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Abstract: Diabetes is a chronic disease that continues to be a primary and worldwide health concern
since the health of the entire population has been affected by it. Over the years, many academics have
attempted to develop a reliable diabetes prediction model using machine learning (ML) algorithms.
However, these research investigations have had a minimal impact on clinical practice as the current
studies focus mainly on improving the performance of complicated ML models while ignoring their
explainability to clinical situations. Therefore, the physicians find it difficult to understand these
models and rarely trust them for clinical use. In this study, a carefully constructed, efficient, and
interpretable diabetes detection method using an explainable AI has been proposed. The Pima Indian
diabetes dataset was used, containing a total of 768 instances where 268 are diabetic, and 500 cases
are non-diabetic with several diabetic attributes. Here, six machine learning algorithms (artificial
neural network (ANN), random forest (RF), support vector machine (SVM), logistic regression (LR),
AdaBoost, XGBoost) have been used along with an ensemble classifier to diagnose the diabetes
disease. For each machine learning model, global and local explanations have been produced using
the Shapley additive explanations (SHAP), which are represented in different types of graphs to
help physicians in understanding the model predictions. The balanced accuracy of the developed
weighted ensemble model was 90% with a F1 score of 89% using a five-fold cross-validation (CV).
The median values were used for the imputation of the missing values and the synthetic minority
oversampling technique (SMOTETomek) was used to balance the classes of the dataset. The proposed
approach can improve the clinical understanding of a diabetes diagnosis and help in taking necessary
action at the very early stages of the disease.

Keywords: diabetes mellitus; artificial intelligence (AI); machine learning (ML); explainable AI;
ensemble classifier; soft voting

1. Introduction
1.1. Diabetes-Facts and Figures

Diabetes related diseases have recently become one of the top ten causes of death in
developing countries. The government and individuals are funding research projects to
find an easier and faster way to detect the disease at an early stage. There are two types of
diabetes: type-1 and type-2. Type 2 diabetes is characterized by high blood sugar, insulin
resistance, and a relative lack of insulin. Insulin resistance occurs due to excessive fat in
the abdomen and around the organs, which is called visceral fat. The majority of obese
individuals have elevated plasma levels of free fatty acids (FFA) which are known to
cause peripheral (muscle) insulin resistance [1]. Type-1 diabetes is a condition in which
blood sugar levels rise due to a shortage of insulin, causing problems with the blood sugar
metabolism. Most food people eat is broken down into sugar (glucose) and released into
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the bloodstream. When blood sugar levels rise, the pancreas cell releases insulin, which
provides energy for everyday tasks [2]. Excessive blood sugar stays in the bloodstream
when there is not enough insulin or if the cells stop responding to the insulin. This can cause
serious health problems such as heart disease, vision loss, and kidney disease in the long
run. The symptoms of diabetes generally are physical weakness, itching, delayed healing,
muscle stiffness, polydipsia, and visual burring [3]. Diabetes is a metabolic condition that
results in millions of deaths each year throughout the world due to a variety of health
complications. By 2030, the number of people with diabetes in developing countries is
expected to rise from 84 million to 228 million [4] imposing a significant load on every
healthcare system around the world [5].

1.2. Problem Statement

Diabetes is the reason for the change in glucose levels in the body. Some preventive
measures, such as a balanced diet and a healthy lifestyle, can be considered [6] to reduce the
risks of diabetes. Diagnosing diabetes is easier with a regular medical checkup. Laboratory
tests are also performed to detect the disease. Patients with the type 1 diabetes require
life-saving insulin for as long as they stay alive, though, for the type 2, most of them do
not need insulin. This unhealthy situation depletes individuals, families, and national
resources if left untreated. An early identification and palliative treatment are essential
for prediabetic patients’ health and well-being. An intelligent system based on disease
symptoms and laboratory tests will be helpful in the diabetes diagnosis and prevention.

1.3. Artificial Intelligence (AI) Research Challenges in a Diabetes Diagnosis

AI has been used for disease diagnosis for several years. It offers excellent outcomes
for detecting different types of diseases [7,8], forecasting the pandemic outbreak in any
country or region [9], and for many other applications. An intelligent ML-based diagnostic
method can correctly detect diabetes at an early stage. For identifying the presence and
absence of diabetes with a ML-based system, an appropriate dataset with relevant features
for training is essential. There has been much research carried out on the diagnosis of
diabetes. Some research has obtained poor accuracy [2,10,11] because of an inappropriate
model selection and a lack of data preprocessing. Although, some research has provided
a better performance in terms of accuracy, the explanations behind the decision have not
been described adequately [12,13]. Therefore, both reliable and explainable AI models
are required in the medical area for a better interpretation of the model output and easily
comprehensible by the medical and health professionals.

1.4. Research Motivation

Pima is a very well-known diabetes dataset and recent work based on this have
shown good results. Since the dataset has a high variance, it is easy to achieve an inflated
accuracy using a train test split approach. However, it still remains a challenge to achieve a
reliably high accuracy using the cross-validation (CV) technique. Furthermore, the class of
the dataset is imbalanced, and this requires applying a proper class balancing technique
to avoid any overfitting or underfitting problems. Finally, the lack of explainability of
the existing ML methods, diabetes detection, and progression prediction still remain a
challenging area despite the significant current research efforts.

Although diagnosing diabetes has notably improvement in recent studies, unfortu-
nately, all of the earlier research was concentrated on enhancing the model’s performance
while ignoring the interpretability challenges. As a result, despite this research making
significant breakthroughs in the disease prediction, they are unlikely to be accepted by
the medical community. The necessity of explaining the black box model and making it
understandable to everyone motivated the authors to develop efficient and interpretable
models for the diagnosis of diabetes.
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1.5. Aim, Contribution, and Paper Organization

This research intends to provide an interpretability of the ML models and enhance
the prediction performance with data pre-processing in order to diagnose diabetes. For the
preprocessing, the data was scaled for some algorithms, the missing values were replaced
using median and class imbalance, and were handled using the SMOTETomek. Thus, the
used models would offer an effective, reliable, and explainable diabetes prediction.

The major contributions of this work are listed in the following bullet points.

• Several machine learning algorithms were applied and using the two best classification
methods, an ensemble method was developed to diagnose diabetes.

• The model’s inside explainability was provided to make the model more reliable and
to produce a good balance between the accuracy and interpretability, which will be
convenient for doctors or clinicians to understand and apply the model.

• SHAP plots were created to provide physicians with some insights into the main
driving factors affecting the disease prediction from various perspectives, includ-
ing visualization, feature importance, and each attribute’s contribution to making
a decision.

The rest of the paper is arranged as follows. The current literature is reviewed in
Section 2. The proposed approach along with the description of the datasets and algorithms
is presented in Section 3. The model’s performance with a brief explanation behind the
decision are presented in Section 4. Finally, Section 5 concludes the key findings of the
work and outlines the important directions for future work.

2. Literature Review

Researchers have been experimenting with various ML approaches to predict diseases
as early as possible. Various ML algorithms, particularly hybrid techniques, have been
developed to improve the model outcomes. Several researchers have used the Pima Indian
diabetes dataset (PIDD). Some of the related works are discussed here.

Different types of ML algorithms have been used in [6,12–17] for the diagnosis of
diabetes. Since the PIDD has imbalanced classes, the preprocessing classes need to be
balanced. In these studies, they did not balance the class of the PIDD except for [17].
That’s why the models were biased toward the majority class. In [14], for the PIDD,
missing values were replaced by the mean values. Then, the incorrectly classified data was
removed using the k means clustering algorithm. A decision tree classifier was used for the
classification using the reduced dataset. For the same dataset, other researchers [15] used
several machine learning algorithms and the support vector machine (SVM) performed
better than the others, with an accuracy of 78.20% (using 70% of the data for the training).
Here, accuracy is the number of correctly predicted diabetic and non-diabetic patients
from the records of all of the patients. This accuracy is comparatively poor comparing
others’ accuracy using the train test split ratio. The models were built using three machine
learning algorithms with the PIDD dataset [16], where the SVM provided the highest
accuracy of 80 with 70% of the data used for the training. The same dataset was also used
by Tiwari and Singh [12] and a decent accuracy of 78.9% was obtained by the XGBoost
classifier. In another study [13], researchers proposed a ML-based e-diagnosis system and
investigated the algorithm’s performance using a variety of fine-tuned features. For the
binary classification, the naive Bayes model appeared to perform well with a fine-tuned
selection of features, whereas the random forest (RF) model did better with additional
features. A vast difference was observed between sensitivity and specificity because of the
imbalanced class. Kibria et al. [6] found an accuracy of 83% in diabetes detection using the
logistic regression (LR) where the KNN algorithm was employed for the imputation of the
missing values. By using the appropriate process to replace the missing values and balance
the data distribution, opportunities can be created to improve the prediction performance.

