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Abstract: Since the beginning of the COVID-19 pandemic, many works have been published propos-
ing solutions to the problems that arose in this scenario. In this vein, one of the topics that attracted
the most attention is the development of computer-based strategies to detect COVID-19 from thoracic
medical imaging, such as chest X-ray (CXR) and computerized tomography scan (CT scan). By
searching for works already published on this theme, we can easily find thousands of them. This is
partly explained by the fact that the most severe worldwide pandemic emerged amid the technolog-
ical advances recently achieved, and also considering the technical facilities to deal with the large
amount of data produced in this context. Even though several of these works describe important
advances, we cannot overlook the fact that others only use well-known methods and techniques
without a more relevant and critical contribution. Hence, differentiating the works with the most
relevant contributions is not a trivial task. The number of citations obtained by a paper is probably
the most straightforward and intuitive way to verify its impact on the research community. Aiming
to help researchers in this scenario, we present a review of the top-100 most cited papers in this field
of investigation according to the Google Scholar search engine. We evaluate the distribution of the
top-100 papers taking into account some important aspects, such as the type of medical imaging
explored, learning settings, segmentation strategy, explainable artificial intelligence (XAI), and finally,
the dataset and code availability.

Keywords: COVID-19; pattern recognition; machine learning; chest X-ray; CT scan

1. Introduction

Since 2020, we have observed a significant amount of works published describing
solutions for the most varied problems that arose due to the COVID-19 pandemic. As a
consequence of technological development, many of these works present computer-based
solutions to attack those problems.

Currently, a large number of medical imaging tests are performed every day because
the digital image is quite suitable both for storage and also to support examination. At the
same time, it is also widely known that digital imaging is the standard input for research
developed by the pattern-recognition and machine-learning communities. Hence, we have
faced a boom in the number of works published by these research communities devoted to
supporting medical examination from medical imaging.

Since the beginning of the pandemic, pneumonia has been one of the most common
consequences of COVID-19 due to the high level of exposure to the respiratory system.
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CXR and CT scans are the most commonly used imaging tests for diagnosing pneumonia,
and CT scan is the gold-standard imaging test that best supports the analysis of the lungs.
On the other hand, CXR is cheaper and more widespread around the world. Numerous
studies have been developed by the pattern-recognition and machine-learning research
communities specifically using these kinds of images. Figure 1 shows one example of each
of these image types.

(a) (b)
Figure 1. Thoracic medical imaging. (a) Example of CXR taken from [1]. (b) Example of CT scan
taken from [1].

By searching for works already published in this context, we can easily find thousands
of them addressing this topic from the most varied perspectives, such as pneumonia
detection, pneumonia classification (in terms of the causative pathogen), lung region
segmentation, infection region segmentation, and decision explanation. However, many
of these works do not present a very impressive scientific contribution. In this way, here
we describe a review of the top-100 most cited works published in the literature within
this context according to the Google Scholar search engine (The search was carried out on
12 July 2022). The rationale behind this choice is that the number of citations obtained by
a paper is probably the most straightforward and intuitive way to verify the impact of a
given work on the research community.

In this review, we aim to address some important aspects related to the top-100
selected papers as the predominant computational methods used in this field of research.
By analyzing the literature, we can find other reviews evaluating the top-cited COVID-19
papers. However, it is important to point out that, to the best of our knowledge, none of
them explored thoracic medical imaging from the same perspective we did here, but from
a more broadly oriented point of view [2–4].

This paper is organized as follows: Section 2 describes the study design and illustrates
a taxonomy used to conduct the discussions along this work. Section 3 describes some
details of the top-25 papers according to the number of citations. Section 4 is composed
of specific subsections to discuss the top-100 papers taking into account aspects like type
of medical imaging, type of learning, use of a strategy for segmentation, use of XAI, and
dataset and code availability. In Section 5, concluding remarks are pointed out, and finally,
Appendix A describes some information about the 75 papers not explored in Section 3.

2. Study Design and Taxonomy

This section describes how we organized the search for the works we discuss in this
study. The search was performed by using the Google Scholar search engine on 12 July 2022.
We decided to use this platform because it integrates works of all other scientific research
portals (engines) and provides a reasonable estimate of the number of citations obtained by
each work. The search was performed with the two following search queries: (i) (COVID
AND (X-ray OR CT scan) AND (“image processing” OR “machine learning” OR “artificial
intelligence” OR diagnosis OR detection)), and (ii) (COVID AND “deep learning”). In the
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former query, we have excluded works that do not present computer-based solutions, and
we excluded results unrelated to CXR and CT scan solutions in the last query.

Following this, we performed the first filtering (F1), excluding works that correspond
to reviews, surveys, or comparative studies, which do not correspond to our purposes.
After this first filtering, we excluded a total of nine works that had been obtained in the
first round. Thus, we took the subsequent nine most cited papers that do not belong to the
category excluded in F1 to complete the top 100. Next, we performed a second filter (F2),
excluding works that had not been peer-reviewed (preprints). After performing F2, we
excluded a total of 18 works, and again, we took the subsequent 18 most cited studies that
do not belong to the categories excluded both in F1 and F2 to complete the top-100.

Table 1 presents the top-100 most cited papers obtained after the first round and after
each filtering. These details are (i) the average number of citations for the top-100; (ii) the
h-index among the top-100 papers; (iii) the number of citations of the most cited paper;
(iv) the number of citations of the least cited paper in the top 100.

Table 1. Details of top 100 after each round of filtering.

Average Number H-Index Maximum Number Minimum Number
of Citations 1 of Citations of Citations

First round 299 95 1848 87
After F1 289 90 1848 80
After F2 251 81 1848 65

1 “Average number of citations” corresponds to the total sum of citations obtained by the papers divided by the
number of papers.

Figure 2 shows a taxonomy containing the main aspects we considered for conducting
the discussions in this study. We evaluated five aspects: (i) medical image, chest X-ray
(CXR) or computed tomography (CT scan); (ii) learning approach, deep or shallow (we
use the term shallow method to refer to any method other than deep learning); (iii) seg-
mentation strategy, manual or automated using a deep network, common deep strategies
includes U-Net [5], SegNet [6], and others; (iv) explainable artificial intelligence (XAI),
common strategies includes class activation maps (CAM) [7], gradient-weighted CAM
(Grad-CAM) [8], local agnostic linear model (LIME) [9], layer-wise relevance propagation
(LRP) [10], and others; and, (v) dataset and code availability.

Figure 2. Taxonomy used to conduct the review.

3. Overview of Top 25 Most Cited Papers

This section describes the main highlights of the top 25 most cited papers. We decided
to restrict the number of works detailed, aiming to keep our list as short as possible while
emphasizing its most important contributions. The selection of the top 25 most cited papers
is purely quantitative and does not consider any particular characteristic. Assuming that
the number of citations is a metric for scientific quality and importance, it is interesting to



Sensors 2022, 22, 7303 4 of 26

describe the most cited papers to find out exactly what they proposed and evaluated to
achieve popularity in such a short term.

Wang et al. [11] presented the most cited paper found in our search protocol, described
in Section 2, with a total of 1848 citations. In that work, the authors performed COVID-19
detection by using the COVID-Net, a deep convolutional network specially tailored to
detect COVID-19 from CXR images. The developed network is open source and was made
available to the general public. The authors also introduced COVIDx, an open access
dataset composed of 13,975 images obtained from 13,870 patients, probably with the largest
number of positive cases available at that moment. The dataset was created by taking
images from other sources of CXR images. In addition, the authors used an explainability
method to aid clinicians in improving the screening process, adding transparency and
reliability to the provided results. The work attracted much attention, probably for the
following reasons: it was one of the first open-source networks designed for COVID-19,
it made available a quite useful dataset with a significant number of positive exams, and
finally, it was published at a very opportune time, in 2020.

