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Abstract: Circle detection is a fundamental problem in computer vision. However, conventional 

circle detection algorithms are usually time-consuming and sensitive to noise. In order to solve these 

shortcomings, we propose a fast circle detection algorithm based on information compression. First, 

we introduce the idea of information compression, which compresses the circular information on 

the image into a small number of points while removing some of the noise through sharpness esti-

mation and orientation filtering. Then, the circle parameters stored in the information point are ob-

tained by the average sampling algorithm with a time complexity of 𝑂(1) to obtain candidate cir-

cles. Finally, we set different constraints on the complete circle and the defective circle according to 

the sampling results and find the true circle from the candidate circles. The experimental results on 

the three datasets show that our method can compress the circular information in the image into 1% 

of the information points, and compared to RHT, RCD, Jiang, Wang and CACD, Precision, Recall, 

Time and F-measure are greatly improved. 
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1. Introduction 

Accurately obtaining information about circles in images has always been a difficult 

and important problem in computer vision. At present, circle detection is widely used in 

spacecraft [1], industrial component measurement [2], pupil positioning [3], medical im-

age analysis [4], circular traffic sign detection [5], Blast-Hole Detection [6] and other fields. 

With the continuous increase in application fields, people put forward higher require-

ments for the performance of circle detection algorithms. 

Hough Transform [7] is the most classical circle detection algorithm. The basic idea 

is to transform the original image data into the parameter space and vote for each point. 

This method is insensitive to noise and has strong robustness, but the algorithm needs to 

vote on any three points in the parameter space, which requires high time and space. In 

order to solve the time defect of the HT algorithm, Xu et al. [8] proposed the Randomized 

Hough Transform (RHT). This method randomly selects three points to calculate circle 

parameters for voting and retains circle parameters that reach a certain threshold. Com-

pared with HT, the RHT algorithm has some progress in time, but the memory require-

ments are still very high. To reduce the memory requirement, Chen et al. [9] proposed a 

random circle detection algorithm (RCD). RCD samples one more point than RHT and 

uses a fourth point to replace the linked list of parameters in the RHT algorithm [10]. 

Therefore, compared to RHT, RCD reduces a lot of memory consumption, but, compared 

with the randomly sampled three points of the RHT algorithm, the probability of ran-

domly sampling four points on the same circle is very low. Therefore, the sampling effi-

ciency of RCD is very low. In view of this shortcoming, Jiang et al. [11] proposed a method 

based on difference region sampling. When a candidate circle is determined to be a false 

circle, if the number of points on the candidate circle reaches a certain value number, a 
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certain number of samples are drawn from its difference area. This method improves the 

sampling efficiency and has a certain improvement in time compared to RCD. However, 

if there are small edges around the false circle, there will be more points in the collection 

area of difference evidence, and the time consumed by the algorithm will increase sharply. 

Different from Jiang, Wang et al. [12] proposed a sub-pixel circle detection algorithm, 

which only needs to randomly sample one edge point and then sample according to the 

gradient rule of the edge point. The algorithm has some improvements in time, but once 

random noise appears in the image, the accuracy of the algorithm degrades rapidly, so 

the algorithm does not perform well in real-world images. This random sampling-based 

algorithm only needs one correct sampling to find the true circle, which often has strong 

robustness [10] and has a good tolerance for noise. However, this kind of algorithm has a 

very low probability of correct sampling and often needs to use an algorithm with a time 

complexity of 𝑂(𝑛2) to screen candidate circles, which results in a serious time-consum-

ing algorithm, and this kind of algorithm generally cannot verify the defect circle. 

The main reason for the time-consuming methods of the above random classes is the 

large number of point iterations and traversal computations [13]. To solve this problem, 

another method is to connect the edge points in the image into a curve and then obtain 

the circle parameters through the information analysis of the curve. Le et al. [14] used a 

line segment detector [15] to extract circular curves, followed by least squares fitting to 

obtain circular parameters. Although this method achieves good performance, it also suf-

fers from the problem of useless least squares fitting and redundant computation caused 

by straight lines [16], resulting in longer detection times. Different from Le, Zhen et al. 

[17] proposed a circle detection algorithm based on the curvature of the edge, which esti-

mated the circle parameters through the curvature and performed hierarchical iterative 

screening of the radius, but the radius layer of the algorithm needed to be preset, and a 

lot of time is wasted for larger images. This algorithm of connecting edge points into a 

curve tends to run faster and exhibits better performance for images with clear and con-

tinuous edges, but it is very dependent on the edge extraction results, and for some edges 

with a large number of edge curves crossing each other or discontinuous edges, the image 

performance is often poor. We summarize the previous work in Table 1. 

Table 1. Summary of previous work. 

Circle Detection Algorithm —Previous Work 

HT 
HT transforms the original image into the parameter space 

and finds the true circle by voting [7]. 

RHT 
RHT finds the true circle by randomly picking three points 

to vote [8]. 

RCD 

The RCD randomly samples four points; three points are 

used to determine the circle parameters, and the fourth 

point is used for verification [9]. 