There is room for improvement in the preprocessing steps of these studies. The appro-
priate approach to handle a lot of the missing values and imbalanced classes resulted in
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a poor accuracy. In these works, the authors did not use any hybrid method or ensemble
learning for further improvement in the performance metrics. A dataset with imbalanced
classes could be the cause of the poor outcomes. Balancing the dataset, taking the necessary
steps to replace the missing values and select suitable algorithms will help the model to pre-
dict more accurately. The drawback of the class imbalance was solved by Ramesh et al. [17]
by applying the SVM-RBF kernel for the classification, the SMOTE technique for balancing
the dataset, and some feature selection techniques for extracting the characteristic features.
Using a ten-fold stratified cross-validation approach, this study attained an accuracy of
83.20%, a sensitivity of 87.20%, and a specificity of 79%.

The ensemble models used in [10,18–20], showed a better performance than any single
ML algorithm, that is why the usage of ensemble models to diagnose disease has increased.
In [21], the researchers built a decision-level fusion model to predict heart disease, which
was further improved by applying the weighted score fusion [7]. The ensemble method
was used in the diabetes detection and found promising results. The ensemble technique
was also applied by Kumari et al. [10], who obtained an accuracy of 79.04% by applying
a soft voting classifier for diagnosing diabetes mellitus. The efficiency of the ensemble
soft voting classifier was tested using a breast cancer dataset, where an accuracy of 97%
was obtained. For preprocessing, they used a min-max normalization, and for the missing
values, the median of the attribute was used. Fuzzy logic with the fusion model was utilized
in [18]. Two types of models, the SVM and the ANN, were combined for the classification.
The results of these models became the fuzzy model’s input membership function, and
the fuzzy logic determined whether a patient had diabetes or not. 94.87% accuracy was
obtained using 70% of the data for training which proved to be better than the earlier
studies. However, the interpretability of the ML models was not shown. Abdollahi and
Nouri-Moghaddam [19] introduced the stacked generalization and they used an ensemble
approach with a genetic algorithm to diagnose the disease with a promising outcome. An
accuracy of 98% was achieved using 70% of the data for training.

The lack of preprocessing and imbalanced classes in the dataset resulted in a poor accu-
racy in these studies [10,18,19]. These limitations were overcome by Fitriyani et al. [20] who
developed an ensemble model to predict the diabetes disease. The outliers were removed
using the isolation forest, and the class of the data was balanced using the SMOTETomek.
The model built using four datasets provided an accuracy of 96.74, 85.73, 75.78, and 100%
for diagnosing diabetes (dataset-1, 17 features) and hypertension (dataset-2,3) though the
interpretability of the model was missing. The last dataset was used to find the relation
between diabetes and hypertension. They did not use the Pima dataset. Finally, they
created a smartphone application for real-world use.

The above-mentioned works achieved a better output in terms of accuracy, but the
explanation behind the decision was not discussed. The contribution level of each fea-
ture behind the prediction of a decision was not explained, hence making it difficult to
understand how a decision was made by the model. Most of the works [6,10,12,16,19,22]
used the train test split for diagnosing the diabetes disease, which resulted in a high accu-
racy. For example in [19], the accuracy was 98% for an imbalanced class of dataset where
training, validation, and testing the amount of data was 70%, 15%, and 15% respectively.
Furthermore, an accuracy of 83% was obtained using 70% of the data for training with an
imbalanced class in [6]. The variance of the Pima dataset is very high and using a train
test split ratio will never return a true accuracy, rather it will give a biased accuracy which
is possible that the model is only giving this high accuracy for only a particular set of the
training data. Moreover, the training accuracy also was not reported, therefore no option is
available to verify whether the model was under-fitting or not.

Unfortunately, all of the earlier research concentrated on improving the model’s
performance while ignoring the interpretability challenges. As a result, despite these studies
making significant breakthroughs in the disease prediction, they are unlikely to be accepted
by the medical community. Therefore, a notable gap exists between the academic research
findings and their effective application in medical practice due to multiple reasons [23].
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Furthermore, despite their great accuracy, physicians frequently do not rely on the most
up-to-date techniques and methodologies [24]. Most of these approaches and methods
are fundamentally non-transparent, difficult to understand, and unable to answer simple
questions such as: Why is this conclusion drawn? Why it is essential from a medical
standpoint [25]? Patterns discovered from the datasets using complicated ML algorithms
are not always accurate or easily understandable. Therefore, the medical specialists do not
accept the black-box models that do not provide a thorough and simple explanation [26].
For these reasons, the clinical ML approaches typically avoid complex models in favor of
simpler and more interpretable models with the sacrifice of a higher accuracy [27]. Many
researchers have attempted to open the black box of sophisticated models and explain their
decisions by understanding how they function or by demonstrating their decisions [28].
This emerging approach is known as XAI, which stands for “accountable, transparent,
actionable, or explainable artificial intelligence.” The ability of the ML algorithms to explain
(mathematically) or predict their outcomes in terms human comprehension is explainability.

Due to the biased accuracy and lack of explainability [2,12,13] of the existing ML meth-
ods, diabetes detection and progression prediction still remain a challenging area, despite
the significant current research efforts. This research intends to provide an interpretability
of the ML models and enhance the prediction performance using the cross-validation
with the data pre-processing to diagnose diabetes. Thus, the used models would offer an
effective, reliable, and explainable disease prediction.

3. Methodology
3.1. Proposed Approach

The whole workflow of the proposed approach is demonstrated in Figure 1. The data
was downloaded from Kaggle (https://www.kaggle.com/datasets/uciml/pima-indians-
diabetes-database, accessed 10 September 2022) then it was cleaned and pre-processed
(missing values imputation, class balance, etc.). Following the preprocessing, the stratified
data was five-fold cross-validated. The class of the data was highly imbalanced. The
SMOTETomek algorithm was used to balance the classes after CV for each fold. It should
be noted that the SMOTETomek was only applied to the training dataset. The class of the
test set was not balanced. The class imbalance with the CV should be handled after the train
test split, since if the class balancing was produced before the cross-validation, it will affect
the test set. Therefore, the appropriate way to use the CV with a balanced class of dataset is
to balance the class after the CV. Five isolated folds were generated from the training set
using the CV and then the SMOTETomek was applied to each isolated fold. Consequently,
each training fold produced a balanced class of the training fold, but the test fold remained
the same. This CV method has also been discussed in [22]. Following the balancing of the
class of the data, six ML algorithms were applied: artificial neural network (ANN), random
forest (RF), AdaBoost classifier (ADA), XGBoost classifier (XGB), support vector machine
(SVM), and logistic regression (LR) were used for training. Based on the performance of the
algorithms, the two best-performing algorithms were selected from the six ML algorithms
and a weighted ensemble model was developed for the diagnosis of diabetes. Different
weights have been selected for every fold with XGB, and the AdaBoost order, respectively.
A soft voting classifier was used to develop the ensemble model. Following the training, all
trained models were used to predict the test data. Here, the LIME package and the SHAP
tool were used for the model explanation. The trained ML algorithms and the ensemble
model are explainable supervised algorithms. Both the global and local explanations were
described using those algorithms.

3.2. Dataset Description

The Pima Indian dataset (https://www.kaggle.com/datasets/uciml/pima-indians-
diabetes-database, Accessed 10 September 2022), used in this work consisted of a total of
768 instances with nine attributes of diabetes detection to formulate a binary classification
problem. This dataset contains information about female patients only. Table 1 displays the

https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
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description of the attributes, and Table 2 presents the statistical values of the dataset. This
dataset was selected because this is a very common publicly available dataset to predict
diabetes, and most researchers employed this dataset to develop models. Therefore, it
would be convenient to compare the proposed model with others and identify the space
for improvement.
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Figure 1. Overall workflow of the proposed diabetes detection model.

Table 1. Description of the attributes available in the Pima Indian Diabetes dataset.