Ozturk et al. [12] addressed COVID-19 detection from CXR images by using the
DarkNet model as a classifier for the you only look once (YOLO) real-time object-detection
system. The work is the second-most cited paper in the list obtained in our review, with
a total of 1523 citations. The problem was addressed both as binary (COVID-19 vs. no
findings) and multi-class classification (COVID-19 vs. no findings vs. pneumonia). The
classification accuracy obtained was 98.08% for binary classification and 87.02% for multi-
class. The authors implemented 17 convolutional layers in the model, including different
filtering on each layer. The model was made available on GitHub. The main positive
remarks of this work were the impressive moment when it was published, in April 2020,
the evaluation of the results by radiologists, and also the availability of the model to the
public. However, the authors admit that the work was done with a limited dataset, and
future improvements on a more robust dataset should be pursued.

Apostolopoulos et al. [13] experimented with automatic COVID-19 detection from
X-ray images by using convolution neural networks with transfer learning. For this, the
authors composed two datasets (i.e., Dataset_1 and Dataset_2) by using images taken
from three different sources: (i) the collection of X-ray images of Professor Joseph Cohen
from the University of Montreal; (ii) a set of X-ray images obtained from websites such
as the Radiological Society of North America, Radiopaedia, and the Italian Society of
Medical and Interventional Radiology; (iii) and finally, a collection of common bacterial–
pneumonia X-ray scans was included, to train the model to distinguish COVID-19 from
other types of pneumonia. Dataset_1 was composed of 224 positive COVID-19 images,
700 bacterial pneumonia images, and 504 healthy lungs images. Dataset_2 was composed
of 224 positive COVID-19 images, 504 healthy images, and 714 images of both bacterial
and viral pneumonia (400 bacterial and 314 viral). The images were all resized to 200 × 266,
and they were evaluated by using the following models: VGG19, MobileNetV2, Inception,
Xception, and Inception ResNet v2. The fine-tuning was performed separately for each
model evaluated, so each one had its own parameters defined. The training and evaluation
were done by using 10-fold cross-validation, and the best results were obtained with the
MobileNet v2 model, which achieved an accuracy of 96.78% and 94.72 for binary and three
classes classification, respectively.

Narin et al. [14] performed COVID-19 detection from X-ray images by using five
convolutional neural network models and three different public datasets (i.e., Dataset_1,
Dataset_2, and Dataset_3). Dataset_1 is composed of 341 X-ray images obtained from
Dr. Joseph Cohen’s open source GitHub repository, Dataset_2 has 2800 healthy chest X-
ray images from the ChestX-ray8 database, and Dataset_3 is made of 2772 bacterial and
1493 viral pneumonia chest X-ray images from the Kaggle Chest X-Ray Images (Pneumo-
nia) repository. Five pre-trained models were used in this work: ResNet50, InceptionV3,
ResNet101, Inception-ResNetV2, and ResNet152. The authors performed their experiment
by using three different binary classes: Binary Class-1 (COVID-19 vs. healthy), Binary
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Class-2 (COVID-19 vs. viral pneumonia), and Binary Class-3 (COVID-19 vs. bacterial
pneumonia). The evaluation used a five-fold cross-validation and the ResNet50 pre-trained
model obtained the bests results, with an accuracy of 96.1% in Binary Class-1, 99.5% in
Binary Class-2, and 99.7% in Binary Class-3. The highlights of this paper include the fact
that it used more data than many other articles at the time it was published, as well as its
significantly high performance.

Wang et al. [15] hypothesized that by analyzing CT scan images taken from the
lungs, it is possible to extract graphical features of COVID-19 providing a clinical diagnosis
ahead of the pathogenic test typically made by laboratories. Thus, the authors performed
experiments on a dataset composed of 1065 CT scan images of COVID-19 confirmed
patients and others taken from typical viral pneumonia. Three Chinese hospitals provided
the images. In the proposed pipeline, the authors first performed some preprocessing of
the images and manually delineated the regions of interest (RoIs) on the images. Transfer
learning was done by using a predefined model (i.e., GoogleNet Inception V3) already
trained on 1.2 million images from ImageNet labeled into 1000 categories. The authors
proposed a modified inception (M-inception) for classification by changing the last of the
fully connected layers. The feature’s dimensionality was reduced before it was sent to the
final classification.

Finally, the authors performed a robust evaluation of the method, addressing some
critical points closely related to the practical feasibility of the employment of the proposal.
For the performance evaluation, the authors first trained and tested the system, exclusively
using images from the same hospital. In this scenario, the accuracy rate was 89.5%. Next,
another round of experiments using images from the three hospitals was performed, and
the obtained accuracy was 82.5%. Another important comparison was between the results
obtained by the system and radiologist prediction. Two radiologists assessed the images
and achieved an accuracy of approximately 55%. This result demonstrates the advantage of
the use of the proposed method. Lastly, the authors experimented on 54 images incorrectly
predicted (false negatives) by using nucleic acid testing, the gold standard for COVID-19
diagnosis. The system was able to predict 46 out of the 54 images correctly.

Xu et al. [16] sought to develop an early screening model to detect COVID-19 from
pulmonary CT images by using deep learning techniques. The dataset used contained
618 transverse-section CT samples (219 COVID-19, 224 Influenza-A viral pneumonia, and
110 healthy) provided by three Chinese hospitals. In the first step of their approach, the
authors preprocessed the CT images to select the most effective pulmonary regions. After-
ward, a total of 3957 candidate image cubes were segmented by a 3D CNN segmentation
model; because the cube’s middle region contained the most amount of information about
the infection, the cube center image and its two neighbors were selected, totaling 11,871 im-
age patches used for training and classification. The authors evaluated two models: a
traditional ResNet-18 based model and a ResNet-18 model concatenated with a location–
attention mechanism. In the first step of the evaluation, the authors tested the classification
for a single image patch; ResNet-18 achieved an accuracy rate of 78.5% whereas ResNet-18
plus location attention mechanism achieved 79.4%. Because of the lower performance,
the ResNet-18 model was not used in further experiments, The authors then analyzed the
classification of CT samples as a whole, and an overall accuracy rate of 86.7% was achieved
by the ResNet-18 plus location attention mechanism.

Khan et al. [17] introduced the CoroNet, a deep convolutional network specially
designed for COVID-19 detection from CXR images. The model was based on Xception
architecture pre-trained on the ImageNet dataset and end-to-end trained on an image
collection curated for the development of the study. The model was evaluated on two
different scenarios, the first considering four classes (COVID-19 vs. pneumonia bacterial vs.
pneumonia viral vs. normal), obtaining an accuracy of 89.6%, and the second with three
classes (COVID-19 vs. pneumonia vs. normal), achieving an accuracy of 95%. The work
was presented in May 2020, at the pandemic’s beginning. One of the main contributions of
the work was to point some directions and to indicate that deep models could adequately
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be used to address COVID-19 detection from CXR images with minimum pre-processing
of data. In addition, the authors also claim that further improvements could be achieved
with more extensive sets of data.