Jiang’s algorithm 
Jiang uses difference region sampling to improve sampling 

accuracy and find true circles [11]. 

Wang’s algorithm 

Wang uses the sub-pixel algorithm to regularly sample the 

gradient of the pixel points in order to find the true circle 

[12]. 

Le’s algorithm 
Le obtains the circle parameters by the least squares method 

[14]. 

Zhen’s algorithm 
Zhen finds the true circle by calculating the radius of the 

curvature of the arc [17]. 

In order to improve the speed and accuracy of the random sampling stage in circle 

detection, reduce the time complexity and memory consumption of the candidate circle 
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screening algorithm and ensure good performance for discontinuous edges and complex 

curves, this paper proposes a fast circle detection algorithm based on information com-

pression. First, we compress the circle information on the image into information points 

and then delete some interference information. Then, we use an average sampling algo-

rithm with a time complexity of 𝑂(1) to filter out candidate circles and finally verify the 

complete circle and defect circle, respectively. The experimental results show that the al-

gorithm has the characteristics of high speed, high precision and strong robustness. 

The main contributions of this paper are as follows: 

(1) Proposing a method to record the information of the inner circle of the image with 

a few points (information points) and to remove some noise in the image according to the 

information points. 

(2) Proposing an average sampling candidate circle verification method with a time 

complexity of 𝑂(1) and a verification method for defect circles. 

The rest of the paper is organized as follows: Chapter 2 presents our circle detection 

principle, Chapter 3 presents the algorithm flow and pseudocode, Chapter 4 presents the 

running results of the algorithm and the threshold analysis of parameters and Chapter 5 

concludes the paper. 

2. Principles of Circle Detection 

Our proposed circle detection algorithm consists of four stages: image preprocessing, 

information compression and filtering, average sampling to verify candidate circles and 

finding true circles. 

2.1. Image Preprocessing 

In order to smooth the image and reduce the impact of noise on subsequent algo-

rithms [10–14,16,17], we first perform Gaussian filtering on the image. Then, we use an 

adaptive canny edge extraction algorithm [18] to obtain edges. After edge extraction, we 

connect adjacent edge points into arc point sets. Note that if the endpoints of two arc point 

sets are not more than one pixel apart, they are to be merged into the same arc point set. 

Arc point sets smaller than 𝜆 (in this paper, 𝜆 = 30) pixels are considered to be caused 

by noise or unimportant details and should be removed [16,17,19]. In our method, the 

value of parameter 𝜆 does not depend on factors such as image size, noise, etc. In each 

arc point set, we use the method in reference [20] to roughly estimate the sharpness trans-

formation on the curve, which is calculated as follows: 

𝑅(𝑃𝑖) =
𝑑1

𝑑2 + 𝑑3
 (1) 

where: 

𝑑1 = √(𝑃𝑋𝑖−𝑘 − 𝑃𝑋𝑖+𝑘)
2 + (𝑃𝑌𝑖−𝑘 − 𝑃𝑌𝑖+𝑘)

2 (2) 

𝑑2 = √(𝑃𝑋𝑖 − 𝑃𝑋𝑖−𝑘)
2 + (𝑃𝑌𝑖 − 𝑃𝑌𝑖−𝑘)

2 (3) 

𝑑3 = √(𝑃𝑋𝑖 − 𝑃𝑋𝑖+𝑘)
2 + (𝑃𝑌𝑖 − 𝑃𝑌𝑖+𝑘)

2 (4) 

In Figure 1, 𝑃1 − 𝑃𝑁 is the points on the curve, and 𝑃𝑋𝑖  and 𝑃𝑌𝑖  refer to the abscissa 

and ordinate of the 𝑖 point, respectively. 𝑃𝑋𝑖+𝑘, 𝑃𝑌𝑖+𝑘 , 𝑃𝑋𝑖−𝑘 , 𝑃𝑌𝑖−𝑘 are to move k pixels 

forward and backward, respectively, and 𝑅(𝑃𝑖) refers to the sharpness of the point. 
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Figure 1. The curvature estimation measurement algorithm we use. 

Traverse the points in each edge set, find the points with a similar sharpness and 

record them. When the points meet the condition (5), they are considered to have a similar 

sharpness: 

{

𝑅(𝑃𝑖) ≠ 1
𝑅(𝑃𝑖−1) ≠ 1

𝑎𝑏𝑠(𝑅(𝑃𝑖) − 𝑅(𝑃𝑖−1)) < 0.2
 (5) 

When 𝑅(𝑃𝑖) = 1, the selection is ended. If the length of the arc at this time is greater 

than 𝐿 (see 4.1 for parameter analysis), record this arc. In Figure 2, (a) is the image after 

removing arcs with lengths less than 30, and (b) is the image after sharpness estimation. 

The recorded arcs are marked in red. 

 

Figure 2. Intermediate results obtained by the algorithm: (a) the result of adaptive canny edge ex-

traction, (b) the image after sharpness estimation. The recorded arcs are marked in red. 

