

Instead of reporting raw carrier frequencies in MHz, LTE base stations use the ETSI
E-UTRA Absolute Radio Frequency Channel Number (EARFCN) industry standard to
report channel numbers. In LTE technology, EARFCN determines the carrier frequency
in the uplink and downlink, the range of which is from 0 to 65,535. The equations below
express the relationship between EARFCN and its uplink/downlink carrier frequency [49].

Fdownlink = FDL-low + 0.1(NDL − Noffs-DL), (7)

Fuplink = FUL-low + 0.1(NUL − Noffs-UL), (8)

where NDL stands for downlink EARFCN, NUL for uplink EARFCN, Noffs-UL offset used to
calculate uplink EARFCN, Noffs-DL offset used to calculate downlink EARFCN. The values
FUL-low, FDL-low, NDL, NUL, Noffs-DL, Noffs-UL are given in [49] by ETSI.

For unique identification of LTE components, the identification numbers are used.
As shown in Figure 7, we have three main key identifiers in the LTE cell. The E-UTRAN
Cell Identifier (ECI) represents the identity of a cell within a Public Land Mobile Network
Identifier (PLMN). ECI consists of 28 bits where the first 20 bits represent the eNodeB ID
number and the last 8 bits are stated for cell ID. The sector ID identifies a particular antenna
in cell sectors [50,51].

The code rate and modulation are defined by MCS in the LTE. MCS specifies the
maximum number of usable bits that can be transferred per Resource Element (RE), and
it is affected by radio channel quality. Table 11 shows the CQI-MCS mapping for LTE rel.
12 and beyond. The better channel quality is represented by a higher MCS, and the more
useful data can be transmitted. In other words, MCS depends on error probability. In LTE,
a Turbo encoder with a 1/3 coding rate is employed. The actual ratio of usable bits to total
transmitted bits (useful bits + parity bits) is dependent on the quality of the radio link. The
range of coding rates is 0.0762 to 0.9258.

Figure 7. Description of the E-UTRAN identifiers.
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Table 11. CQI-MCS mapping for LTE rel.12 and beyond [52].

CQI Modulation Code Rate Bits per RE

1 QPSK 0.0762 0.1524
2 QPSK 0.1885 0.377
3 QPSK 0.4385 0.877
4 QPSK 0.3691 1.4764
5 QPSK 0.4785 1.914
6 QPSK 0.6016 2.4064
7 16QAM 0.4551 2.7306
8 16QAM 0.5537 3.3222
9 16QAM 0.6504 3.9024
10 64QAM 0.7539 4.5234
11 64QAM 0.8525 5.115
12 64QAM 0.6943 5.5544
13 64QAM 0.7783 6.2264
14 64QAM 0.8634 6.9072
15 64QAM 0.9258 7.4064

Radio link quality is estimated based on the Channel Quality Indicator (CQI). The CQI
parameter is reported by UE to the eNodeB. The CQI measurement is based on the Cell
Reference Signal (CRS) [52]. Better radio condition is represented by higher CQI and the
higher coding rate, as is shown in the table below. Bits per RE column should be multiplied
by the number of data streams to obtain a final value in case of MIMO usage [52].

3.1.3. Collection of Image Data

For image data collection, the OmniVision OV10640 camera system (OmniVision,
Santa Clara, CA, USA) was used. This sensor uses a proprietary technology, which delivers
an image with a very high dynamic range (HDR). Furthermore, the sensor is encapsulated
in a compact package, which can be easily deployed for a wide range of automotive
applications (see Table 12). A total of four cameras were used on the bus (one on the
windshield recorded the area in front of the bus, one on the rear window recorded the area
behind the bus, and one on each side recorded the area on the sides of the bus).

Table 12. Specifications of OmniVision OV10640 camera system.

Camera System Parameter Specification

Resolution 1280 (H) × 1080 (V)
Mega Pixels 1.3 MP

Supply Voltage 1.7 to 3.47 V
Frame Rate 60 fps
Pixel Size 4.2 µm × 4.2 µm

Dynamic Range 120 dB
Sensitivity 8.4 V/lux-s

SNR 41.5 dB

Three cameras were used in the collection of image data. Two cameras were placed on
the sides of the bus and one in the middle of the bus above the windshield (see Figure 8). The
cameras located on the sides of the bus had a standard horizontal field of view (52 degrees).
The middle camera capturing objects in front of the bus was a fisheye (horizontal field of
view of 194 degrees).