Attribute Attribute Type Attribute Description

Pregnancies Numeric Number of times pregnant

Glucose Numeric Plasma glucose concentration (mmol/L) a 2 h in an oral glucose tolerance test

Blood Pressure Numeric Diastolic blood pressure (mm Hg)

Skin Thickness Numeric Triceps skin fold thickness (mm)

Insulin Numeric

2 h serum insulin (mu U/mL): Insulin-resistant (IR) cells lead to prediabetes and
type-2 diabetes.

“2 h post glucose insulin level” is a cost-effective, convenient, and efficient
indicator to diagnose IR [29,30]

BMI Numeric Body mass index weight in kg/(height in m)

Diabetes PF Numeric Diabetes pedigree function: indicates the function which measures the chance of
diabetes based on family history.

Age Numeric Age (years)

Table 2. Statistical description of the Pima Indian Diabetes dataset.

Pregnancies Glucose Blood
Pressure

Skin
Thickness Insulin BMI

Diabetes-
Pedigree
Function

Age Outcome

count 768 768 768 768 768 768 768 768 768

mean 3.84 121.59 72.37 29.11 153.18 32.42 0.47 33.24 0.34

std 3.36 30.49 12.2 9.42 98.38 6.88 0.33 11.76 0.47

min 0 44 24 7 14 18.2 0.07 21 0

25% 1 99 64 23 87.9 27.5 0.24 24 0
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Table 2. Cont.

Pregnancies Glucose Blood
Pressure

Skin
Thickness Insulin BMI

Diabetes-
Pedigree
Function

Age Outcome

50% 3 117 72 29 133.7 32.09 0.37 29 0

75% 6 140.25 80 35 190.15 36.6 0.62 41 1

max 17 199 122 99 846 67.1 2.42 81 1

Every feature’s seaborn plot is displayed in Figure 2. The relationship between one
feature with respect to the other eight features, including itself, has been plotted. This plot
is helpful in identifying the relationships of the features. If the points are scattered, there
is no absolute relationship, while if the points are approximately placed in a straight line,
they show a linear relationship between them. While referring to the seaborn plot, insulin
vs. glucose and skin thickness vs. BMI are the most positively correlated features.
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The Pearson correlation heatmap between all of the features is displayed in Figure 3.
It is calculated based on the value of two features and measures the linear relationship
between them. The correlation between the two features was measured using the Pearson
correlation. The correlation coefficient values ranged from −1 to +1. A value closer to
0 implies a weaker correlation. 0 means no correlation. A value closer to 1 or −1 indicates
a stronger positive or negative correlation, respectively. The strongest positive correlation
was found between the BMI and skin thickness. While age vs. pregnancies and glucose,
vs. insulin also showed a positive correlation. There is no noticeably strong negative
correlation between the features. The Pearson correlation coefficient was calculated after
the missing value imputation.
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3.3. Preprocessing

The first work for any data mining technique is data preprocessing. It plays a vital
role in model performance [31]. The dataset contained a lot of missing values and the class
of the data was imbalanced.

3.3.1. Missing Value Imputation

The missing values in the dataset are visible in Figure 4 where insulin had the most
missing data compared to any of the other features. Other features, including skin thickness
and pregnancy, were also lacking. Here, some features had zero values which do not make
any sense. These values were treated as missing values in the dataset. The features where
zero was treated as missing values were glucose, blood pressure, skin thickness, insulin,
and the BMI. These zero values were replaced by “NaN” in the dataset. To replace the
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missing values of the features, the median was taken corresponding to the target value.
Since this was a binary classification, each feature had two medians for two classes. For
instance, the median for glucose was 107 and 140 for the two classes (Normal and diabetic
patients), respectively. The missing values of glucose were replaced by 140 for the diabetic
patients and for the normal patients, it was replaced by 107.
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Figure 4. Representation of the missing values before the imputation.

3.3.2. Data Partitioning

The entire dataset was stratified, and then a five-fold cross-validation was applied to
the dataset.

3.3.3. Handling Imbalanced Classes of a Dataset

There are several methods to make a dataset balanced. In this work, the SMOTETomek,
a combination of the SMOTE and the Tomek algorithms, was applied. The SMOTE is an
acronym for synthetic minority oversampling technique. Tomek is an undersampling
technique. First, the SMOTE was applied to create new synthetic minority samples to
obtain a balanced distribution of the classes. Furthermore, the Tomek link was used to
remove the samples close to the boundary of the two classes in order to increase the
separation between the two classes [32]. It was applied only to the training dataset and the
test set remained the same. Table 3 represents the data distribution of each class before and
after using the SMOTETomek on the training dataset.

Table 3. Number of classes before and after using the SMOTETomek on the training dataset.

Before the SMOTETomek After the SMOTETomek

Numbers in class 0 (non-diabetic) 400 393

Numbers in class 1 (diabetic) 214 393

3.3.4. Feature Scaling

A min-max normalization was used on the dataset except for the tree-based algorithms
such as the random forest, the AdaBoost, and XGBoost classifiers. The SVM, logistic
regression, and the ANN algorithms need normalization. The min-max scaler is defined by
Equation (1).

h′ =
h−min(h)

max(h)−min(h)
(1)

where h is the original value, and h′ is the normalized value.

3.3.5. Weighted Score Approach for the Ensemble Method

For the ensemble classification, a weighted model was developed. Two weights were
assigned to the two algorithms used in the ensemble approach. For every fold, a loop
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was used to check a combination of weights producing the highest accuracy, which was
selected for every fold. Since it was a five-fold cross-validation, the weights were updated
in each fold.

3.4. Models and Algorithms
3.4.1. Ensemble Learning

The individual models were combined in the ensemble approach to improve the
model’s stability and predictive power [33]. This approach permits a higher predictive
performance compared to a single model. The ensemble finds ways to combine multiple
machine learning models into one predictive model. Bagging is used to reduce variance,
boosting reduces bias, and stacking improves performance. Specific models do well in
modeling one aspect of the data while others do well with another aspect. Instead of
learning a single complex model, the ensemble model learns several simple models and
combines their outputs to produce the final decision. The combined strength of the models
offsets the individual model variances and biases. The ensemble learning will provide a
composite prediction where the final accuracy is better than the accuracy of the individual
classifiers. The weighted soft voting approach has been used in the proposed method and
the equation is given below:

ŷ = arg max
i

m

∑
j=1

wj pij (2)

Here, p is the predicted probability for each classifier, and wj is the weight given to the
jth classifier.

3.4.2. AdaBoost

The ensemble method is divided into two groups, the sequential or bagging technique,
and the parallel or boosting technique. In sequential ensemble methods, base learners are
generated consecutively. AdaBoost is a sequential ensemble method. The basic motivation
of the sequential methods is to use the dependence between the base learners by weighing
the previously mislabeled examples with a higher weight. Therefore, the overall perfor-
mance of a model can be boosted. Bagging combines the results of multiple models to
obtain a generalized result from a single model. Bagging reduces the variants of an estimate
by taking the mean of various estimates [34].

3.4.3. Random Forest

The RF is a boosting technique. The parallel ensemble methods are applied wherever
the base learners are generated, in parallel. Each base learner model is provided with a
sample of data; these base learners give the output individually. At last, based on the
base learners’ predictions, the final prediction is made based on the voting classifier. The
RF builds multiple decision trees and merges them to obtain a more accurate and stable
prediction. In the RF, the base learner models are decision trees. Since the errors are often
reduced dramatically by averaging, the basic motivation of the parallel methods is to use
independence among the base learners.

3.4.4. XGBoost

XGBoost repeatedly builds new models and combines them into an ensemble model.
First, from one developed model, the error of the residuals for each observation is calculated.
Based on the prior errors, a new model is created to anticipate those residuals. Then predic-
tions from this model are added to the ensemble models. Compared to gradient boosting
algorithms, XGBoost is preferable because it achieves a fair balance of bias and variance.

3.4.5. Logistic Regression

The LR is a linear regression transformation algorithm that allows for describing
binary variables in a probabilistic manner. It is a classification algorithm that is used
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to find a relation between attributed and a particular outcome’s probability. The logit
function is utilized in this classification method, hence the word “Logistic.” It is highly
useful in medical diagnoses, given some particular symptoms and characteristics. Like
other regression analyses, the LR is a type of predictive analysis. It calculates the outcome’s
predicted probability. It is a particular case of linear regression with a categorical target
variable. In a logistic regression, the effect of the outlier is removed by adding the logit
function [34].