2.2. Information Compression and Filtering 

2.2.1. Definition of Information Point 

For convenience, the definitions of information points are given here. In the image, 

the information point is the point used to store the circle information on the image. It 

contains the coordinates of two points, one of which is called the information point calcu-

lation parameter, which is used to calculate the circle parameter, and the other is called 

the information point verification parameter, which is used to validate circle parameters. 

As shown in Figure 3, ‘*‘ represents the information point calculation parameter, which is 

used to calculate the circle parameter; ‘+‘ represents the information point verification pa-

rameter, which is used to verify the circle parameter. ‘*‘ and ‘+‘ are located at both ends of 

the arc marked in the sharpness estimation, respectively, and the circle information can 

be obtained by calculating parameters from any three information points on the same cir-

cle. 
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Figure 3. The distribution of information points on the image, where ‘*‘ represents information point 

calculation parameters, and ‘+‘ represents information point verification parameters. 

2.2.2. Selection of Information Points and Deletion of Interference Information 

The interference curve is relatively random, and the distance from the point on the 

arc to the end point is decreasing. As shown in Figure 4, 𝑃𝑖 , 𝑃𝑖+1, respectively, represent 

two consecutive points on the arc, 𝑋, 𝑌 are the two endpoints of the arc point set, respec-

tively, and the Manhattan distance from the two points to the endpoints can be repre-

sented by ||𝑃𝑖𝑂1| + |𝑂1𝑌|| and ||𝑃𝑖+1𝑂2| + |𝑂2𝑌||, respectively. In this regard, we perform 

direction screening on the result of sharpness estimation to select information points. The 

specific direction screening is as follows: 

 

Figure 4. Manhattan distance position relationship of points on arcs. 

𝐷𝑖𝑟𝑋 = (𝑃𝑋𝑛−2 + 𝑃𝑋𝑛−1 + 𝑃𝑋𝑛) − (𝑃𝑋1 + 𝑃𝑋2 + 𝑃𝑋3) (6) 

𝐷𝑖𝑟𝑌 = (𝑃𝑌𝑛−2 + 𝑃𝑌𝑛−1 + 𝑃𝑌𝑛) − (𝑃𝑌1 + 𝑃𝑌2 + 𝑃𝑌3) (7) 

𝐹𝑡(𝑖) = {
1,    (𝑃𝑋𝑖 − 𝑃𝑋𝑖−1) × 𝐷𝑖𝑟𝑋 < 0 𝑜𝑟 (𝑃𝑌𝑖 − 𝑃𝑌𝑖−1) × 𝐷𝑖𝑟𝑌 < 0

0,    𝑜𝑡ℎ𝑒𝑟
 (8) 

𝐹𝑎𝑙𝑠𝑒𝑁𝑢𝑚 =∑𝐹𝑡(𝑖)

𝑛

𝑖=2

 (9) 

𝑃1, 𝑃2, ⋯ , 𝑃𝑁−1, 𝑃𝑁 is the point on the curve. 𝑃𝑋𝑖  and 𝑃𝑌𝑖 represent the horizontal and 

vertical coordinates of the 𝑖 point, respectively. 𝐷𝑖𝑟𝑋 and 𝐷𝑖𝑟𝑌 record the direction of 
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the end point relative to the start point. 𝐹𝑎𝑙𝑠𝑒𝑁𝑢𝑚 indicates the number of times the 

curve does not follow the trend. When 𝐹𝑎𝑙𝑠𝑒𝑁𝑢𝑚 ≥ 𝑛 × 𝜂 (the value of 𝜂; see 4.1), these 

arcs are considered to be noise or unimportant information, and we remove them from 

the image. The results obtained by our algorithm are shown in Figure 5. 

 

Figure 5. The intermediate results of our procedure are shown: (a) the original image; (b) the result 

of adaptive canny edge extraction; (c) the image after we have performed useless arc removal; (d) 

the information points we selected and used. ’*’ and ‘+’ mark the information points. 

As can be seen from Figure 5, although the canny edge extraction algorithm can ex-

tract the edge of the circle very well, it is also accompanied by a large number of unim-

portant details and interference curves. In Figure 5c, we can see that our algorithm re-

moves a large number of unimportant details and interfering curves, and, as shown in 

Figure 5d, the circle information on the picture is well preserved in information points. 

We validated the effect of this method on three datasets and recorded the results in Table 

2. 

Table 2. The performance of our algorithm on the dataset. 

 
Number of Edge 

Points 

Number of Information 

Points 

Information 

Compression 

Ratio 

Retention Rate of 

the Circle 

Geometry 21,969 238.25 1.12% 100.00% 

GH [21] 21,339.27 166.73 1.00% 98.94% 

PCB [21] 13,911.45 86.09 0.63% 100.00% 

The number of edge points in Table 2 refers to the average number of edge points 

obtained by the adaptive canny edge extraction algorithm, the number of information 

points refers to the points used to store the circle information on the image, the infor-

mation compression ratio refers to the compression effect of the edge point information, 

the retention rate of the circle refers to the degree of the algorithm’s retention of the circle 

and 100% means that no circle information is lost. 