Furthermore, the sensor is capable of sampling the recorded scene simultaneously
instead of sequentially, which helps to minimize the distortion caused by motion.

The image dataset contains classes representing traffic signs and also classes repre-
senting road users, as is shown in Figure 9. Table 13 shows all the classes that our image
dataset contains. The first column contains the number of classes, and the second column
shows the specification of the given class.
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Figure 8. Image data collection.

Figure 9. An example of an image dataset.

Table 13. The classes in the image dataset.

Number of Class Class Specification The Overall
Number of Data Training Dataset Testing Dataset Validation Dataset

1 Ahead only 1670 1003 500 167
2 Turn left ahead 1670 1003 500 167
3 Turn right ahead 1670 1003 500 167
4 The one-way traffic 1670 1003 500 167
5 The stop sign 1670 1003 500 167
6 Give away 1670 1003 500 167
7 The priority road 1670 1003 500 167
8 The pedestrians 1670 1003 500 167
9 The cyclists 1670 1003 500 167
10 The motorbikes 1670 1003 500 167
11 The scooters 1670 1003 500 167
12 Road closed 1670 1003 500 167
13 Passing prohibited 1670 1003 500 167
14 No entry 1670 1003 500 167
15 Speed limit 1670 1003 500 167
16 No right turn sign 1670 1003 500 167
17 No left turn sign 1670 1003 500 167
18 Two-way traffic ahead 1670 1003 500 167
19 The passenger cars 1670 1003 500 167
20 The Vans/trucks 1670 1003 500 167
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4. Methodology

In this section, we describe the processing of connectivity and positioning data and
processing of image data using the proposed CNN.

4.1. Processing of Connectivity and Positioning Data

The data collection process was repeated four times on different days and at different
time. Data processing was divided into three parts, as illustrated in Figure 10. In the first
part, data pre-processing, the data were prepared for processing. Data were collected as
text files (.txt), and it was necessary to convert them to Comma-Separated Values (CSV)
and separate them. The conversion process and data separation was performed by a
python script.

The pre-processed data served as an input to the processing stage. In this stage, the
latency data were averaged because latency was measured every 100 ms, and other data
were collected every 1000 ms. After the averaging process, all data were synchronized on
the basis of a time stamp that was obtained via Network Time Protocol (NTP) during the
data collection. A weighting coefficient was assigned to examine parameters on the basis
of which it is possible to represent the quality of the digital infrastructure parameters. In
the data post-processing stage, data were concentrated, evaluated, and visualized.

Figure 10. Data processing block diagram.

4.2. Processing of Image Data Using CNN

For traffic sign recognition, we proposed CNN, which is detailed in Figure 11 and
Table 14. We selected CNN since, depending on the used hardware, it has a potential to
process data in real-time. Hence, it can serve as a basis for the future development of an
automated infrastructure readiness assessment system operating in real-time.
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Figure 11. Proposed architecture of CNN.

Table 14. CNN layers.

Layers Description of Layers

Conv2D_1 32 filters with dimensions 5 × 5, the output is a feature map with dimensions 32 × 32 × 32
Conv2D_2 32 filters with dimensions 5 × 5, the output is a feature map with dimensions 32 × 32 × 32

MaxPooling_1 Filter size 2 × 2, the output is a feature map with dimensions 32 × 16 × 16
Dropout_1 50% neuron shutdown, the output is a 32 × 16 × 16 feature map
Conv2D_3 64 filters with dimensions 3 × 3, the output is a feature map with dimensions 64 × 16 × 16
Conv2D_4 64 filters with dimensions 3 × 3, the output is a feature map with dimensions 64 × 16 × 16

MaxPooling_2 Filter size 2 × 2, the output is a feature map with dimensions 32 × 8 × 8
Dropout_2 50% neuron shutdown, the output is a 32 × 8 × 8 feature map
Flatten_1 4096 neurons
Dense_1 256 neurons

Dropout_3 50% neuron shutdown
Dense_2 20 neurons

The CNN is divided into two parts, the feature learning part (convolutional part) and
the classification part. The convolution part is used for data processing. The classifica-
tion part serves to transform the format of the processed data and to classify the output.
Figure 11 shows the block diagram of the proposed CNN. This proposed CNN consists of
12 layers (four 2-D convolutional layers, two MaxPooling layers, three layers for turning
off neurons (Dropout) and 3 fully connected layers.

As discussed in [53], the image data that are corrupted by various noises impact the
resulting performance of the proposed neural network. For this reason, the noisy image
data are recovered with the pre-processing step (using various filters). This step improves
the overall performance of the proposed neural network.