3.4.6. Support Vector Machine

A support vector machine (SVM) is a linear model for classification and regression
problems. Both linear and nonlinear problems can be solved using it. It works in a similar
way as a linear regression. In the SVM, the algorithm classifies new data by generating a
hyperplane with a maximum marginal distance.

3.4.7. Artificial Neural Network

The ANN has three main layers- the input, hidden, and output layers. The input is
given in the input layer, and the output is received from the output layer. The middle layers
are for adjusting the weight and reducing the error between the true value and the target
value. This process is known as backpropagation [35]. In the proposed ANN, the number
of nodes in the input layer was eight, and there are two middle layers containing nodes
ten and eight, respectively. Since it is a binary classification, there is only one node at the
output layer. Twenty epochs were used for each cross-validation. For the first two layers,
the ReLu was used as an activation function, and the sigmoid was used for the last layer.

The hyperparameters of any algorithm must be tuned to obtain the best result for any
dataset. The hyperparameters of the algorithms were also tuned to achieve the desired
outcome. To select the best performing weights for the ensemble model, the model with
some weights were evaluated and then the weights selected were those that produced
the best accuracy. Furthermore, not all of the algorithms for the ensemble model were
considered. The best two performers were used for the ensemble method among the
six algorithms. All of the tuned parameters have been shown in Table 4.

Table 4. Optimal hyperparameters used in the algorithms.

Algorithms Optimal Parameters

Artificial neural network Batch size = 5, epochs = 20

Support vector machine default

Logistic regression C = 10

Random forest default

XGBoost number of estimators = 20

AdaBoost number of estimators = 300, learning rate = 0.01

3.4.8. Reproducible Models

During the development of any CV method, it is useful to be able to obtain the
reproducible results from run to run and to determine if a change in the performance
has happened due to an actual model or data modification, or is merely a result of a new
random seed.

Since some algorithms are irreproducible, such as the RF and the ANN, the only way
to ensure that the results of these models are reproducible is to set a quantity known as
the random seed, which controls how random numbers are generated. Thus, the models
become reproducible. Therefore, the random seed was set for every algorithm used in this
study. For the ANN, the random seed was set to a specific value. For other ML models,
in sklearn, a parameter named “random state” was used to control the randomness. By
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setting the parameters, the ML algorithms took the defined combination of the seeds in
every fold. Therefore, the proposed ensemble approach produced reproducible results.

3.4.9. Shapley Additive Explanations (SHAP)

It can be challenging to justify the model’s reliability when creating complex models.
While the global performance matrix such as accuracy is helpful, they cannot be used to
describe why a model correctly predicted a particular outcome. The LIME package and
the SHAP tool were mainly used to explain and visualize the model. A python package:
LIME is a method that is fitted to a local model around the area in question to explain
the result of black-box models. It is a game-theoretic method [36] for explaining how
machine learning algorithms reached their decision [37]. SHAP is a visualization tool that
explains any machine learning algorithm by visualizing its outcome. SHAP computes the
contribution of each feature in a dataset to the prediction. Thus, the explanation of any
model can be described by SHAP. It combines some other tools, such as LIME and many
more [38]. The SHAP values have become very popular in explainable AI and are also used
in feature selection [39], and model explanation [40]. In this study, LIME and SHAP were
used to explain the proposed approach.

However, extensive computational time is a challenge for SHAP and this time depends
on the SHAP explainer. There are different types of SHAP explainers available. Kernel and
tree explainers were used in this work. Among them, the tree explainer works with all
tree-based algorithms and is much faster compared to the kernel explainer. To calculate
the SHAP values of the ANN, the kernel explainer was used and it was a very time-
consuming method. Though the kernel explainer is a universal explainer (it works with
any algorithms), because of its high computational time, the tree explainer was used in the
proposed work, for the tree-based algorithms.

A common way to understand the influence of each feature of the ML models is
to examine the coefficients learned for each feature. From those coefficients, it can be
understood how the model output changes with a change in the input feature. However, it
is not a reliable method to measure the overall importance of a feature as the coefficients
depend on the scales/units of each feature. If the scale of the feature changes, the coefficient
also changes. Therefore, the magnitude of the coefficient is not a good choice to understand
the importance of the feature of a model [41]. In this case, SHAP is a perfect choice to
see the individual as well as the overall influence of the features. Furthermore, using this
coefficient method, local explanations cannot be observed but this can be easily achieved
using SHAP.

4. Performance Analysis and Experimental Results

Six machine learning algorithms have been applied to the Pima Indian dataset. Some
prepossessing was carried out on the dataset before applying the algorithm. Following the
application of the six ML algorithms to the preprocessed dataset, an explainable weighted
ensemble method was developed, based on a voting classifier. The proposed approach
used soft voting, and the weights were selected for the ensemble method.

4.1. Performance Parameter

For the classification of the diabetes disease, five quality parameters have been calcu-
lated. The performance parameters are given below:

Accuracy =
TP + Tn

TP + Tn + Fp + Fn
(3)

Precision =
TP

TP + Fp
(4)

Recall =
TP

TP + Fn
(5)
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F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
(6)

where Tp is true positive, Tn is true negative, Fp is false positive, and Fn is false negative. The
accuracy is defined as the fraction of all of the correctly predicted diabetic and non-diabetic
patients out of the records of all of the patients. The precision is the fraction of the correctly
predicted diabetic patients out of all of the correctly and incorrectly predicted diabetic
patients. The recall calculates the fraction of correctly predicted diabetic patients out of the
records of all of the true diabetic patients only. The F1 score measures the weighted score
of the precision and the recall.

4.2. Performance Results

This section shows the performance of all of the algorithms considered here. The
five-fold stratified cross-validation was used for the algorithms, and at last, an ensemble
model was developed using the best two algorithms. The soft voting technique was used
for the ensemble method.

The ANN produced an accuracy of 79%, as displayed in Table 5. In addition to han-
dling big data sets, the ANN can implicitly discover the complicated nonlinear correlations
between the dependent and independent variables and the possible interactions between
the predictor variables. The dataset had a lot of nonlinear relationships shown in Figure 2.
However, the ANN did not perform very well for this dataset. In fact, the tree-based
algorithms did better than the ANN. The ANN is a complex algorithm and generally works
well on large datasets with lots of features. Since the used dataset was not large enough
and only had eight input features, the tree-based algorithms outperformed on the dataset.

Table 5. All models’ performance for the five-fold cross-validation of the dataset with the bal-
anced classes.

Algorithms Precision Recall F1-Score AUC Score
Accuracy

Train Test

ANN 0.77 0.78 0.78 0.87 0.81 0.79

SVM 0.79 0.81 0.80 0.88 0.87 0.79

LR 0.78 0.79 0.78 0.86 0.80 0.78

RF 0.87 0.88 0.87 0.94 1.00 0.88

XGB 0.88 0.89 0.88 0.92 0.99 0.88

Ada 0.82 0.85 0.83 0.95 0.86 0.83

Voting Classifier
(XGB + RF) 0.88 0.89 0.89 0.95 0.99 0.90

The SVM provided an accuracy of 79% and an F1 score of 80%, as shown in Table 5.
The SVM is also one of the best classifiers for the binary classification problems with the
balanced class of datasets, free or with little noise. Since the dataset used here was not
outlier-free, that is why the SVM did not perform well with this dataset. The LR provided
an accuracy of 78%, with an F1 score of 78%. Other than the ensemble, the XGB showed
the most promising results among the six ML algorithms. Both the XGB and the RF faced
the overfitting problem. The XGB is a greedy algorithm that can over fit a training data
quickly. Regarding the RF, if the hyperparameters were tuned to the maximum depth,
then the accuracy also decreased. Therefore, the sklearn default parameters were used for
the RF. The performance metrics of all of the algorithms for every fold can be found in
Appendix A.

From Table 5, it could be observed that the tree-based algorithms such as the RF and
the XGB produced the same accuracy of 88%. In the case of diabetes, it cannot be ruled
out that if a particular situation is present, then that patient must have diabetes, many
other relevant issues could cause diabetes. Of course, there are some patterns, such as in
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many cases, if there are high glucose levels or insulin, there is a good probability that the
patient may have diabetes. However, these conditions are not always relevant to the output.
And the tree-based algorithms performed better when not every condition was relevant to
the action. For this reason, the RF and the XGB performed well. AdaBoost is also a tree
based algorithm and it performed better than the ANN, SVM and the LR, by providing an
accuracy of 83% for the test data.