To overcome the limited availability of annotated medical images in the context of
COVID-19 diagnosis, Abbas et al. [18] experimented with a deep CNN called decompose,
transfer, and compose (DeTraC) for COVID-19 classification from CXR images. DeTraC
is intended to properly deal with irregularities present in the dataset by using a class
decomposition mechanism to investigate its class boundaries. For this, a class composition
layer is introduced to clarify the final classification. A class decomposition component is
included before the knowledge transformation from an ImageNet pre-trained CNN model,
and a class composition component is included after that. The model was evaluated on
a comprehensive dataset composed of images taken from several hospitals worldwide.
An accuracy of 93.1% was obtained in detecting COVID-19 from normal and severe acute
respiratory syndrome cases.

Song et al. [19] developed a deep learning-based CT diagnosis system evaluated on a
dataset composed of CT scan images obtained from 88 patients diagnosed with COVID-19,
100 patients infected with bacterial pneumonia, and 86 healthy persons for comparison
and modeling. The proposed system was very successful in detecting the primary lesions
present in CT images. Moreover, we can highlight that the work was developed at a very
early stage of the COVID-19 pandemic. Although the work was published in March 2021,
the first version of the manuscript was submitted in April 2020, when very few positive
COVID-19 images were available. The deep learning solution proposed was based on
three main steps: first, the central region of the lung is extracted. Next, a details relation
extraction neural network (DRENet) was used to obtain image-level predictions. Finally, the
image-level predictions were aggregated to obtain the person’s diagnosis. The model could
discriminate COVID-19 from bacterial pneumonia with a recall of 0.96. For discriminating
COVID-19 from bacterial pneumonia and healthy persons, the system obtained a recall of
0.95. The authors made the system available for COVID-19 diagnosis at an online server,
and the source codes and the datasets were also made available. However, one drawback of
the proposal is that it could not keep good prediction rates when evaluated on external data.

Oh et al. [20] also investigated COVID-19 features on CXR images at an early stage of
the pandemic. At that moment, there was a huge scarcity of data. Thus, the authors pro-
posed a patch-based CNN approach with a relatively small number of trainable parameters.
The method was based on the use of statistical analysis of the potential biomarkers of CXR
images. The first step in the proposed general framework is the data normalization, as a
pre-processing stage. In addition, a segmentation network is used to isolate the lung areas
as regions of interest. Then, patches are obtained from the lung area and used for training a
classification network. For testing, the decision for each image is based on the majority vot-
ing involving the decisions taken for the patches created from the image. The experimental
results demonstrated that the method was able to get state-of-the-art performance.

Ardakani et al. [21] experimented with 10 convolutional neural networks to evaluate
the application of deep learning techniques in routine clinical practice. The authors used
CT images from 194 patients (108 COVID-19 and 86 non-COVID-19) in their study. The
region of interest of the images—that is, the region of infection—were segmented manually
by an expert. After being segmented, they were cropped and resized to 60 × 60 pixels.
The authors used various performance metrics to evaluate their and a diagnosis from a
radiologist expert. The best results in accuracy were found for the ResNet-101 (99.63%) and
Xception (99.38%) networks; however, ResNet-101 was able to diagnose COVID-19 with
higher sensitivity when compared to Xception, which is highly desirable when diagnosing
diseases. When analyzing a single image patch, the radiologist was no match for the CNNs;
he achieved better performance when analyzing the whole CT slice, but his accuracy was
still lower than most CNNs. Overall, the authors successfully created a computer-aided
diagnosis with promising results.
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Chen et al. [22] developed a study proposing a deep model for COVID-19 detection
from high-resolution CT scan images. For this purpose, the authors curated a collection
composed of 46,096 images obtained from 106 patients at the Renmin Hospital of Wuhan
University (China). Among these patients, 51 were affected by COVID-19 pneumonia,
confirmed by laboratory test. The other 55 were control patients of other diseases. The
model was built on top of U-Net++ architecture, having all the parameters loaded from
ResNet-50 pre-trained on the ImageNet dataset. An external evaluation was conducted at
another hospital to verify the system’s robustness, and it obtained an accuracy of 98.85%
per image and 95.24% per patient. The system performance was also compared to expert
radiologists on data from 27 prospective patients of Renmin Hospital. The system perfor-
mance was considered comparable to the human expert’s performance, and, in addition,
the time consumed by humans to perform the evaluation assisted by the system decreased
by 65%. Lastly, it is worth mentioning that this study was published in November 2020.

Ucar et al. [23] proposed a new model for diagnosing COVID-19 based on deep Bayes–
SqueezeNet called COVIDiagnosis-Net. The authors used chest X-ray images from the
available CovidX dataset to train their model. This dataset is made of three classes: normal,
pneumonia, and COVID-19. Compared to the other two classes, there are few images of
COVID-19 in the dataset. Therefore, the authors performed a detailed offline augmentation
over the COVID-19 class to overcome the imbalance ratio. The authors proposed model
reached an accuracy rate of 98.3%, better performance compared to the state-of-the-art
methods at the time (early 2020). In addition, the COVIDiagnosis-Net is significantly
smaller than other models, such as AlexNet, hence, being ideal for implementation in
embedded and mobile systems.

Afshar et al. [24] proposed a capsule network, called COVID-Caps, aiming to circum-
vent the difficulty of CNNs in dealing with spatial information between different instances
of the image. The proposed capsule network presents four convolutional layers and three
capsule layers. The network is fed with 3-D X-ray images. The loss function was also
modified to deal with the class imbalance issue. At that moment of the pandemic, obtaining
enough data for experimentation was not easy. The model was capable of obtaining an
accuracy of 95.7%. In addition, aiming to get better results, the authors experimented with
training and transfer learning based on an external dataset. Differently from other works,
the authors conducted the pre-training by using X-ray images. Following this protocol, the
authors obtained an accuracy of 98.3%. Lastly, it is essential to mention that the model was
made available publicly for open access.

Panwar et al. [25] proposed a deep learning neural network method called nCOVnet
to create an alternative fast screening method for detecting COVID-19. The authors used
Dr. Joseph Cohen’s open source GitHub repository and Kaggle’s Chest X-Ray Images
(pneumonia) as the dataset. Data augmentation techniques were applied to overcome the
dataset limitations. It is worth noting that the authors took extra precautions to prevent
data leakage. The nCOVnet uses the VGG16 model as the base layer of the architecture
and adds to it five custom layers as a head model. In conclusion, nCOVnet could predict
COVID-19 from CXR images with 97.97% confidence.

Huang et al. [26] presented a quantitative evaluation of burden changes in COVID-19
patients by using a deep learning method on serial CT scan images. The method was
based on the evaluation of a quantitative image parameter (called QCT-PLO), automatically
generated by a deep learning software tool from chest CT scans. The authors concluded that
the quantification of lung opacification was significantly different among COVID-19 patient
groups with different levels of severity. In conclusion, they claim that this method could
eliminate the subjectivity in the initial assessment and follow-up of pulmonary findings
for COVID-19.
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Togaçar et al. [27] performed COVID-19 detection from CXR with a dataset containing
three classes: COVID-19, pneumonia, and healthy. The data classes were restructured
by using Fuzzy Color, an image-stacking technique. Image stacking combines multiple
images, aiming to improve the quality of the images in the dataset, eliminating noises from
them. The deep learning models MobileNetV2 and SqueezeNet were used to train the
stacked dataset and the feature sets obtained were processed by using the Social Mimic
Optimization (SMO) method. Lastly, efficient features were combined, and the classification
was performed by using support vector machine (SVM). The overall classification rate
obtained was 99.27%. The authors claim that the proposed preprocessing enhanced the
feature extraction efficiency by using the SMO algorithm. In addition, they also demonstrate
the usability of the proposed approach in mobile devices.