It can be seen from Table 2 that our algorithm can effectively store the circle infor-

mation on the image in a minimum of 0.63% of the information points, and the retention 

rate of the circle information can reach 100% in the process. Even on the dataset GH, which 
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contains a lot of ambiguity, it still has 98.94% retention. This method of storing infor-

mation on the image with a small number of points can not only reduce iterations but also 

increase the robustness of the algorithm. 

It can be seen from Figure 5b that the adaptive canny edge extraction results are often 

accompanied by a large amount of interference. The proportion of circles in the edge 

points is only 11.89%. In the canny edge extraction results, only the curves where the in-

formation points are located are retained. Curves without information points will be 

treated as useless arcs. The performance of our algorithm on three datasets is shown in 

Table 3. Our method can remove, at most, 71.16% of the points, with the lowest error rate 

being only 0.16%. After filtering, the proportion of points on the circle on the image has 

increased by up to 236.20%. Our algorithm does not perform as well on the dataset Ge-

ometry as the other two datasets, mainly because the background in the dataset Geometry 

is relatively clean and free of ambient noise. 

Table 3. The result of useless arc removal. 

 Geometry GH [21] PCB [21] 

Number of edge points 21,969 21,339.27 13,911.45 

Number of points after filtering 16,487.50 9895.81 3966.84 

Clear rate 24.36% 51.38% 71.16% 

Percentage of points on the circle among edge 

points 
24.66% 11.89% 11.97% 

The percentage of points on the circle after 

clearing 
30.35% 23.44% 38.42% 

Probability boost 26.95% 135.47% 236.20% 

Mistaken deletion ratio 0.93% 0.35% 0.16% 

2.3. Average Sampling to Verify Candidate Circles 

Traverse all the information points and select the calculation parameters 

(𝑃1(𝑋1, 𝑌1), 𝑃2(𝑋2, 𝑌2), 𝑃3(𝑋3, 𝑌3)) of the three information points each time to calculate the 

circle parameters 𝑂(𝑥, 𝑦, 𝑟). Then, substitute the verification parameters of the three in-

formation points for verification. If the error of the verification result is greater than 

𝑚𝑎𝑥  (0.5 , 𝑚𝑖𝑛( 5, 𝑟/30)), the circle is considered to be a false circle. After the verification 

is successful, start from just above the center of the circle, and perform sampling point 

verification for every radian. The sampling point coordinate formula is: 

𝑇ℎ𝑒𝑡𝑎 = 2 × 𝑃𝑖 × i       (𝑖 ∈ 0,1, … ,36) (10) 

{
cx = round (x + r × cos (𝑇ℎ𝑒𝑡𝑎))
cy = round (y + r × sin (𝑇ℎ𝑒𝑡𝑎))

 (11) 

where 𝑐𝑥 and 𝑐𝑦 represent the horizontal and vertical coordinates of the sampling point, 

respectively, 𝑖 represents the number of 𝑖 sampling times and 𝑥, 𝑦, 𝑟 refers to the circle 

parameter. 

During the sampling process, we recorded the following parameters: 

𝑠𝑎𝑚𝑝𝑙𝑒𝑠: Refers to the number of successful sampling verifications. If there are pixels 

in the 9 neighborhoods of the sampling point (when 𝑟 > 100, take 16 neighborhoods), we 

consider the sampling verification result to be true; 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝐴𝑟𝑐: We connect the adjacent successfully sampled points into an arc. If the 

interval is less than 1 sampling point, merge the two arcs, and record the longest arc; 

𝐿𝑒𝑓𝑡: The radian corresponding to the left endpoint of the longest continuous arc; 

𝑅𝑖𝑔ℎ𝑡: The radian corresponding to the right endpoint of the longest continuous arc; 

𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒𝐴𝑟𝑐: The number of successful samplings not on the longest continuous arc. 
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Here, the circles are divided into two categories according to the sampling verifica-

tion results: complete circles and defect circles. The following two cases are discussed to 

determine whether the circle parameters are candidate circles: 

Complete circle judgment 

The circle whose number of successful samplings and verifications is greater than 𝜑1 

is considered as a candidate circle. At the same time, if the number of successful samplings 

and verifications exceeds 𝜑2, it is considered that the circle has reached the optimal pa-

rameters, and the information points whose Euclidean distance is less than 

𝑚𝑎𝑥  (0.5 , 𝑚𝑖𝑛( 5, 𝑟/30))  will be deleted. According to our experimental parameters 

𝜑1 = 28, 𝜑2 = 33, the running result is the best. Parameters 𝜑1 and 𝜑2 did not need to 

be changed in all datasets run in this paper. 

Defect circle judgment 

A circle with a number of successful samplings between 0.75  × 𝜑1 and 𝜑1 is con-

sidered a defect circle, and we will resample the defect circle and rotate all sampling points 

clockwise by 5°. At the same time, compare the 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 and 𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝐴𝑟𝑐 of the two 

samples. If the difference is less than 2, it will be added to the candidate circle. 