The first and input layer is the convolution layer. The input is represented by images
with dimensions of 32 × 32 pixels. At the input of the layer, we will therefore have
32 × 32 neurons (1024 arranged in a square matrix). Each pixel in the image is represented
by an 8-bit number, ranging from 0–255 for each color. Sometimes it also uses a black and
white image, which is represented by one channel in the same range, where 0 represents
white and 255 black. In our case, each pixel is represented by three values from the RGB
palette. Together, these values form three two-dimensional matrices, which together form
the image volume. In this layer, we use 32 filters with dimensions of 5 × 5. We also use
the padding parameter set to “Same”, which will cause the output feature maps to be the
same size as the input image. The output from this layer will be 32 (32 × 32 feature maps
for each input image).

The second layer is the convolutional layer, which includes 32 feature maps with
dimensions of 32 × 32. It contains 32 filters with a window size of 5 × 5. It also contains a
parameter that maintains the same dimensions of the output as the input. The output of
the layer will be 32 × 32 × 32 feature maps for each image. The third layer is a merging
layer (MaxPooling layer) with a filter size of 2 × 2 and a maximum value criterion. This
causes the dimensions of the 32 × 32 × 32 input features to be halved in the output. The
number of feature maps remains the same. In the end, we obtain 32 feature maps with
dimensions 16 × 16. The fourth layer is dropout with a parameter of 0.5, which means
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that 50% of the random neurons at the input will be turned off. This layer preserves the
previous dimensions of the output. The fifth and sixth layers are convolutional, which
includes 32 feature maps with dimensions 16 × 16 and 64 filters with dimensions 3 × 3,
respectively. The seventh layer is a merging layer with a filter size of 2 × 2 and a maximum
value criterion. The dimensions of the output will be twice as small as the input, i.e.,
64 × 8 × 8 with 64 feature maps. The eighth layer is a dropout with a parameter value of
0.5, which means that 50% of the random neurons on the current layer will be turned off.
The ninth layer is flattened, which transforms feature maps into fully connected layers.
This layer will contain 8 × 8 × 64 neurons, which is a total of 4096 neurons and, therefore,
also 4096 outputs. The tenth layer is Dense, which represents the classic fully connected
layer. It contains 256 neurons. The last layer is the Dense layer, which classifies the output
from the network. It contains 20 neurons (20 classes). Each neuron represents a given class.
In this layer, we use the sigmoid activation function, which classifies us with the probability
that a given neuron is activated, thus determining to which class it belongs.

5. Experimental Results

In this section, the performance evaluation of the proposed method based on the
created dataset is discussed.

5.1. Results for Connectivity and Positioning Data

Analyzed connectivity data are interpreted on the maps with the heat map route,
which shows the analyzed route in the city. Figure 12 shows the communication latency on
the analyzed route. The blue color represents the latency values less than or equal to 9 ms,
and the red color represents values greater than or equal to 800 ms.

Figure 12. Example of latency data collection.

As we can see, the latency value is higher in urban areas than in suburban areas.
The average latency value in urban areas was 83 ms, and in a suburban area, 42 ms. We
found spots where the latency was higher than 800 ms in an urban area. These places are
interpreted by red color, and they are located mainly at intersections with heavy traffic or
near points of interest. The latency value in these places reached the value of 1500 ms. For
the deployment of CCAM, it is necessary to support telecommunication infrastructure in
these red areas. Please note that during the data collection campaign, no considerable traffic
jams or road congestions occurred along the investigated route. In the case of extremely
congested traffic, the communication performance is expected to drop even further.
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The number of GNSS satellites used, i.e., the number of visible satellites, ranged from
14 to 22. The maximum number of visible satellites was reached in sparsely-built areas
with a clear vision of the sky. In Figure 13, the blue color represents the usage of less
than or equal to 10 satellites. The red color represents the usage of more than or equal to
20 satellites. The number of visible satellites was lower in dense urban areas and in the
suburban area too.

The results for the Signal Interference Noise Ratio are shown in Figure 14. This map
interprets the coverage quality of the 4G telecommunication infrastructure. The blue color
represents SINR values less than or equal to −15 dB, and the red color represents SINR
values greater than or equal to 32 dB. As shown in Figure 14, the better coverage is in the
suburban area compared to the urban area. In the urban area, there were spots in which
the SINR value was −15 dB, which is also related to poor connectivity parameters.