Pereira et al. [28] investigated COVID-19 identification from CXR images considering
different perspectives. In the first scenario, the authors performed multiclass classification
by using CXR images containing pneumonia caused by different pathogens (COVID-19,
SARS, MERS, streptococcus, and pneumocystis). Then, the authors identified a hierarchy
between the different pathogens and investigated the classification considering a hierar-
chical scenario. The authors also experimented with resampling algorithms to deal with
the natural imbalance between the different types of pneumonia. In addition, a dataset
(named RYDLS-20) was composed of publicly available datasets. Lastly, it is important to
mention that they also experimented with the use of handcrafted features by evaluating
a comprehensive set of texture descriptors and non-handcrafted features, automatically
obtained by using deep learning models. The best result obtained for COVID-19 was
found in the multiclass scenario, with an F-Score of 0.89. The paper was published at the
beginning of May 2020.

Wang et al. [29] presented a fully automated deep learning system to diagnose COVID-
19 and stratify patients into high- and low-risk groups. The authors used a large dataset
with 5372 computed tomography exams. The dataset was collected from various cities or
provinces of China. To acquire the lung mask of the CT images, the authors performed
lung segmentation by using the DenseNet121-FPN deep learning method. After that,
non-lung tissues and organs that may still exist in the region of interest were suppressed.
For the diagnosis and prognosis, the researchers used their proposed model, COVID19Net,
which uses a DenseNet-like structure. The training of COVID19Net was performed in two
steps: (i) train the model with a large dataset (4106 patients) of lung cancer; (ii) transfer
the pre-trained model to the COVID-19 dataset. For prognostics, the authors combined
the 64-dimensional feature from the COVID-19Net and combined it with clinical features
(age, sex, and comorbidity). This new feature vector was used to build a multivariate
Cox proportional hazard model. COVID-19Net reached an AUC of 0.90 in the training
set and obtained similar results in two other validation sets, 0.87 and 0.88, respectively.
Regarding the prognostic, Kaplan–Meier analysis showed that patients classified in the
high-risk group had a higher hospital stay time when compared to the low-risk group.

The lack of a publicly available dataset with CXR and CT scan images is one of the
biggest obstacles that obstruct the research of COVID-19 artificial intelligence-based solu-
tions. Aiming to circumvent this problem, Maghdid et al. [30] presented a comprehensive
dataset of both these types of images, obtained from multiple sources. The dataset com-
prised 170 CXR images and 361 CT scan images in its first version. In addition, they also
presented a simple CNN and modified pre-trained AlexNet model and experimented on
CXR and CT scan images. The experimental results achieved an accuracy of up to 94.1% by
using the first model and up to 98% by using the latter.

Brunese et al. [31] presented a two-step approach to detect COVID-19. The authors
created two deep learning models. The first model can distinguish between healthy X-ray
chest images and those showing individuals with pulmonary disease. If the X-ray image is
labeled as pulmonary disease, a second model detects whether the pulmonary disease is
pneumonia or COVID-19. In addition, the researchers used the GRAD-CAM activation map
to highlight the most significant areas in the COVID-19 detection. Brunese et al. models
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were based on the VGG-16 model and used transfer learning methods. The dataset used
in this work combines three others, two of which are freely available datasets. It contains
6523 X-Ray images in total. Regarding the evaluation of the models, the first one (healthy
vs. pulmonary disease) obtained an accuracy and sensitivity of 0.96, and the second one
(pneumonia vs. COVID-19) reached an accuracy of 0.98 and a sensitivity of 0.87.

Loey et al. [32] evaluated COVID-19 detection by using deep transfer learning and
generative adversarial networks (GAN) to apply data augmentation. The experimental
dataset was composed of images taken from other publicly available datasets. The authors
experimented with three different scenarios: four classes (COVID-19, normal, viral pneumo-
nia, and bacterial pneumonia), three classes (COVID-19, normal and bacterial pneumonia),
and finally, binary classification (COVID-19 vs. normal). Reasonable performance rates
were obtained in the aforementioned scenarios: for four classes, the best rate obtained was
80.6% of accuracy, for three classes, 85.2% of accuracy, and on the binary classification, 100%
accuracy was obtained. Despite the impressive results, the code and dataset used in this
work were not made publicly available.

Islam et al. [33] performed COVID-19 classification from CXR images by using CNN
to make feature extraction and long short-term memory (LSTM) for classification. The
experiments were carried out on a dataset created by using images from publicly available
collections containing positive COVID-19 CXR images. The images were divided into
three classes: COVID-19, normal, and pneumonia (other than COVID-19). As a result,
the authors obtained an accuracy of 99.4%, and they claim that the proposed CNN-LSTM
architecture overcame the results obtained by using a competitive CNN architecture.

Ismael et al. [34] experimented with shallow and deep learning approaches to detect
COVID-19 in chest X-ray images. The authors used a dataset with 180 COVID-19 and
200 normal CXR images in their experiments. Regarding the deep learning approaches,
fine-tuning procedures were done for the ResNet18, ResNet50, ResNet101, VGG16, and
VGG19 models. Furthermore, an end-to-end CNN model was trained. As for the shallow
approach, Ismael et al. evaluated the SVM classifier trained with deep learning features and
various texture extractors such as LBP, LPQ, BSIF, and others. Overall, the deep learning
approaches outperformed the local descriptors. The best result was achieved by combining
ResNet50 features with the SVM classifiers; this combination achieved an accuracy of
95.79%. Other approaches are also worth mentioning: fine-tuning of ResNet50 achieved an
accuracy of 92.6%, end-to-end training of CNN achieved an accuracy of 91.6%, and BSIF
achieved an accuracy of 90.5%.

To aid in the screening of COVID-19, Amyar et al. [35] proposed a multi-task deep
learning (MTL) approach. The proposed MTL architecture was based on three tasks:
COVID-19 vs. normal vs. other infections classification, COVID-19 lesion segmentation,
and image reconstruction. The authors collected CT images from three different datasets,
totaling 1369 CT scans for their study. The performance of the MTL was compared with
various state-of-the-art models, including U-NET for segmentation and Alexnet, VGG-16,
VGG-19, ResNet50, and others for classification. The MTL performed significantly better
than the state-of-the-art approaches in both segmentation and classification. In the COVID-
19 lesion segmentation task, the MTL achieved an accuracy of 95.23%, whereas U-NET
achieved 83.40%. As for classification, the proposed method had an accuracy of 94.67%,
whereas the best among the state-of-the-art tested models had an accuracy of 90.67%.

Table 2 presents some of the most remarkable details about the 25 papers described
in this section. The remaining 100 papers evaluated in this study are listed in Table A1,
presented in the Appendix A.
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Table 2. Details about the 25 most cited papers.