2.4. Find True Circles 

According to [22], the following formula is used to express the overlap ratio of circles. 

When the overlap ratio is greater than 0.8, we consider them to be the same circle and 

retain the circle with better sampling results. 

𝑅𝑎𝑡𝑖𝑜(𝐶𝑑, 𝐶𝑡) =
𝑎𝑟𝑒𝑎(𝐶𝑑) ∩ 𝑎𝑟𝑒𝑎(𝐶𝑡)

𝑎𝑟𝑒𝑎(𝐶𝑑) ∪ 𝑎𝑟𝑒𝑎(𝐶𝑡)
 (12) 

𝑎𝑟𝑒𝑎(𝐶𝑑) and 𝑎𝑟𝑒𝑎(𝐶𝑡) refer to the areas of 𝐶𝑑, 𝐶𝑡, respectively, and 𝑅𝑎𝑡𝑖𝑜(𝐶𝑑, 𝐶𝑡) 

refers to the overlap rate of the two circles. For the candidate circle, use the following 

formula to verify the true circle: 

{
𝐹(𝑖) = {

1,   |√(𝑃𝑋𝑖 − 𝑐𝑥)2 + (𝑃𝑌𝑖 − 𝑐𝑦)2 − 𝑐𝑟)| < 𝑑𝑖𝑓𝑓

0,    𝑜𝑡ℎ𝑒𝑟
𝑑𝑖𝑓𝑓 = 𝑚𝑎𝑥  (0.5 , 𝑚𝑖𝑛( 5, 𝑟/30))

 (13) 

𝑃𝑜 𝑖𝑛𝑡 𝑁 𝑢𝑚 =∑𝐹(𝑖) (14) 

Depending on the type of the circle, there are two situations that can be discussed to 

determine whether a candidate circle is a true circle. 

1. Complete circle judgment 

If the candidate circle is marked as a complete circle and satisfies 𝑃𝑜𝑖𝑛𝑡 >

2 × 𝜋 × 𝑟 × 0.8, we think it is a true circle. 

2. Defect circle judgment 

If the candidate circle is marked as a defective circle, we perform defect circle verifi-

cation. First, Circles that do not satisfy 𝑃𝑜𝑖𝑛𝑡 > 2 × 𝜋 × 𝑟 × 0.6 will be excluded. Then, to 

prevent random noise from interfering with the average sampling verification, we use 

𝐴𝑟𝑚𝑆𝑢𝑚 and 𝐷𝑖𝑠𝑆𝑢𝑚 to record and verify the longest arc and discrete arc of the defect 

circle, respectively. When the number of points of the longest arc and the number of points 

of the non-longest arc satisfy formula (19), we consider the defective circle to be a true 

circle. 

𝑎𝑛𝑔𝑙𝑒(𝑖) = 𝑎𝑟𝑐𝑡𝑎𝑛(
𝑃𝑌𝑖 − 𝑐𝑦

𝑃𝑋𝑖 − 𝑐𝑥
×
180

𝜋
) (15) 

𝑚𝑎𝑟𝑘(𝑖) = {
1,   𝑙𝑒𝑓𝑡 ≤ 𝑎𝑛𝑔𝑙𝑒(𝑖) ≤ 𝑟𝑖𝑔ℎ𝑡

0,    𝑜𝑡ℎ𝑒𝑟
 (16) 
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{
 
 

 
 

ArcDet(𝑖) = {
1,𝑚𝑎𝑟𝑘(𝑖) = 1 𝑎𝑛𝑑 |√(𝑃𝑋𝑖 − 𝑐𝑥)

2 + (𝑃𝑌𝑖 − 𝑐𝑦)
2 − 𝑐𝑟)| < 𝑑𝑖𝑓𝑓

0, 𝑜𝑡ℎ𝑒𝑟

𝐴𝑟𝑚𝑆𝑢𝑚 =∑ArcDet(𝑖)

 (17) 

{
 
 

 
 

DisDet(𝑖) = {
1,𝑚𝑎𝑟𝑘(𝑖) = 0𝑎𝑛𝑑 |√(𝑃𝑋𝑖 − 𝑐𝑥)

2 + (𝑃𝑌𝑖 − 𝑐𝑦)
2 − 𝑐𝑟)| < 𝑑𝑖𝑓𝑓

0, 𝑜𝑡ℎ𝑒𝑟

𝐷𝑖𝑠𝑆𝑢𝑚 =∑DisDet(𝑖)

 (18) 

{𝐴𝑟𝑚𝑆𝑢𝑚 > 2 × 𝜋 × 𝑟 ×
(𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡)

36
𝐷𝑖𝑠𝑆𝑢𝑚 > 2 × 𝜋 × 𝑟 × 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒𝐴𝑟𝑐

 (19) 

where 𝑃𝑋𝑖  and 𝑃𝑌𝑖  are the abscissa and ordinate of the 𝑖 point in the edge image, respec-

tively, and 𝑐𝑥, 𝑐𝑦, 𝑟 are the abscissa and radius of the center of the candidate circle. 