The Is also a tree based algorithm The voting classifier was combined with the RF
and XGBoost. Since the performance of these two algorithms was better compared to the
others, they were selected for the voting classifier. The weighted voting technique and
performance are also shown. Here, the voting classifier provided an accuracy and F1 score
of 90 and 89%, respectively, and these outperformed all of the algorithms.

Figure 5 presents the ROC curves of each fold for all of the algorithms used. The
AUC scores of the XGB and the voting classifier was the highest (95%), while the AUC
score of the ANN and the LR were comparatively lower (87% and 86%, respectively) than
the others.

4.3. Comparison with Previous Research

Other authors used various methods to classify the same PIMA dataset used in this
study and achieved a decent accuracy. Table 6 presents the latest work with the PIMA
dataset only. Most of them carried out basic preprocessing such as scaling, and label
encoding. An important drawback of these studies was that they did not balance the class
of the dataset. The class of the Pima dataset was highly imbalanced, which might result in a
biased accuracy. To check the performance of the algorithms, other performance metrics are
necessary. To solve the problem, the SMOTETomek was used in the proposed approach to
avoid any overfitting. Six ML algorithms were applied on the dataset and the soft weighted
ensemble approach outperformed all of the algorithms. The proposed model provided an
accuracy of 90% where both recall and F1-score were 89%.

Table 6. Comparison of the diabetes detection model outcomes with the previous studies.

Approach Train Test Split Result (%) Ref.

Decision tree
Random forest

Naive Bayes

70:30 train test
ratio

DT RF NB

[13]

Accuracy
Precision

Sensitivity
Specificity
F1 score

AUC

74.78
70.86
88.43
59.63
78.68
78.55

79.57
89.40
81.33
75.00
85.17
86.24

78.67
81.88
86.75
63.29
84.24
84.63

RF
AdaBoost

Soft voting classifier

70:30
train test

ratio

RF Ada Voting classifier

[10]
Accuracy
Precision
F1 score
Recall
AUC

77.48
71.21
64.38
58.75
78.10

75.32
68.25
60.13
53.75
74.98

79.08
73.13
71.56
70.00
80.98

RF Not mentioned
RF ANN K mean

clustering
[2]

Accuracy
AUC

74.70
80.60

75.70
81.60

73.60
-

ANN
XGB

Not mentioned

ANN XGB

[12]
Accuracy
Sensitivity
Specificity

AUC

71.35
45.22
85.20
65.00

78.91
59.33
89.40
88.00
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Table 6. Cont.

Approach Train Test Split Result (%) Ref.

Naive Bayes
SVM
DT

10-fold
Cross-

validation

NB SVM DT

[11]
Precision

Recall
F1 score

Accuracy

75.9
76.3
76

76.3

42.4
65.1
51.3
65.1

73.50
73.80
73.60
73.82

Proposed soft voting
classifier (XgBoost + RF)

5 fold
Cross-

validation

Accuracy
Precision

Recall
F1 score

AUC

90
88
89
95
95

-

A comparatively better accuracy was achieved by Chang et al. [13] than the other
studies with a 70:30 split ratio where the features were selected using PCA, k means
clustering, and the importance ranking to remove the noise of the dataset. The performance
was measured using all of the features of the dataset, then a comparison was carried out
using the selected three and five features. The decision tree, the random forest, and the
naive Bayes algorithms were used for the classification. Using only three and five selected
features did not improve the output performance much. Without the feature selection, the
RF provided an accuracy of 79.57% with a very poor specificity of 75%. The imbalance of
the samples of class 0 and class 1 is most likely responsible for the significant difference
between the sensitivity and the specificity. Without using any feature selection method, the
proposed model in this paper provided an accuracy of 90%.

Now, for the output performance (where all of the features were used), from the RF, the
highest precision and the F1 score were 89.40 and 85.13%. Two reasons could be factored for
this higher outcome. First, the class of the dataset was not balanced, therefore, the precision
was not a proper performance measure as it was prone to give a higher value, drastically
decreasing the specificity. Secondly, the train test split was used for the classification. In a
train test split, the performance score depends on how the data is split and the outcome
varies significantly for every split. Multiple train test splits could be carried out to reduce
the biased result, which was not considered. Furthermore, the cross-validation assures an
unbiased result. Since the PIMA dataset’s variance is high, the train test split produced
a significantly biased result. That is why the F1 score was much higher than the other
approaches. The highest F1 score was 85.17% from the RF.

A soft voting ensemble classifier was used by Kumari et al. [10] and achieved an
accuracy of 79%. Since the class of the dataset was not balanced, the models produced
a poor performance in terms of the precision, the recall, and the F1 score. The missing
values were also replaced by using the median of the specific attribute. This could also
decrease the performance. When using a median, it must be different for the target classes.
Furthermore, for the PIMA dataset, not all of the zeros should not be treated as missing
values. These issues needs to be taken care for in order to achieve a better outcome. Other
than the ensemble method, other machine learning algorithms did not perform well.

In [2], the ANN, the RF, and the K-Means clustering were used to examine the diabetes
dataset. The highest accuracy was 75.70% from the ANN. A dataset of the imbalanced
classes was used for the classification. The same drawback was also found in the work
proposed by Tiwary and Singh [12], where the result of the dataset (imbalanced class)
affected the prediction performance with a good accuracy (78%), but a very low sensitivity
(59%). The recursive feature elimination was selected, which might cause overfitting and
result in poor outcomes.

In [11], there is a scope for further improvement in the data preprocessing. A 10-fold
cross-validation was used, which provided an unbiased result, and the performance was
very poor because of the class imbalance in the dataset. The accuracy can be improved by
reducing balancing the dataset and applying preprocessing techniques.
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4.4. Model’s Explainability

No other previous research on Pima diabetes explains the decision of the model
predictions. In this work, the importance of every feature has been determined, and the
impact of the features behind a particular decision has been explained. Here, both global
and local representations have been shown. The local explanation demonstrates which
features contribute the most to a particular test set. The LIME explanation and the SHAP
force plot of a test set are the local explanations. In the global explanation, the contribution
of the features for a group of data (such as all test data) has been shown. They are the
permutation importance of the features, the summary plot of the violin distribution, the
SHAP dependence pot and the SHAP force plot with all of the test data.

A test sample with contradictory symptoms was selected for the local explanation.
Since this sample was confusing to predict, some algorithms failed to provide the correct
result because of the contradictory symptoms. Here, most models said that the patient
had diabetes, and the proposed ensemble model’s decision was also predicted the same,
correctly. That is why an ensemble model is better performing than the others. The voting
classifier favors the right decision in such cases, since the majority generally tells the right.
Using the explainable AI, made it convenient for physicians to decide whether the models
were performing accurately or not.

4.4.1. Explainability of the Outcome using LIME (Local)

Figure 6 presents the LIME plots for every feature’s positive and negative impacts on
making that decision, and physicians can easily understand if the model is not making
the right decision. Even if the impact of some features was confusing for the physicians
to reach a decision, they could rely on the ensemble method. The positive effect of not
having diabetes has been shown in blue, and the features in orange mean that the patient
might have diabetes. Here in Figure 6, a single sample was taken to show every feature’s
influence. This particular sample was used for all of the algorithms. Since in the ANN,
SVM, and the LR scaled data needed to be used, the representations had been shown using
the scaled data. If a natural unit was shown, then the LIME explainer needed to be trained
on the non-scaled data which would return a different trained model than the used one.
Therefore, for better understanding the graphs in Figure 6, the values with natural units of
the corresponding features have been shown in Table 7. To understand the values, clinicians
need to check the actual feature values of patients (for the algorithms where data scaling
is a must). However, the proposed approach showed a natural unit of data in Figure 6g,
which can be easily understood by clinicians without confusing with the normalized data.

Table 7. Values (Natural unit) of every feature of a selected test sample corresponding to Figure 6.

Features Values (Natural Unit)

Glucose 109.00

Blood pressure 88.00

Insulin 142.80

Skin thickness 30.00

Pregnancies 6.40

BMI 32.50

Diabetes pedigree function 0.85

Age 38.00

For the RF algorithm, the glucose value is between 101 to 119, which leads to the
decision that the patient may not have diabetes as the glucose level is moderate [42]. The
most influential feature in the RF is insulin, which is 142, indicating that the patient has
diabetes. Their age is below 40, which leads to the positive decision (orange color), which
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means that according to the value of the age, there is a higher probability that the patient
has diabetes. The RF also predicts that the patient has diabetes.
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diabetes. Their age is below 40, which leads to the positive decision (orange color), which 
means that according to the value of the age, there is a higher probability that the patient 
has diabetes. The RF also predicts that the patient has diabetes. 