Rank Authors-Reference Year Citations CPD 1 CT/CXR Deep/Shallow Detection/ Open Code
Learning Classification 2

1 Wang et al. [11] 2020 1848 3.04 CXR Deep Both yes
2 Ozturk et al. [12] 2020 1523 1.89 CXR Deep Both yes
3 Apostolopoulos et al. [13] 2020 1456 1.75 CXR Deep Both no
4 Narin et al. [14] 2021 1275 2.97 CXR Deep Both yes
5 Wang et al. [15] 2021 1121 2.23 CT Deep Detection no
6 Xu et al. [16] 2020 1107 1.49 CT Deep Both no
7 Khan et al. [17] 2020 698 0.91 CXR Deep Detection yes
8 Abbas et al. [18] 2021 640 0.95 CXR Deep Classification yes
9 Song et al. [19] 2021 605 1.24 CT Deep both yes
10 Oh et al. [20] 2020 500 0.63 CXR Deep Detection yes
11 Ardakani et al. [21] 2020 498 0.62 CT Deep Detection no
12 Chen et al. [22] 2020 466 0.76 CT Deep Detection yes
13 Ucar and Korkmaz [23] 2020 465 0.57 CXR Deep Both no
14 Afshar et al. [24] 2020 411 0.62 CXR Deep Detection yes
15 Panwar et al. [25] 2020 349 0.45 CXR Deep Both no
16 Huang et al. [26] 2020 341 0.40 CT Deep None no
17 Togaçar et al. [27] 2020 333 0.42 CXR Shallow Classification yes
18 Pereira et al. [28] 2020 327 0.41 CXR Shallow Classification yes
19 Wang et al. [29] 2020 326 0.46 CT Both Both no
20 Maghdid et al. [30] 2021 311 0.37 Both Deep Detection no
21 Brunese et al. [31] 2020 308 0.41 CXT Deep Both no
22 Loey et al. [32] 2020 298 0.37 CXR Deep Both no
23 Islam et al. [33] 2020 292 0.42 CXR Deep Classification no
24 Ismael and Sengür [34] 2021 291 0.45 CXR Both Detection no
25 Amyar et al. [35] 2020 281 0.44 CT Deep Classification no

1 Average number of citations per day starting from the date when the paper was published. 2 ‘Detection’ stands
for binary classification, and “classification” stands for multi-class.

4. General Statistics

This section describes some statistics that can help to identify how the papers investi-
gated in this review are distributed, considering some important aspects in which they can
be categorized.

4.1. Citations

The number of citations that early COVID-19 papers received is significant. Nowadays,
after approximately two years after the pandemic started, the top paper in this review was
cited by 1848 subsequent works. Usually, such a number is obtained after many years of
publication. All of that makes the COVID-19 pandemic a significant event worth analyzing.

The number of citations ranged from 1848 to 65, with a mean of 251.5 citations, a
standard deviation of 323.7, and an interquartile range of 182.7.

Since the time of the publication is critical, to normalize the number of citations, we
calculated the average number of citations per day (CPD) for each of the 100 papers and
sorted them in decreasing order. Only two papers originally out of the top 25 made their
way into this list. In general, only a few slight changes affected the original ranking. The
work carried out by Kassania et al. [36] was originally in the 35th position, and after
reordering, it was placed in the 16th position; the work presented by Rahman [37] was
originally placed in the 32nd position, and after reordering, it was placed in the 20th
position.

4.2. Publication Dates

As discussed, COVID-19 attracted researchers from many different areas, resulting in
many published works quickly. A simple search in any engine can easily retrieve hundreds
of published papers in different fields.
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Given the amount of popularity around the topic, the dates of submission and publica-
tions and their difference are fascinating detail to analyze. At first, it is possible to notice a
constant flow of publications from the beginning of the pandemic until the second quarter
of July 2021. Figure 3 presents an exploratory overview of the top-100 papers selected and
submission and publication dates. For 14 papers, the submission date is unavailable; hence,
only the publication date is displayed. Among the selected papers, only one was submitted
and published after June 2021. The reason for that might be simply that we selected papers
based on the number of citations; there was probably not enough time for the newer papers
to obtain the proper amount of citations.

Figure 3. Submission and publication dates.

Table 3 displays the exact number of papers submitted and published per quarter from
2020 Q1 to 2022 Q1. Among the selected papers, most were submitted during the first half
of 2020, and almost all within the first and third quarters of 2020. Considering 86 papers
with submission dates available, 60 (≈70%) were submitted in the first half of 2020, and
78 (≈91%) were submitted in the first three quarters of 2020.

Table 3. Submission and publication dates.

Quarter Submissions Publications

2020 Q1 14 1
2020 Q2 46 25
2020 Q3 18 33
2020 Q4 4 18
2021 Q1 3 16
2021 Q2 1 6
2021 Q3 - -
2021 Q4 - -
2022 Q1 - 1

Such a skewed distribution of early submissions is somewhat expected for two main
reasons: (i) there was a huge commotion at the start of the pandemic to find solutions that
could be applied in practice, and (ii) early papers laid the foundations by proposing novel
datasets and methods, and hence obtained many citations by subsequent works.

In this vein, it is also possible to notice when analyzing the submission and publication
time difference in Figure 3 that many papers had a minimal time difference, meaning
that editors and publishers were very fast and efficient in publishing early COVID-19
related papers.
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4.3. Countries

The top-100 papers published originated from 34 countries in total. We considered each
paper’s author’s institution country for the analysis. Figure 4 presents an exploratory visual
representation of their global distribution. China dominated the publication share with a
total of 207 authors, 32.6% of the total. India followed them with a total of 65 authors, 10.2%
of the total. The United States is in the third position with 42 authors, 6.6%. Appendix B
presents the exact distribution for all 34 countries.

Figure 4. Distribution of authors by country.

4.4. CXR vs. CT Scan

Two prominent medical image tests are used to investigate the lungs and, consequently,
to support pneumonia diagnosis: CXR and CT scan. Even though CT scan is considered the
gold standard for pneumonia analysis, we cannot ignore that CXR has many advantages
as well, as it is more widespread, cheaper, and faster to obtain. There are several health
centers worldwide where a CXR machine is available and a CT scan machine is not.

CXR images were the most frequently used in the top-100 papers reviewed here,
exclusively assessed in 61 of them. Furthermore, 28 papers used only CT images, and
11 used both these types of images, as shown in Table 4. As discussed in Section 4.9, the
likely reason for such distribution is twofold: (i) there were many COVID-19 CXR datasets
available early, and (ii) CXR images are much more manageable and lighter to process than
a CT scan volume. The average number of citations per paper did not vary much between
CT-scan and CXR images.

Table 4. CXR vs. CT scan.

Image Type Quantity Average Number of Citations

CT 28 251
CXR 61 269
Both 11 155

4.5. Datasets

The limited number of publicly available CXR and CT scan images was a shortcoming
of almost every paper reviewed here. We have to remember that most top-cited papers
were published in 2020 at a time when any information around COVID-19 was still being
published in the early days of the virus.

Table 5 presents the most frequent datasets used. Many papers composed novel
datasets by combining multiple images from different sources. Such a trend is clear when
we analyze the usage frequency of each dataset. For instance, Kaggle (pneumonia) and
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ChestX-ray8/ChestX-ray14 are publicly available datasets that precede the pandemic.
Researchers are using them to extract images from other pathogens or healthy patients.

Table 5. Datasets frequently used to compose image collections.