Figure 13. Example of satellite numbers used.

Figure 14. Example of Signal Interference Noise Ratio.

As can be seen in Figure 15, RSRP values less than or equal to −120 dBm are rep-
resented by blue. RSRP values higher or equal to −40 dBm are represented by red. The
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received power of the reference signal is lower in the suburban area compared to the
urban area. It is caused by the fact that there are many eNodeBs in the city, which ensure
handover and thus provide higher power of the reference signal. On the other hand, in the
suburban area, there is a low number of eNodeBs, which reduces the received power of the
reference signal.

The received quality of the reference signal ranges from −15 to −5 (dB). As can be
seen in Figure 16, in an urban area at an intersection with heavy traffic, the received quality
of reference signal is lower than in other areas. The blue color represents an RSRQ value
lower than or equal to −15 dB, and the red color represents an RSRQ value greater than or
equal to −5 dB.

Figure 15. Example of Reference Signal Received Power.

Figure 16. Example of Reference Signal Received Quality.

Fades in received reference signal power are caused by larger communication distance
and resulting lower signal power from the individual cells in the 4G network, which is
spread over the area. Near the eNodeBs, the quality of the received reference signal was
−5 (dB), which represents a better condition of the connection.
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5.2. Results for Image Data

The inputs to the proposed CNN were image data of size 32 × 32 × 3. The model was
trained on 30 epochs. In the training process, it is important to find the point where the
network gives us the best results. If we exceed this threshold, the network learns too much
detail, which means that the success on the validation or test model decreases (overtraining
of neural network). On the other hand, if we stop learning too early, the network will be
untrained. For this reason, we use checkpoints and also dropout layers, which improve our
model. In the figure below, can be seen how we split the data into train, validation, and
testing. In our work, we use this proportion, but it can be changed as per the requirement.
To build CNN for traffic sign classification, the Keras deep learning framework was used.

Each class contains 1670 images. The dataset was divided into training, testing and
validation parts in the ratio 60:30:10, as is shown in Figure 17. This means that 60% of
images were used for training data, 10% for validation data and 30% for test data. The size
of each animal image was 32 × 32 pixels.

Figure 17. Division of the image dataset (training data, test data and validation data).

The training set and the validation set were used, respectively, to train and optimize
the model. The test set was used to check how the model performs on unseen data. As
can be seen in Figure 18, precision of 99.7% on our training set (blue line) was obtained.
Please note that this precision is very similar to the results presented by other works, such
as [54,55].

Figure 18. Training and validation precision.

Figure 19 demonstrates the confusion matrix. The rows of the confusion matrix
represent the actual class, while the columns of the confusion matrix represent the predicted
class. The values along the main diagonal represent images that correctly classified images
to be the same class. The correctly classified images across all classes are used to define
the classification accuracy. In other words, it is the ratio of the sum of the correctly
labeled images to the total number of images in the test dataset. In the case of traffic sign
classification, the precision was greater than 99%. On the other hand, in the case of the
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classification of traffic participants, the precision was 98.4% for pedestrians, 85.5% for
cyclists, 86.4% for motorbikes and 96.4% for scooters (see Table 15).

Figure 19. Confusion matrix.

Table 15. Results of image classification.

Number of Class Precision (%) Recall (%) F1 Score (%)

1 99.8 100 99.9
2 100 100 100
3 100 100 100
4 100 100 100
5 100 100 100
6 100 100 100
7 99.6 100 99.8
8 98.4 97.8 98.1
9 85.5 85.2 85.3
10 86.4 87.4 86.9
11 96.4 96.2 96.3
12 99.6 99.8 99.7
13 100 99.6 99.8
14 99.6 100 99.8
15 100 99.8 99.9
16 100 100 100
17 100 100 100
18 100 99.6 99.8
19 100 100 100
20 100 100 100