For different test data, SHAP uses different intervals. Since the BMI was 32.50, it took 
the interval values close to the given value (32.50). If the BMI were 33, then it would take 
approximately 30 to 35 for the interval. There is no standard to select the intervals. SHAP 
observed how the value of a particular feature influenced the decision, and according to 
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According to the RF, insulin, age, the BMI, and the diabetes prediction function are 
the most influential features, and glucose, blood pressure, and pregnancies are the most 
insignificant features. The insignificant parts indicate that the model did not obtain 
enough information to firmly identify whether the patient has diabetes or not. When the 
influence of the features is not that significant, the bars representing them are shorter. 
Only by seeing this figure, physicians can guess if the model is performing correctly since 
the impact of the prediction will match the facts of medical science. It is a very informative 
graph to represent the decision of a single test sample. 

The output probability of the decision has also been shown in Figure 6. The ensemble 
model’s feature contribution and the two individual algorithms (RF, XGB) used for the 
voting classifier, have also been represented here. A particular test set was used for all of 
the algorithms to demonstrate the importance of the features. Since the data for the algo-

Figure 6. LIME tabular explainer of (a) ANN, (b) SVM, (c) LR, (d) RF, (e) ADA, (f) XGB, and
(g) Voting classifier.

For different test data, SHAP uses different intervals. Since the BMI was 32.50, it took
the interval values close to the given value (32.50). If the BMI were 33, then it would take
approximately 30 to 35 for the interval. There is no standard to select the intervals. SHAP
observed how the value of a particular feature influenced the decision, and according to
the observation, final decision is made. It does not follow any particular standard for any
feature to decide whether the patient has diabetes or not.

According to the RF, insulin, age, the BMI, and the diabetes prediction function are
the most influential features, and glucose, blood pressure, and pregnancies are the most
insignificant features. The insignificant parts indicate that the model did not obtain enough
information to firmly identify whether the patient has diabetes or not. When the influence
of the features is not that significant, the bars representing them are shorter. Only by seeing
this figure, physicians can guess if the model is performing correctly since the impact of
the prediction will match the facts of medical science. It is a very informative graph to
represent the decision of a single test sample.

The output probability of the decision has also been shown in Figure 6. The ensemble
model’s feature contribution and the two individual algorithms (RF, XGB) used for the
voting classifier, have also been represented here. A particular test set was used for all
of the algorithms to demonstrate the importance of the features. Since the data for the
algorithms SVM, ANN, and LR are normalized, the figure shows the normalized data.
Therefore, to understand the actual value of the features of that test set, the value of the
RF or the XGB can be observed where the data normalization was not necessary. Among
the ANN, the RF, and AdaBoost, the ANN predicted that the patient did not have diabetes,
whereas the other two algorithms suggested that the patient had diabetes. None of the
algorithms gave much confidence for that particular sample. Here, the value of insulin, age,
and glucose played a significant role in that prediction for the RF and the Ada. Though for
the RF and the Ada, the value of glucose, blood pressure, and pregnancies indicate that
the patient might have diabetes, the influence of this decision was very little. Both of them
predicted that the particular patient had diabetes, based on the impact of the same features,
though none of them gave a strong probability.

Moreover, the ANN predicted that there was a 54% probability that the patient did
not have diabetes, and the significant features behind the decision were glucose and blood
pressure. Here, the value of glucose, blood pressure, and the BMI implied the conclusion
that the patient did not have diabetes, but the impact was little. The glucose was 109,
which was not very high. Based on the value, the model predicted that there was a good
possibility that the patient did not have diabetes. However, in this case, the patient did
have diabetes, which the ANN model failed to identify.
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In medical cases, it is hard to conclude any decision to see specific symptoms because
that can happen due to other effects. Therefore, it is not unusual to make a wrong decision.
Why the model is predicting an incorrect decision, or which value of any feature is different,
can be visible using explainable AI.

When these models were combined into an ensemble, it gave a 52% probability that the
test data belonged to a diabetic patient. Though the probability score decreased compared
to the RF and AdaBoost, still the ensemble model gave the correct prediction. The prediction
probability is the probability of the prediction for a particular test data produced from the
trained algorithm. To obtain the probability, predict_proba in sklearn was used, which
returned the probability score for any algorithm.

4.4.2. SHAP Force Plot of a Particular Test Set (Local)

The base value is the average model output for all of the test data if any feature is not
known for the current prediction. For example, if 60% of the data from a test set contains
the data of diabetic patients, then the base value will be more than 0.50, implying that there
is higher possibility for any random test data belonging to a diabetic person. Therefore, the
base value is the mean prediction of the test data. The base value and the predicted value
are given in Figure 7, which shows that every algorithm’s predicted value and base value
differs. For a particular algorithm, the base value will be the same for all of the test data.
The horizontal axis indicates the probability of diabetes. For a given test sample, ANN
predicted a 54% probability that the patient had no diabetes (Figure 7a).

The influence on the current prediction can be understood by the force plot. The
red-colored features positively influence the prediction (tends to increase the predicted
value), whereas the blue-colored features have a negative influence (tends to decrease
the predicted value). The red-colored features shift the prediction towards the right side
(close to 1) from the base value, and the blue-colored features try to shift the prediction
towards the left side from the base value (close to 0). For AdaBoost, the base value was
0.47 where, the influence of the blue-colored features (age, BMI, insulin, skin thickness,
and pregnancies) is stronger; therefore, the final predicted value shifts towards the left
side from the base, concluding the decision that there is a 47% probability that the patient
does not have diabetes. Since the probability score is lower than 50%, hence for this test
set, AdaBoost predicted that the patient had diabetes. The more the predicted value shifts
towards the left side from the base value, the greater the possibility of having diabetes.
In Figure 7a, the ANN provided a false negative for this particular test sample, and the
glucose and blood pressure features were responsible for that.

To find the numerical influence of each attribute, waterfall plots were used. One
random sample was selected to show the force plot and the corresponding water plot
to represent the numerical influence (Figure 8). The red color influences the prediction
to be positive (approaching towards 1) and blue influences the prediction to be negative
(approaching towards 0: the absence of diabetes). In Figure 8b, the most influential feature
was insulin with a value of +0.16. It was also found that the numerical influence of age and
the BMI was the same but in the opposite direction.

4.4.3. SHAP Force Plot of the Test Set (SHAP Supervised Clustering)

Figure 9 illustrates the supervised clustering of all cases according to their similarities,
output values, and features. The hierarchical clustering was used for measuring the
similarities. Only the clustering for the ensemble model is shown here for all of the folds
and the last fold. They represent the output probability versus the test sample graphs for
the 768 test samples (considering every fold) and the 153 test samples (for the last fold).
Here, the x-axis denotes the test set number, and the y-axis is the output probability. The
force plot of each test sample was vertically clustered to generate the force plot displayed
in the figure for the global explanation. This force plot is clustered based on the similarity
of the features.
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Figure 7. SHAP force plot of (a) ANN, (b) SVM, (c) LR, (d) RF, (e) ADA, (f) XGB, and (g) Voting 
classifier using the five-fold. 

The influence on the current prediction can be understood by the force plot. The red-
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Figure 7. SHAP force plot of (a) ANN, (b) SVM, (c) LR, (d) RF, (e) ADA, (f) XGB, and (g) Voting
classifier using the five-fold.

The output probability with respect to the features (glucose and insulin) and the
relative contribution of the individual features considering all folds and the last fold have
been presented in Figure 10. The x-axis denotes the feature, and the y-axis is the output
probability. This cluster is based on the output value. The value of glucose ranged from 60
to 180. It is noticeable that with an increase of the glucose value, the quantity of the blue
color increased (blue = presence of diabetes, red = non diabetes), both for all folds and the
last fold. Not only glucose, but the risk of diabetes also increased with an increase in the
insulin level.



Sensors 2022, 22, 7268 23 of 37

Sensors 2022, 22, 7268 24 of 41 
 

 

base, concluding the decision that there is a 47% probability that the patient does not have 
diabetes. Since the probability score is lower than 50%, hence for this test set, AdaBoost 
predicted that the patient had diabetes. The more the predicted value shifts towards the 
left side from the base value, the greater the possibility of having diabetes. In Figure 7a, 
the ANN provided a false negative for this particular test sample, and the glucose and 
blood pressure features were responsible for that. 