Dataset Quantity Average Number of Citations

cohen 1 55 236
kaggle (pneumonia) 2 29 206
chestX-ray8/chestX-ray14 22 280
sirm 16 219
radiopaedia 13 301
covid-ct 13 135
rsna 12 282
kaggle covid-19 3,4 8 126
kermany 7 323
covidx 6 520
figure1 5 4 143
sars-cov-2 ct-scan 6 4 124

1 https://github.com/ieee8023/covid-chestxray-dataset (accessed on 12 July 2022); 2 https://www.kaggle.com
/datasets/paultimothymooney/chest-xray-pneumonia (accessed on 12 July 2022); 3 https://www.kaggle.com/d
atasets/tawsifurrahman/covid19-radiography-database (accessed on 12 July 2022); 4 https://www.kaggle.com
/datasets/prashant268/chest-xray-covid19-pneumonia (accessed on 12 July 2022); 5 https://github.com/agchu
ng/figure1-covid-chestxray-dataset (accessed on 12 July 2022); 6 https://www.kaggle.com/datasets/plamened
uardo/sarscov2-ctscan-dataset (accessed on 12 July 2022).

The Dr. Joseph Cohen initiative was the most used dataset throughout with 55
papers. It was followed by two non-COVID datasets, Kaggle (pneumonia) and ChestX-
ray8/ChestX-ray14 with 29 and 22 papers using them, respectively.

The availability of public datasets is a game changer. Table 6 presents the distribu-
tion of public and private datasets. Most of the selected papers used public datasets for
evaluation and received substantially more citations.

Table 6. Data privacy.

Data Privacy Quantity Average Number of Citations

Public 85 362
Private 15 232

4.6. Learning Setup

The learning setup is the set of decisions, details, and parameters that control the
classification process, comprised mainly of algorithms and data transformations.

In this review, we are separating the classifier type into two categories: deep and
shallow methods. We use the term shallow method to refer to any method other than deep
learning. Table 7 presents the classifier type distribution in this review. The use of deep
learning methods, especially convolutional neural networks (CNNs), has been steadily
increasing and dominating pattern-recognition tasks based on images over the last few
years. The trend is very prominent in the selected papers: 81 exclusively applied deep
learning, whereas only 12 applied shallow methods, and 7 used both machine learning
methods. The average number of citations per paper is also substantially more significant
in deep learning proposals.

One of the main advantages of CNNs, compared to shallow methods, is their ability
to automatically learn helpful features from images, reducing the burden of applying and
evaluating multiple handcrafted feature extractors. However, deep learning requires a
large amount of training data to converge due to many trainable parameters.

https://github.com/ieee8023/covid-chestxray-dataset
https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/datasets/prashant268/chest-xray-covid19-pneumonia
https://www.kaggle.com/datasets/prashant268/chest-xray-covid19-pneumonia
https://github.com/agchung/figure1-covid-chestxray-dataset
https://github.com/agchung/figure1-covid-chestxray-dataset
https://www.kaggle.com/datasets/plameneduardo/sarscov2-ctscan-dataset
https://www.kaggle.com/datasets/plameneduardo/sarscov2-ctscan-dataset
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Table 7. Classifier type.

Classifier Type Quantity Average Number of Citations

Deep 81 279
Shallow 12 139

Both 7 128

Usually, it is unfeasible to use shallow methods with images directly, as it is performed
with CNNs. First, one must extract features from the images by using handcrafted methods.
Handcrafted methods can summarize image characteristics, such as texture, shape, color,
and others. The weights from a layer of a pre-trained CNN can also be used as features,
and they are referred to as deep features. The deep features extraction is an automated
process, i.e., it does not focus on a specific characteristic. The usage of deep features aims to
take advantage of CNNs ability to learn valuable features automatically while reducing the
need for a large dataset, which is precisely the case of COVID-19 data scarcity, especially
during the pandemic’s early days.

As shown in Table 8, among the 19 papers using shallow methods, eight (≈42%) used
deep features, five (≈26%) used handcrafted features, and six (≈32%) leveraged both kinds
of features.

Table 8. Feature extraction.

Feature Type Quantity Average Number of Citations

Deep 8 131
Handcrafted 5 108

Both 6 173

Nevertheless, several techniques have been proposed to overcome the deep learning
hunger for data. Transfer learning and data augmentation are probably the most popular
among them.

Transfer learning is a method that uses the knowledge obtained from solving one
problem to another different problem as a starting point. Then, the model could be fine-
tuned for the specific task. As displayed in Table 9, in the papers reviewed, 65 used transfer
learning while 32 did not, and two evaluated models with and without it. ImageNet was
the most frequent problem used as a starting point, given its ability to generalize well in
many subsequent tasks, even on medical tasks [38]. X-ray and CT scan images are visually
and perceptually different from the images available in ImageNet, which could ultimately
render the transfer learning useless. However, there are reports in the literature showing
that even in this setting, the transfer learning from ImageNet can boost the performance
across various deep models [39].

Table 9. Transfer learning.

Transfer Learning Quantity Average Number of Citations

Yes 65 229
No 32 305

Both 2 182
Not informed 1 130

Data augmentation is a technique used to increase the training data available by
slightly changing the already existing data. The transformations include rotations, transla-
tions, crops, random changes in color, brightness, contrast, and other factors. The creation
of synthetic data is also considered a type of data augmentation. A generative adversarial
network (GAN) has been applied to generate synthetic images. Transfer learning also helps
to reduce overfitting, acting as a model regularizer. Amid the papers reviewed, Table 10,
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48 used data augmentation when training, whereas 51 did not, and one evaluated both
scenarios. Again, given the data scarcity of COVID-19 images, data augmentation could be
a powerful ally when training deep models.

Table 10. Data augmentation.

Data Augmentation Quantity Average Number of Citations

Yes 48 243
No 51 263

Both 1 80

4.7. Segmentation

In digital image processing, image segmentation separates the input into multiple
segments to ease subsequent analysis or further processing. In classification tasks, segmen-
tation might reduce the unnecessary image background information that can interfere with
the recognition process. In medical image analysis, segmentation could be considered an
even more essential task because a misdiagnosis can have severe consequences for a patient
following unfair treatment.

Considering a scenario of COVID-19 identification by using medical images, one
would ideally first segment the lung area to remove the unnecessary information and then
perform the detection or classification. The rationale is straightforward, the inflammation
caused by COVID-19 is located in the lung area, so isolating it would only improve
the classification.

As displayed in Table 11, among the top-100 papers analyzed in this review, only
25 considered lung segmentation as a part of the classification pipeline. The 75 remaining
skipped it entirely and did not discuss its reason or justification. Out of the 25, two papers
manually segmented the RoI before proceeding to the detection [15,21]; the 23 remaining
articles applied automated strategies, usually based on deep networks, to segment the lung
region.

Table 11. Segmentation strategy.

Segmentation Strategy Quantity Average Number of Citations

None 75 239
Manually 2 810

Automated 23 244

Many people reason that by using deep strategies, we can overlook some pre-processing
steps, such as segmentation, due to the amount of data available. However, thinking crit-
ically about segmentation has significant benefits that cannot be ignored. Considering
COVID-19, there are reports in the literature showing that without segmentation, the model
might be focusing outside the lung region, resulting in a biased performance [40–42]. Hence,
the classification performance obtained in works that did not apply lung segmentation
could also be biased.

4.8. Explainable Artificial Intelligence (XAI)

Explainable artificial intelligence (XAI) is a field that focuses on methods and ap-
proaches that can be utilized to explain model predictions. The primary objective is to
determine which features the model actively employs when making predictions. When
training deep models, there is no assurance as to which feature the model will prioritize,
which is why such models are frequently referred to as black-box classification models.