6. Discussion and Conclusions

The result of our research is a framework that serves to assess the state of physical and
digital infrastructure readiness for CCAM. The core of the research is a dataset that can
be employed for further research on the topic. Our results can serve as a basis for more
effective planning of infrastructure development from the point of view of readiness for
CCAM. The main goal of the connectivity and positioning data metering is research on the
performance of new generation networks and localization systems for CCAM readiness.
As part of this research, we mapped and analyzed the urban and suburban areas. Despite
the fact that the analysis and mapping were carried out in different time frames and days,
we found underdimensioned areas on the investigated route. The main problem of data
communication analysis is the latency. As we described in Section 5.1, we found the critical
places in urban areas from the point of view of latency. These places are mainly located
at intersections with heavy traffic or near points of interest. A possible solution to high
latency is to add microcells to critical places. On the one hand, adding microcells can
not only lower the latency, but it can also increase the performance of telecommunication
networks and increase coverage. On the other hand, this solution comes with increased
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infrastructure costs. The best solution for accelerating the implementation of CCAM is the
deployment of 5G networks. Currently, 5G networks are not widely deployed, and they
are mainly located in metropolitan areas and capital cities in some designated locations.
Analysis of the performance of the 5G network from the point of view of CCAM readiness
will be our future work. The issue of localization is dense areas with large buildings and
trees. It affects the number of visible satellites, which also has an impact on the accuracy of
localization. A possible solution is to use 5G networks in conjunction with GNSS. This can
improve the better localization accuracy in dense urban areas. Using GPS, digital maps
and neural networks, the vehicle can recognize the direction of travel, speed, lane detection
and traffic signs. By combining neural network, GPS data and digital maps, it is possible to
create a reliable system that could reliably recognize traffic signs.

The problem of traffic sign recognition in order to create an automated system was
solved using the proposed neural network. The proposed system opens up new possibilities
for further research in our future work. The automation of the traffic sign recognition system
is becoming increasingly necessary for its use in road traffic. The example of traffic signs
classification using CNN is shown in Figure 20. When the “Speed limit” symbol is shown
to the camera system, the trained model identifies it and classifies the traffic sign name as
“Speed limit”. Classifications and predictions are made in very less time (almost real-time),
which benefits drivers. Although the classification of traffic signs has many advantages,
there are also some difficulties. For instance, if the traffic sign is covered by trees or any
billboard on the side of the road, then it can cause inaccurate traffic sign detection and
classification. It may also happen that the vehicle is cruising so fast that the system does
not have enough time to correctly recognize the traffic sign. These situations can be very
dangerous and lead to traffic accidents.

Figure 20. Example of traffic sign detection and classification.

Various environmental constraints, including lighting, traffic sign distance (the sign is
too far away), or shadow, can significantly affect the accurate detection and classification of
traffic signs. Therefore, further research in this area is needed.

One of the directions that require further research is traffic light detection, which the
industry continues to develop at an ever-increasing pace. Notable examples in this area
include recent developments made by several major automotive industry players, whose
vehicles already include systems based on either DSRC or image processing for traffic light
color recognition and driver alerting.

In our future work, we plan to improve the precision of the proposed neural network
for the recognition of traffic signs. We also plan to create a line detection system for auto-
mated vehicle driving. The processing of collected data for the infrastructure assessment
was not completed in real-time. In our future work, we plan to introduce elements of
automatization to the assessment process with the ultimate goal of developing a fully
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automated system for infrastructure readiness assessment. The research presented in this
manuscript is an initial step towards this goal.

Another option for further research is to design a fully automatic road sign recognition
system that will work in real-time. This system will use the camera system on the vehicle
to detect and recognize traffic signs in real-time. In the event that this system is integrated
together with the GPS system, it is also possible to provide the driver with additional
practical information about the current restrictions within the current traffic situation on
the given road. Based on the comparison of data from GPS and the sign recognition system,
this system could warn the driver in the case of disregarding traffic signs. It is worth noting
here that the detection and correct classification of live objects is an extremely important
aspect of CAV operation. While being beyond the scope of this paper, we aim to incorporate
this aspect and address its challenges in our future work as well.
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CNN Convolutional Neural Network
CRS Cell Reference Signal
CQI Channel Quality Indicator
CV2X Cellular Vehicle-to-everything
DGPS Differential Global Positioning System
DOP Dilution of Precision
EARFCN E-UTRA Absolute Radio Frequency Channel Number
GNSS Global Navigation Satellite Systems
GPS Global Positioning System
HDOP Horizontal Dilution of Precision
LTE Long-Term Evolution
ODDs Operational Design Domains
PDOP Position Dilution of Precision
RF Radio Frequency
RI Rank Indicator
RSRP Reference Signal Received Power
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RSRQ Reference Signal Received Quality
RSSI Received Signal Strength Indicator
RTK Real Time Kinematic
SBC Single-Board Computer
SD Sight Distance
SINR Signal Interference Noise Ratio
SPS Standard Positioning Service
TDOP Time Dilution of Precision
UE User Equipment
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VLC Visible Light Communication
V2I Vehicle-to-Infrastructure
V2X Vehicle-to-everything
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