To find the numerical influence of each attribute, waterfall plots were used. One ran-
dom sample was selected to show the force plot and the corresponding water plot to rep-
resent the numerical influence (Figure 8). The red color influences the prediction to be 
positive (approaching towards 1) and blue influences the prediction to be negative (ap-
proaching towards 0: the absence of diabetes). In Figure 8b, the most influential feature 
was insulin with a value of +0.16. It was also found that the numerical influence of age 
and the BMI was the same but in the opposite direction. 

 
(a) 

 
(b) 

Figure 8. (a) SHAP force plot and (b) water plot for a test sample of the voting classifier using the 
five-fold. 

4.4.3. SHAP Force Plot of the Test Set (SHAP Supervised Clustering) 
Figure 9 illustrates the supervised clustering of all cases according to their similari-

ties, output values, and features. The hierarchical clustering was used for measuring the 
similarities. Only the clustering for the ensemble model is shown here for all of the folds 
and the last fold. They represent the output probability versus the test sample graphs for 
the 768 test samples (considering every fold) and the 153 test samples (for the last fold). 
Here, the x-axis denotes the test set number, and the y-axis is the output probability. The 
force plot of each test sample was vertically clustered to generate the force plot displayed 
in the figure for the global explanation. This force plot is clustered based on the similarity 
of the features. 

Figure 8. (a) SHAP force plot and (b) water plot for a test sample of the voting classifier using the
five-fold.

4.4.4. Permutation Importance of the Features (Global)

Based on the permutation importance, the importance of a feature can be understood.
If a single column of the data is randomly shuffled while the target and all of the other
columns remain unchanged, in that case, the change in the accuracy of the model will
provide the permutation importance of the shuffled column. A great change in accuracy
after the shuffling indicates that the feature is important. If shuffling one column does not
have a significant change in the model’s accuracy, then the permutation score of the feature
is less. Each model’s permutation importance of the features is represented in Figure 11.
According to the algorithms used, glucose was found to be the most influential feature.
Other most influential features were pregnancy, age, and BMI, whereas blood pressure and
skin thickness were the least influential. This permutation score was calculated using the
training sample of the algorithms. Since the five-fold cross-validation was used, the feature
importance of every fold was combined to display the final permutation importance.

The summary plot for every algorithm is shown in Figure 12. The impact on a specific
class of a specific feature for a given instance is represented by each dot on the plot. The
color of the dot represents the magnitude of the contribution to the model impact. The
color red denotes a high value, whereas the color blue denotes a low value. Almost all of
the glucose red dots were on the left side, indicating that patients with a high glucose value
tend to have diabetes. The greater the distance of the dot from the zero position, the greater
the impact. The distance of the glucose red dot was the longest on the left side compared to
the other features, indicating that it made the greatest impact on the presence of diabetes.
The same logic could be applied to the remaining features. It is also medically confirmed
that people with a higher glucose level have a higher risk of developing diabetes. Therefore,
from this summary plot, it will be convenient for physicians to see whether the model
is working correctly. It is also worth noting that age, pregnancy, insulin, skin thickness,
and BMI all impacted on the presence of diabetes. If their values are high (red color), the
patients might have diabetes.
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Another point to notice in Figure 12, is that some red dots are also present on the right
side. The XGB predicts some cases where the patient has no diabetes though the blood
sugar, glucose, and skin thickness are high. High blood sugar can result from various
causes, not just diabetes. Having high blood sugar might increase the risk of developing
diabetes. Similarly, people with a high BMI and high blood pressure may or may not have
diabetes. Although these are causes of diabetes, it cannot be completely ruled out, if a
person exhibits these particular symptoms but is not diabetic. Every symptom is related to
other symptoms in order to reach a final decision.
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4.4.5. SHAP Summary Plot of the Violin Distribution

The violin plot in Figure 13 provides each feature’s impact and density. It is a global
representation of the test set. The color represents the feature value. The red regions
mean the feature’s value is high, whereas the blue regions mean a low value. Considering
the first feature concerning glucose levels, in Figure 13a, the density becomes narrower
towards the left side of the plot, indicating that the patients with higher glucose levels
might have diabetes. The number of patients who did not have diabetes, represented by
the blue area on the right side, was much denser than left side. Therefore, the high value of
glucose on the far edge of the left side of the y-axis means they were more prone to having
diabetes. Furthermore, for the feature concerning age, the number of patients were high
with moderate and low age values, represented by the violet and blue colors, respectively.
If the position is on the left side of the y-axis, then the patients tend to have diabetes and
vice versa. Here, the longer the distance between the vertical line and the position of the
feature value, the higher the confidence is in making a positive prediction. As the position
of the medium valued age was closer to the y-axis, a confident decision could not be made.
Therefore, the output probability would not be high, based on the age values that are closer
to the y-axis. For the feature concerning blood pressure, since the position of the violet color
is on both sides, the patients might or might not have diabetes. This feature was the least
influential feature in the decision making for the five-fold voting classifier. It should be
mentioned that this violin plot was drawn using all of the folds’ test values, as the five-fold
cross-validation was used for all of the algorithms.

4.4.6. SHAP Dependence Plot (Global)

Figure 14 presents the SHAP dependence plots based on the ensemble model’s SHAP
values with the three most important features (glucose, BMI, and age), according to the
permutation importance for all folds. Glucose mostly interacted with the BMI, considering
all folds. Furthermore, the BMI interacted with insulin and age interacted with insulin
the most.

In Figure 14, red denotes a higher value, whereas blue denotes a lower value. When
the value of the BMI increases, insulin also increases, and the probability decreases (y-axis).
This is the likelihood of a patient not having diabetes. So, for a patient with a high glucose
level and a high BMI, that patient has a significantly lower chance of being non-diabetic,
thereby leading to the conclusion that the patient has a high risk of having the disease.
From this plot, physicians could quickly get the idea of how a patient’s symptoms vary
from one to another and how far the patient is from developing diabetes.
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Figure 14. SHAP dependence plot by voting classifier for (a) glucose, (b) BMI, (c) age, (d) blood 
pressure, (e) diabetes degree function, (f) insulin, (g) pregnancies, and (h) skin thickness using all 
folds. 
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Moreover, the proposed ensemble model produced a favorable accuracy-interpretability 
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cally trustworthy, and practical judgment that can boost a physician’s confidence in real-
life implementation. 

Even with encouraging findings from an academic perspective, the model is still 
much farther away from being utilized in a real-world medical scenario, which is intended 
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all folds.

5. Conclusions

Based on several ML methods, this study provided an accurate and highly explain-
able ensemble model with the usage of the cross validation approach and by combining
two ML algorithms (RF, XGB), using a weighted soft voting classifier to successfully predict
the risk of diabetes. It was demonstrated that the predictions based on the weighted ensem-
ble are significantly better than the individual algorithms. The system achieved the highest
accuracies by selecting appropriate weights. An accuracy of 90% and a F1 score of 89%
was achieved by the ensemble model and was highly competitive with the other models
proposed in the literature. The missing value imputation by median values, and the data
balancing by the SMOTETomek also contributed to the improved performance. Moreover,
the proposed ensemble model produced a favorable accuracy-interpretability trade-off be-
cause it achieved accurate results and a high level of interpretability using the permutation
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importance and SHAP plots. The ensemble model provided logical, medically trustworthy,
and practical judgment that can boost a physician’s confidence in real-life implementation.

Even with encouraging findings from an academic perspective, the model is still much
farther away from being utilized in a real-world medical scenario, which is intended to be
carried out in future. Further studies are needed to assess the performance characteristics
of the proposed approach in other relevant datasets. Further improvement in the model’s
performance and explainability will be attempted using different ML algorithms to develop
different types of ensemble models.
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Appendix A

Tables A1–A7 present performance metrics of all the algorithms for every fold.

Table A1. ANN model’s performance for the five-fold cross-validation.