3. Proposed Circle Detection Algorithm 

This section shows the flow and pseudocode of our proposed circle detection algo-

rithm. Our proposed circle detection algorithm can be described as follows: 

Step 1. Input a picture and perform Gaussian filtering on it, along with adaptive 

canny edge extraction; 

Step 2. Perform arc extraction on the result of canny edge detection, connect adjacent 

points to an arc and merge the arc point sets whose endpoints are not more than one pixel 

apart; 

Step 3. Click on the arc to estimate the sharpness, and save the arc segment whose 

length is greater than L; 

Step 4. According to the direction screening, select the information points in the arc 

segments selected by the sharpness estimation; then, filter out the information points and 

remove the useless arcs on the picture; 

Step 5. If all the points of the information point are judged, or the number of infor-

mation points is less than 3, we jump to Step 6. Otherwise, the circle parameters are cal-

culated for the points in the candidate field in turn, and the candidate circle is determined; 

then, jump to Step 5; 

Step 6. Delete the duplicate circles in the candidate circles; 

Step 7. The circle detection algorithm ends, and, finally, the detection results are ver-

ified. 

The proposed algorithm can also be expressed in pseudocode, as follows Algorithm 

1: 
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Algorithm 1: Proposed Circle Detection Algorithm 

Input: Grayscale image 

Output: Detected circles 

1: Initialization parameters 

2: Gaussian filter for image 

3: Adaptive canny edge extraction for images 

4: Sharpness extraction from images 

5:  if Direction filter passed then 

6:    add to information point collection Ω 

7:  end if 

8: Image cleanup 

9: for 𝑎𝑖 ∈ Ωdo 

10:   for 𝑎𝑗 ∈ Ωdo 

11:     for 𝑎𝑘 ∈ Ωdo 

12:       if 𝑖 == 𝑗 𝑜𝑟 𝑖 == 𝑗 𝑜𝑟 𝑗 == 𝑘 then 

13:         continue; 

14:      end if 

15:      Select three information points to calculate circle parameters 

16:      if Information point verification parameter verification failed then 

17:        continue; 

18:      end if 

19:      Perform average sampling verification on the circle parameters 

20:      if not then 

21:        continue; 

22:      end if 

23:      if The number of successful sampling is greater than 33 times then 

24:        delete information points on the circle 

25:      end if 

26:    end for 

27:  end for 

28: end for 

29: Remove duplicate circles in candidate circles 

30: Verification of candidate circles (Section 2.4) to find true circles 

31: if not then 

32:    continue; 

33: end if 

4. Experiments and Results Analysis 

In this chapter, we compare the proposed algorithm with five other algorithms. The 

first is the voting-based RHT [8] algorithm, the second is the sampling-based detection 

RCD [9] algorithm, the third is the Jiang [11] proposed optimization algorithm, which we 

refer to as Jiang for short, the fourth is the curvature-based CACD [17], the fifth is the 

middle-time Wang’s algorithm and the last is our algorithm. In order to unify the stand-

ard, it is stipulated here that the proportion of the occluded part of the circle cannot exceed 

0.4 times the circumference of the circle. All the above algorithms were executed in 

MATLAB R2019b in order to exclude language interference on the running time, and they 

were all run on the same computer using an Intel Corei5 CPU 2.90 GHz and 8 GB RAM. 

For the objectivity and accuracy of the experiment, the following four indicators will be 

used to measure: Precision, Recall, F-measure and Time. Time refers to the time from in-

putting the picture to outputting all of the found circle information. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (20) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (21) 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (22) 

The experiments refer to the verification indicators used in the literature [16,19,23–

26], and when the coincidence rate of the circles is not lower than 0.8, they are considered 

to be the same circle. Treat it as a true positive (TP); otherwise, it is a false positive (FP), 

and the ground truth that is not correctly identified is treated as a false negative (FN). 

Formula (12) is used to define the overlap ratio between circles Cd and Ct:  

The test images in this paper are mainly from our dataset and two public datasets 

available on the internet:  

Dataset Geometry. It is a dataset containing complex curves and consists of 13 im-

ages. Large-size pictures, complex curve interaction and large radius changes bring diffi-

culties to the measurement of circles. 

Dataset GH. It is a complex dataset from [21] consisting of 257 real-world gray im-

ages. Blurred edges, large changes in radius and occlusions make measurements incon-

venient. 

Dataset PCB. It is an industrial dataset from [20] which contains 100 printed circuit 

board images. A large amount of noise and a large number of concentric circles with 

blurred edges make the measurement difficult. 

4.1. Threshold Analysis 

Our algorithm mainly involves two parameters: 𝐿 and η. Due to the complexity of 

the images, it is impossible to fix all parameters for optimal performance. Furthermore, 

the relationship between the parameters 𝐿 and η is “ 𝐿 × 𝑋 = 𝑍1, η × 𝑍1 = Z”. We can ob-

tain the optimal intermediate result 𝑍1 by adjusting the parameter 𝐿. On this basis, we 

adjust η to obtain the final result. The process of adjusting the parameter 𝐿 to obtain the 

optimal intermediate result 𝑍1 and adjusting the parameter η to obtain the final result is 

shown in Figure 6. 