Often, XAI can be used to verify which portions of the input image are being decisively
used to reach a particular prediction. In medical images, it is possible to take advantage of
such behavior to ensure the model focuses on the right things.
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Following almost the same trend as segmentation, of the 100 papers considered, only
25 applied XAI to evaluate the black-box model. Table 12 presents the distribution of each
XAI method used in featured papers. As some applied more than one XAI method, the
total number is above 100. Methods based on class activation mapping (CAM) and its
variations are the most popular, most likely due to their simplicity, ease of use, and overall
accuracy [7,8,43]. Other interesting visualization methods are also used less frequently,
including saliency maps [44,45], LIME [9], LRP [10], and GSInquire [46]. One of the papers
applied a proprietary software called the uAI Intelligent Assistant Analysis System to
analyze CT scans [47].

Table 12. Segmentation strategy.

XAI Method Quantity Average Number of Citations

None 75 251
CAM 4 186

Grad-CAM 17 210
Score-CAM 1 211

Saliency maps 1 147
LIME 1 113

Layer-wise Relevance Propagation (LRP) 1 107
GSInquire 1 1848

uAI Intelligent Assistant Analysis System 1 75

4.9. Reproducibility

For obvious reasons, the concern with the quality and reproducibility of the works
addressed here cannot be left out. This section discusses the availability of datasets and
codes among the selected papers.

We cannot neglect that the pandemic brought several critical factors that made the
research development much more difficult. At the first moment, the scarcity of data was
one of these factors. When the pandemic arose, naturally, there was not enough available
and labeled data to support the COVID-19-related research development.

In this context, some researchers put much effort into providing, as fast as possible,
datasets with labeled and organized data that could be made available to the research
community.

Here, we list some of the most remarkable pioneer initiatives for COVID-19 dataset
creation, both for CXR- and CT-scans:

• COVID-19 image data collection (https://github.com/ieee8023/covid-chestxray-data
set (accessed on 12 July 2022)), created by Cohen et al. [1].

• COVID-19 DATABASE (https://sirm.org/category/senza-categoria/covid-19/
(accessed on 12 July 2022)), made available by the Italian society of medical and
interventional radiology.

• COVID-19 Dataset (https://www.kaggle.com/datasets/tawsifurrahman/covid19-r
adiography-database, https://www.kaggle.com/datasets/prashant268/chest-xray
-covid19-pneumonia (accessed on 12 July 2022)), available in Kaggle.

• COVID-CT-Dataset: A CT Scan Dataset about COVID-19 (https://arxiv.org/abs/2003
.13865 (accessed on 12 July 2022)).

• SARS-CoV-2 CT scan dataset: A large dataset of real patients CT scans for SARS-CoV-
2 identification (https://www.medrxiv.org/content/10.1101/2020.04.24.20078584v3
(accessed on 12 July 2022)).

The datasets mentioned above were of great importance to the scientific developments
obtained in this field of research during the pandemic. However, making some remarks
regarding use of the datasets in most investigations is crucial.

The vast majority of works argue that the scarcity of data was an obstacle to exper-
imental development. In this sense, many works performed experiments on particular
image collections, sampling the datasets mentioned earlier and other non-COVID image

https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
https://sirm.org/category/senza-categoria/covid-19/
https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/datasets/prashant268/chest-xray-covid19-pneumonia
https://www.kaggle.com/datasets/prashant268/chest-xray-covid19-pneumonia
https://arxiv.org/abs/2003.13865
https://arxiv.org/abs/2003.13865
https://www.medrxiv.org/content/10.1101/2020.04.24.20078584v3
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datasets created before the pandemic to investigate the occurrence of other lung diseases,
such as cancer. Among these non-COVID datasets, we can remark the chest X-ray dataset
(https://www.kaggle.com/datasets/nih-chest-xrays/sample (accessed on 12 July 2022)),
was composed of images provided by the National Institutes of Health (NIH), an American
medical agency. This dataset was first introduced to community research by Wang et al. [48].
Other important sources used in many works are the Radiological Society of North America
(RSNA) data collection (https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
(accessed on 12 July 2022)), and the Radiopaedia imaging datasets (https://radiopaedia.or
g/articles/imaging-data-sets-artificial-intelligence (accessed on 12 July 2022)).

On the one hand, creating ad hoc datasets was a good strategy to overcome the
limitations imposed by the lack of data, favoring the creation of more robust models. On
the other hand, it makes it very difficult to compare the results obtained by different works
directly. Hence, we do not focus on the classification rates obtained by the works reviewed
here; furthermore, different works do not necessarily use the same metric for performance
evaluation. It is also essential to observe that in some works, the authors organized the data
to perform binary classifications (e.g., COVID-19 vs. non-COVID-19), whereas in others,
a multi-class scenario was proposed (e.g., COVID-19 vs. bacterial pneumonia vs. viral
pneumonia vs. normal).

Code availability is another important aspect related to reproducibility. Code avail-
ability is of great importance for continuous research development, as it can allow other
researchers to search for progress starting from other works previously developed. Ap-
proximately one in three works contribute in this sense. Thirty-three papers among the top
100 made the codes available. This rate is slightly better among the top-25 papers; there are
11 papers with codes made available among them (44%).

4.10. Non-Peer-Reviewed Excluded Papers

As already mentioned, we have excluded papers that were not peer reviewed in the
second filter round (F2). We decided to exclude these papers, aiming to ensure some
reasonable level of quality, validity, and originality. However, the fact that those papers
were not peer-reviewed does not necessarily imply low quality, as suggested by their
impressive number of citations. Table 13 summarizes the 18 works excluded in F2. The
best-ranked paper in this list (Hedman et al. [49]) was placed in the eighth position before
filtering.

Table 13. List of the 18 papers not peer reviewed, excluded in F2.

Authors–Reference Preprint Repository Year 1 Citations 2

1 Hemdan et al. [49] arXiv 2020 809
2 Gozes et al. [50] arXiv 2020 726
3 Zheng et al. [51] MedRxiv 2020 526
4 Shan et al. [52] arXiv 2020 510
5 Zhang et al. [53] arXiv 2020 365
6 Farooq et al. [54] arXiv 2020 349
7 Ghoshal et al. [55] arXiv 2020 320
8 He et al. [56] medrxiv 2020 251
9 Hall et al. [57] arXiv 2020 202

10 Punn et al. [58] MedRxiv 2020 178
11 Khalifa et al. [59] arXiv 2020 145
12 Mahdy et al. [60] MedRxiv 2020 129
13 Alom et al. [61] arXiv 2020 116
14 Mangal et al. [62] arXiv 2020 114
15 Kumar et al. [63] MedRxiv 2020 107
16 Rajinikanth et al. [64] arXiv 2020 104
17 Gozes et al. [50] arXiv 2020 93
18 Castiglioni et al. [65] MedRxiv 2020 76

1 Considering the publication date. 2 According to Google Scholar on 12 July 2022.

https://www.kaggle.com/datasets/nih-chest-xrays/sample
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
https://radiopaedia.org/articles/imaging-data-sets-artificial-intelligence
https://radiopaedia.org/articles/imaging-data-sets-artificial-intelligence
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5. Concluding Remarks

First of all, it is important to point out that all the efforts done looking for COVID-19
solutions are worth noting, and many vital achievements were obtained thanks to the
commitment of the research community from different fields of study. However, it is
also reasonable to look back and evaluate the significant impacts and contributions in the
context investigated here and some limitations that may have obstructed achieving even
better results.

Based on the rationale that the number of citations obtained by a paper is probably
the most straightforward and intuitive way to verify its impact on the research community,
we described here a review on the top-100 most cited papers considering the development
of computer-based strategies for COVID-19 detection from thoracic medical imaging.
Following, we highlight some remarkable findings, and we analyze them from the different
perspectives addressed in this review.