Target
Class Precision Recall F1-Score AUC Score

Accuracy Confusion
MatrixTrain Test

Fo
ld

1

Class 0 0.83 0.79 0.81 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.64 0.70 0.67 - - - 79 21

Average 0.74 0.75 0.74 0.84 0.80 0.75 16 38

Fo
ld

2

Class 0 0.84 0.74 0.79 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.61 0.74 0.67 - - - 74 26

Average 0.72 0.74 0.74 0.83 0.81 0.74 14 40

Fo
ld

3

Class 0 0.85 0.85 0.85 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.72 0.72 0.72 - - - 85 15

Average 0.79 0.79 0.79 0.88 0.80 0.80 15 39

Fo
ld

4

Class 0 0.88 0.87 0.87 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.76 0.77 0.77 - - - 87 13

Average 0.82 0.82 0.82 0.91 0.81 0.83 12 41

Fo
ld

5

Class 0 0.91 0.81 0.86 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.70 0.85 0.77 - - - 81 19

Average 0.81 0.83 0.81 0.89 0.84 0.82 8 45

All folds’
average 0.77 0.78 0.78 0.87 0.81 0.79
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Table A2. SVM model’s performance for the five-fold cross-validation.

Target
Class Precision Recall F1-Score AUC Score

Accuracy Confusion
MatrixTrain Test

Fo
ld

1

Class 0 0.88 0.77 0.82 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.65 0.80 0.72 - - - 77 23

Average 0.76 0.78 0.77 0.85 0.88 0.78 11 43

Fo
ld

2

Class 0 0.91 0.72 0.80 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.63 0.87 0.73 - - - 72 28

Average 0.77 0.80 0.77 0.87 0.87 0.72 7 47

Fo
ld

3

Class 0 0.88 0.83 0.86 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.72 0.80 0.75 - - - 83 17

Average 0.80 0.81 0.81 0.90 0.87 0.81 11 43

Fo
ld

4

Class 0 0.91 0.86 0.88 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.76 0.83 0.79 - - - 86 14

Average 0.83 0.85 0.85 0.89 0.86 0.85 9 44

Fo
ld

5

Class 0 0.92 0.81 0.86 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.71 0.87 0.78 - - - 81 19

Average 0.81 0.84 0.82 0.90 0.86 0.83 7 46

All folds’
average 0.79 0.81 0.80 0.88 0.87 0.79

Table A3. Logistic regression’s performance for the five-fold cross-validation.

Target
Class Precision Recall F1-Score AUC Score

Accuracy Confusion
MatrixTrain Test

Fo
ld

1

Class 0 0.86 0.77 0.81 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.64 0.76 0.69 - - - 77 23

Average 0.75 0.76 0.77 0.84 0.81 0.76 13 41

Fo
ld

2

Class 0 0.88 0.76 0.82 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.65 0.81 0.72 - - - 76 24

Average 0.77 0.79 0.77 0.83 0.80 0.77 10 44

Fo
ld

3

Class 0 0.86 0.83 0.85 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.71 0.76 0.73 - - - 83 17

Average 0.79 0.79 0.79 0.88 0.79 0.80 13 41

Fo
ld

4

Class 0 0.91 0.84 0.87 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.74 0.85 0.79 - - - 84 16

Average 0.83 0.84 0.83 0.89 0.80 0.84 8 45

Fo
ld

5

Class 0 0.87 0.77 0.81 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.64 0.77 0.70 - - - 77 23

Average 0.75 0.77 0.76 0.86 0.81 0.77 12 41

All folds’
average 0.78 0.79 0.78 0.86 0.80 0.78
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Table A4. Random forest model’s performance for the five-fold cross-validation.

Target
Class Precision Recall F1-Score AUC Score

Accuracy Confusion
MatrixTrain Test

Fo
ld

1

Class 0 0.94 0.88 0.91 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.80 0.89 0.84 - - - 88 12

Average 0.87 0.88 0.87 0.94 1.00 0.88 6 48

Fo
ld

2

Class 0 0.92 0.86 0.89 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.77 0.87 0.82 - - - 86 14

Average 0.85 0.87 0.85 0.93 1.00 0.86 7 47

Fo
ld

3

Class 0 0.91 0.90 0.90 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.82 0.83 0.83 - - - 90 10

Average 0.86 0.87 0.87 0.94 1.00 0.87 9 45

Fo
ld

4

Class 0 0.94 0.92 0.93 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.85 0.89 0.87 - - - 92 8

Average 0.90 0.90 0.90 0.95 1.00 0.91 6 47

Fo
ld

5

Class 0 0.94 0.88 0.91 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.80 0.89 0.84 - - - 88 12

Average 0.87 0.88 0.87 0.95 1.00 0.88 6 47

All folds’
average 0.87 0.88 0.87 0.94 1.00 0.88

Table A5. XGBoost classifier’s performance for the five-fold cross-validation.

Target
Class Precision Recall F1-Score AUC Score

Accuracy Confusion
MatrixTrain Test

Fo
ld

1

Class 0 0.92 0.90 0.91 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.82 0.85 0.84 - - - 90 10

Average 0.87 0.88 0.87 0.91 0.99 0.88 8 46

Fo
ld

2

Class 0 0.93 0.86 0.90 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.77 0.89 0.83 - - - 86 14

Average 0.85 0.87 0.86 0.91 1.00 87 6 48

Fo
ld

3

Class 0 0.94 0.90 0.92 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.83 0.89 0.86 - - - 90 10

Average 0.88 0.89 0.89 0.94 0.99 0.89 6 48

Fo
ld

4

Class 0 0.94 0.91 0.92 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.84 0.89 0.86 - - - 91 9

Average 0.89 0.90 0.89 0.93 0.99 0.90 6 47

Fo
ld

5

Class 0 0.93 0.93 0.93 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.87 0.87 0.87 - - - 93 7

Average 0.90 0.90 0.90 0.92 0.99 0.90 7 46

All folds’
average 0.88 0.89 0.88 0.92 0.99 0.88
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Table A6. AdaBoost classifier’s performance for the five-fold cross-validation.

Target
Class Precision Recall F1-Score AUC Score

Accuracy Confusion
MatrixTrain Test

Fo
ld

1

Class 0 0.92 0.80 0.86 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.70 0.87 0.78 - - - 80 20

Average 0.81 0.84 0.82 0.95 0.86 0.82 7 47

Fo
ld

2

Class 0 0.94 0.80 0.86 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.71 0.91 0.80 - - - 80 20

Average 0.83 0.85 0.83 0.95 0.87 0.83 5 49

Fo
ld

3

Class 0 0.93 0.85 0.89 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.76 0.89 0.82 - - - 85 15

Average 0.85 0.87 0.86 0.95 0.87 0.86 6 48

Fo
ld

4

Class 0 0.94 0.82 0.88 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.73 0.91 0.81 - - - 82 18

Average 0.83 0.86 0.84 0.95 0.88 0.85 5 48

Fo
ld

5

Class 0 0.94 0.76 0.84 - - -

Tr
ue

la
be

l Predicted label

Class 1 0.67 0.91 0.77 - - - 76 24

Average 0.80 0.83 0.80 0.96 0.86 0.81 5 48

All folds’
average 0.82 0.85 0.83 0.95 0.86 0.83

Table A7. Ensemble model’s performance for the five-fold cross-validation.

Target
Class Precision Recall F1-Score AUC

Score
Taken
Weight

Accuracy Confusion
MatrixTrain Test

Fo
ld

1

Class 0 0.93 0.91 0.92 -
4 (Xgb)
3 (RF)

- -

Tr
ue

la
be

l Predicted label

Class 1 0.84 0.87 0.85 - - - 91 9

Average 0.88 0.89 0.89 0.94 .99 0.90 7 47

Fo
ld

2

Class 0 0.93 0.87 0.90 -
1 2

- -

Tr
ue

la
be

l Predicted label

Class 1 0.78 0.87 0.82 - - - 87 13

Average 0.85 0.87 0.86 0.94 1.00 0.87 7 47

Fo
ld

3

Class 0 0.91 0.91 0.91 -
1 1

- -

Tr
ue

la
be

l Predicted label

Class 1 0.83 0.83 0.83 - - - 91 9

Average 0.87 0.87 0.87 0.95 1.00 0.88 9 45

Fo
ld

4

Class 0 0.96 0.91 0.93 -
1 4

- -

Tr
ue

la
be

l Predicted label

Class 1 0.84 0.92 0.88 - - - 91 9

Average 0.90 0.92 0.91 0.96 1.00 0.91 4 49

Fo
ld

5

Class 0 0.95 0.94 0.94 -
2 2

- -

Tr
ue

la
be

l Predicted label

Class 1 0.89 0.91 0.90 - - - 94 6

Average 0.92 0.92 0.92 0.96 1.00 0.92 5 48

All
folds’

average
0.88 0.89 0.89 0.95 0.99 0.90
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