In the sharpness estimation stage, the parameter 𝐿 is used to filter the arc, which is 

very important for the selection of subsequent information points. If 𝐿 is too small, the 

number of arcs will increase, and the algorithm efficiency will decrease. If 𝐿 is too large, 

part of the circle information will be lost. We suggest that the value should be appropri-

ately increased in images with sharp edges and should be appropriately decreased in real 

images. 

In the screening stage of information points, parameter η represents the allowable 

error rate. With the increase in η, the number of information points increases. The Recall 

rate will increase relatively, while the Precision will decrease accordingly, and the Time 

will also increase. In a real image, due to the interference of noise, the edge lines of the 

circle will be disturbed, so this parameter needs to be appropriately increased, and on an 

ideal picture with a clear background, this parameter can be appropriately decreased. 
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Figure 6. On the left is the threshold and intermediate result for parameter L, and on the right is the 

threshold and final result for parameter η. 

4.2. Performance Comparison 

4.2.1. Dataset Geometry 

We first report the detection results for the dataset Geometry in Figure 7. The F-meas-

ure and Time of the six algorithms on each image are shown in detail in Tables 4 and 5. 

Finally, the run results for the entire dataset are summarized in Table 6. 

As can be seen from the chart, the RHT algorithm has many missed detections. In 

contrast, RCD has better performance than RHT. Jiang’s method has a better performance 
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in terms of Recall and F-measure, but the running time has increased, mainly because the 

number of interference points in the area of differential evidence collection is large. The 

CACD algorithm does not perform well in the dataset Geometry. The complex curve in-

terleaving makes circle fitting difficult, and with the change in image size (such as the 3rd 

and 11th pictures in Figure 7; the size is 1326 × 1536), the running time of the program is 

greatly increased. Wang’s algorithm also performed very well on this dataset, with only 

three images not correctly detected. Our algorithm has achieved the best results on this 

dataset, and there is a missed detection in the seventh picture because the information 

points in this part are relatively dense and our algorithm mistakenly deletes some infor-

mation points on the candidate circle during verification. 

Table 4. F-measure of RHT, RCD, CACD, Jiang, Wang and our method in the dataset Geometry. 

 RHT RCD Jiang CACD Wang Our 

1 1 1 1 0 1 1 

2 0 1 1 0.8 1 1 

3 0 0.667 1 0.667 1 1 

4 0.8 0.667 0.667 0.571 0.5 1 

5 1 0 1 0 1 1 

6 0.4 0.571 0.5 0.571 1 1 

7 0 0.8 0.222 0 0.857 0.857 

8 0 1 0.667 0.667 1 1 

9 0 0.4 0.571 0 1 1 

10 0 0.4 0.095 0 0.8 1 

11 0 0.5 1 0.4 1 1 

12 0 0.444 0.667 0.75 1 1 

Table 5. Time of RHT, RCD, CACD, Jiang, Wang and our method in the dataset Geometry (unit: s). 

 RHT RCD Jiang CACD Wang Our 

1 22.25 6.50 4.06 2.14 1.82 0.13 

2 37.46 6.50 8.07 16.90 1.53 0.36 

3 39.64 6.71 23.14 494.15 1.63 2.06 

4 16.90 6.49 2.33 0.69 1.58 0.16 

5 35.72 6.45 7.66 2.65 1.74 0.28 

6 32.53 6.30 8.42 1.39 1.56 0.20 

7 35.73 6.30 15.84 1.42 1.53 0.25 

8 32.64 6.28 9.36 2.10 1.53 0.19 

9 33.77 6.35 3.86 1.72 1.56 0.23 

10 33.99 6.26 3.46 1.67 1.70 0.25 

11 36.23 6.51 16.55 202.71 1.64 2.40 

12 32.17 6.31 11.48 9.01 1.80 0.58 

Table 6. Result of RHT, RCD, CACD, Jiang, Wang and our method in the dataset Geometry. 

 Precision Recall F-Measure Time (s) 

RHT 0.31 0.27 0.27 32.42 

RCD 0.69 0.66 0.62 6.41 

CACD 0.40 0.40 0.37 61.38 

Jiang 0.68 0.79 0.70 9.52 

Wang 0.94 0.95 0.93 1.64 

Our 1.00 0.98 0.99 0.59 
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Figure 7. Circle detection results on the dataset Geometry. From the left to right columns: input 

image, RHT, RCD, CACD, Jiang, Wang and ours. As can be seen, the proposed method obtains 

better performance than others. 

4.2.2. Dataset GH 

Next, we report the detection results for the dataset GH. Combining the data in Fig-

ure 8 and Table 7, it can be seen that RHT does not perform well on noisy images. RCD 

has a high Recall but cannot ensure a high Precision. Jiang’s algorithm has improved time 

and accuracy compared to RCD. The CACD algorithm performs well in most real images 

without complex texture interference, but when there are many textures and the image is 

large, the time is often very slow, and there will be missed detections and false detections. 