One of the first aspects that attract attention is the vast majority of deep learning
methods compared to shallow methods. On the one hand, this makes sense because deep
models have been getting outstanding results for image classification in several different
application domains. However, it is also essential to observe that many works reviewed
here were developed at the beginning of the pandemic. Many of these works used transfer
learning, taking advantage of pre-trained weights produced from other datasets, in general,
not composed exclusively of medical images. In addition, many works did not perform
fine-tuning. It is easy to understand this kind of strategy in the initial phase of the pandemic,
as the data was scarce. However, we conjecture that there is room for further investigations
considering the development of studies focused on obtaining more qualified features
specifically for COVID-19 detection.

Another important aspect is the imbalance between the number of works developed
by using CXR and CT scans. As described in Section 4.4, many more works are devoted
to CXR images. Even though CT scan provides a more precise result, it is important to
remember that CXR is cheaper and more widespread. In many less economically developed
places, CT scan is not even available. So, investigating both scenarios is essential and must
continue for different reasons.

Figure 5 displays a word cloud summarizing the most frequent words in the abstracts
of all papers. Despite being an informal analysis, the disparity of deep learning when
compared to shallow methods is relatively straightforward; the terms referring to deep
learning, such as deep, learning, convolutional, CNN, neural, and network, are evident in
the word cloud, whereas no visible terms are referring to shallow methods. Another visible
difference is the type of image; the terms related to chest X-ray, such as xray and CXR, are
more prominent than terms referring to CT scan.

Figure 5. Wordcloud of all abstracts.
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Last but not least, we discuss the feasibility of applying the strategies described in
the papers reviewed here in a real scenario. None of the papers reviewed here has been
applied in a real scenario, even considering the work that health professionals contributed
as co-author. Only three made an application available online, aiming to provide a system
that could help support COVID-19 diagnosis. In addition, 40 out of the 100 papers counted
on the support of health professionals. In this case, we adopted a quite flexible requirement
to define papers with a contribution of health professionals: every paper with at least
one co-author affiliated with a hospital, health institute, department, or university, was
considered in this category. Thus, despite the impressive progress already made, there are
still some important aspects to be addressed in future research.
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Appendix A

In this section we describe the references, publication year, and number of citations
for the 75 papers, beyond the top-25 discussed in Section 3, that also belong to top-100.

Table A1. List of the 75 papers among top-100 not detailed in Section 3.

Rank Authors–Reference Year 1 Citations 2 Rank Authors–Reference Year 1 Citations 2

26 Hu et al. [66] 2020 266 64 Rahaman et al. [67] 2020 105
27 Mahmud et al. [68] 2020 265 65 Civit-Masot et al. [69] 2020 105
28 Jain et al. [70] 2021 229 66 Ouchicha et al. [71] 2020 105
29 Horry et al. [72] 2020 224 67 Silva et al. [73] 2020 105
30 Apostolopoulos et al. [74] 2020 223 68 Tuncer et al. [75] 2020 99
31 Altan and Karasu [76] 2020 215 69 Hammoudi et al. [77] 2021 98
32 Rahman et al. [37] 2021 211 70 Ohata et al. [78] 2020 96
33 Rajaraman et al. [79] 2020 205 71 Zhou et al. [80] 2021 94
34 El Asnaoui and Chawki [81] 2021 198 72 Hasan et al. [82] 2020 92
35 Kassania et al. [36] 2021 184 73 Sitaula et al. [83] 2021 91
36 Luz et al. [84] 2021 181 74 Gupta et al. [85] 2021 87
37 Panwar et al. [86] 2020 179 75 Dansana et al. [87] 2020 87
38 Ahuja et al. [88] 2021 172 76 Turkoglu [89] 2021 87
39 Ko et al. [90] 2020 168 77 Sekeroglu and Ozsahin [91] 2020 87
40 Nayak et al. [92] 2021 150 78 Che et al. [93] 2020 86
41 Wu et al. [94] 2020 150 79 Pham [95] 2021 83
42 Cohen et al. [96] 2020 147 80 Ning et al. [97] 2020 83
43 Alazab et al. [98] 2020 146 81 Ibrahim et al. [99] 2021 81
44 Hassantabar et al. [100] 2020 144 82 Ibrahim et al. [101] 2021 80
45 Yoo et al. [102] 2020 142 83 Pham [103] 2020 80
46 Maguolo and Nanni [42] 2021 141 84 Saood and Hatem [104] 2021 80
47 Jain et al. [105] 2020 141 85 Öztürk et al. [106] 2021 79
48 Tartaglione et al. [107] 2020 140 86 Abraham and Nair [108] 2020 79
49 Hussain et al. [109] 2021 136 87 Makris et al. [110] 2020 79
50 Chandra et al. [111] 2021 131 88 Alshazly et al. [112] 2021 78
51 Ni et al. [113] 2020 130 89 Rasheed et al. [114] 2021 76
52 Shah et al. [115] 2021 125 90 Zhang et al. [47] 2020 75
53 Kumar et al. [116] 2021 124 91 Li et al. [117] 2020 74
54 Basu et al. [118] 2020 123 92 Al-Waisy et al. [119] 2020 73
55 Asif et al. [120] 2020 120 93 Haghanifar et al. [41] 2022 73
56 Sedik et al. [121] 2020 119 94 Lassau et al. [122] 2021 71
57 Zargari et al. [123] 2021 116 95 Nishio et al. [124] 2020 69
58 Rahimzadeh et al. [125] 2021 115 96 Das et al. [126] 2021 69
59 Punn et al. Punn and Agarwal [127] 2021 113 97 Shankar and Perumal [128] 2021 68
60 Sedik et al. [129] 2021 112 98 Abdel-Basset et al. [130] 2021 66
61 Vaid et al. [131] 2020 110 99 Saha et al. [132] 2021 65
62 Karim et al. [133] 2020 107 100 Sakib et al. [134] 2020 65
63 Zebin and Rezvy [135] 2021 107

1 Considering the publication date. 2 According to Google Scholar on 12 July 2022.

Appendix B

In this section we present the total distribution of authors by country, as discussed in
Section 4.3.
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Table A2. Distribution of authors by country.

Country Number of Authors Country Number of Authors

China 207 (32.6%) Greece 8 (1.3%)
India 65 (10.3%) Malaysia 8 (1.3%)
USA 42 (6.6%) Saudi Arabia 7 (1.1%)
France 37 (5.8%) Spain 7 (1.1%)
Turkey 33 (5.2%) Hong Kong 5 (0.8%)
Brazil 26 (4.1%) Japan 5 (0.8%)
Egypt 22 (3.5%) Mexico 5 (0.8%)
South Korea 22 (3.5%) Morocco 5 (0.8%)
Canada 21 (3.3%) Jordan 4 (0.6%)
Australia 13 (2.1%) Pakistan 4 (0.6%)
Bangladesh 13 (2.1%) Netherlands 3 (0.5%)
UK 13 (2.1%) Singapore 2 (0.3%)
Germany 12 (1.9%) Syria 2 (0.3%)
Italy 11 (1.7%) Algeria 1 (0.2%)
Qatar 10 (1.6%) Finland 1 (0.2%)
Iran 9 (1.4%) Norway 1 (0.2%)
Iraq 9 (1.4%) Vietnam 1 (0.2%)
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