Wang’s algorithm performed poorly on this dataset. This is because, in real images, a large 

number of dense interference points make the algorithm detect a large number of false 

circles that cannot be eliminated. Our algorithm removes many interfering edges before 

detection, which not only speeds up the running time but also reduces their interference 

to the circle validation stage, improves precision and recall and maintains good perfor-

mance for most images in the dataset GH. 

 

Figure 8. Circle detection results on the dataset GH, which is widely used by other algorithms. From 

the left to right columns: input image, RHT, RCD, CACD, Jiang, Wang and ours. As can be seen, the 

proposed method obtains better performance than the others. 
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Table 7. Results on the dataset GH. 

 Precision Recall F-Measure Time (s) 

RHT 0.14 0.13 0.13 11.07 

RCD 0.03 0.69 0.04 6.74 

CACD 0.5 0.73 0.54 4.33 

Jiang 0.18 0.32 0.20 2.15 

Wang 0.32 0.51 0.29 1.65 

Our 0.71 0.80 0.70 1.30 

4.2.3. Dataset PCB 

Finally, we report the detection results for the dataset PCB. Combining the data in 

Figure 9 and Table 8, it can be seen that, under the noise interference, the RHT algorithm 

has some defects, including false detection, a low recall and a slower running speed. The 

RCD algorithm still shows a low precision and a high recall. A large amount of noise in-

terference reduces the probability that the sampling points are on the same circle and also 

increases the possibility of false detection. Jiang’s algorithm maintains good performance 

when the edge is clear and improves the accuracy, but, as the blurring of the image in-

creases, the number of points in the difference evidence collection area increases sharply, 

which will slow down the running speed and reduce the accuracy. CACD works well on 

this dataset, but when the image is too blurry and the edge extraction algorithm cannot 

extract continuous edges, CACD will not be able to detect the corresponding circle, such 

as the seventh image in the figure below. Wang’s algorithm outperformed Jiang’s algo-

rithm on this dataset and performed similarly to CACD, mainly because, on this dataset, 

there are relatively few interference points. When the picture is blurred, the algorithm also 

cannot find the circle correctly. Our algorithm does not rely on continuous edge extraction 

and eliminates useless arcs. It not only runs faster but also prevents subtle errors and noise 

from interfering with the results. 

Table 8. Result on the dataset PCB. 

 Precision Recall F-Measure Time (s) 

RHT 0.35 0.40 0.30 15.11 

RCD 0.19 0.65 0.25 6.35 

CACD 0.65 0.80 0.69 2.09 

Jiang 0.31 0.43 0.33 2.85 

Wang 0.69 0.77 0.66 1.59 

Our 0.97 0.91 0.93 0.46 
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Figure 9. Circle detection results on the dataset PCB, which is widely used by other algorithms. 

From the left to right columns: input image, RHT, RCD, CACD, Jiang, Wang and ours. As can be 

seen, the proposed method obtains better performance than the others. 

4.3. Discussion 

As can be seen from Tables 6–8, our proposed method has some advantages over 

other methods. Compared with the above methods, our method can more effectively 

streamline the circle information on the image to improve the detection speed. Compared 

with Wang’s method, our algorithm is more practical. In complex graphs with clean back-

grounds, Wang’s algorithm is able to maintain good performance. However, in images 

with more noise, the performance of Wang’s algorithm degrades rapidly. Compared to 

CACD, our method does not need to iterate over a large number of radius layers and 

remains stable when the image size is large. On the dataset GH and the dataset PCB, our 

algorithm exhibits different characteristics. The Recall on the dataset GH is higher than 

the Precision. This is due to the large amount of interference in the dataset GH, which 

brings difficulties for circle validation. The Precision on the dataset PCB is higher than the 

Recall; this is because a large amount of blur makes information point compression trou-

blesome, and our algorithm inevitably loses some circle information. F-measure is a com-

bination of precision and recall, and we show, in Section 4.1, our process of adjusting the 

image to achieve optimal parameters during the threshold analysis stage of the parame-

ters. 
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5. Conclusions 

This paper proposes a fast circle detection algorithm based on information compres-

sion and analyzes its performance. The algorithm achieves good performance through 

four stages of image preprocessing, information compression and screening, average sam-

pling to verify candidate circles and finding true circles. (1) In terms of detection speed, 

we introduce an idea of information compression: compressing the circle information on 

the image into a few information points and using an average sampling algorithm with a 

time complexity of 𝑂(1) to verify the candidate circle, which effectively speeds up the 

speed of the algorithm. (2) In terms of detection accuracy, our algorithm removes inter-

ference information and effectively eliminates the false detections caused by small edges 

on the image. 

We tested three datasets. The results show that our method can compress the circle 

information on the image to the lowest 0.63% points and remove the highest 71.16% of the 

interference points in the image, with the lowest false deletion ratio being only 0.16%. Our 

algorithm outperforms RHT, RCD, Jiang and CACD in terms of Precision, Recall, F-meas-

ure and Time. 
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