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Abstract: Circle detection is a fundamental problem in computer vision. However, conventional
circle detection algorithms are usually time-consuming and sensitive to noise. In order to solve
these shortcomings, we propose a fast circle detection algorithm based on information compression.
First, we introduce the idea of information compression, which compresses the circular information
on the image into a small number of points while removing some of the noise through sharpness
estimation and orientation filtering. Then, the circle parameters stored in the information point are
obtained by the average sampling algorithm with a time complexity of O(1) to obtain candidate
circles. Finally, we set different constraints on the complete circle and the defective circle according to
the sampling results and find the true circle from the candidate circles. The experimental results on
the three datasets show that our method can compress the circular information in the image into 1%
of the information points, and compared to RHT, RCD, Jiang, Wang and CACD, Precision, Recall,
Time and F-measure are greatly improved.

Keywords: circle detection; information compression; average sampling verification

1. Introduction

Accurately obtaining information about circles in images has always been a difficult
and important problem in computer vision. At present, circle detection is widely used in
spacecraft [1], industrial component measurement [2], pupil positioning [3], medical image
analysis [4], circular traffic sign detection [5], Blast-Hole Detection [6] and other fields. With
the continuous increase in application fields, people put forward higher requirements for
the performance of circle detection algorithms.

Hough Transform [7] is the most classical circle detection algorithm. The basic idea is
to transform the original image data into the parameter space and vote for each point. This
method is insensitive to noise and has strong robustness, but the algorithm needs to vote
on any three points in the parameter space, which requires high time and space. In order to
solve the time defect of the HT algorithm, Xu et al. [8] proposed the Randomized Hough
Transform (RHT). This method randomly selects three points to calculate circle parameters
for voting and retains circle parameters that reach a certain threshold. Compared with HT,
the RHT algorithm has some progress in time, but the memory requirements are still very
high. To reduce the memory requirement, Chen et al. [9] proposed a random circle detection
algorithm (RCD). RCD samples one more point than RHT and uses a fourth point to replace
the linked list of parameters in the RHT algorithm [10]. Therefore, compared to RHT, RCD
reduces a lot of memory consumption, but, compared with the randomly sampled three
points of the RHT algorithm, the probability of randomly sampling four points on the same
circle is very low. Therefore, the sampling efficiency of RCD is very low. In view of this
shortcoming, Jiang et al. [11] proposed a method based on difference region sampling.
When a candidate circle is determined to be a false circle, if the number of points on the
candidate circle reaches a certain value number, a certain number of samples are drawn
from its difference area. This method improves the sampling efficiency and has a certain
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improvement in time compared to RCD. However, if there are small edges around the false
circle, there will be more points in the collection area of difference evidence, and the time
consumed by the algorithm will increase sharply. Different from Jiang, Wang et al. [12]
proposed a sub-pixel circle detection algorithm, which only needs to randomly sample one
edge point and then sample according to the gradient rule of the edge point. The algorithm
has some improvements in time, but once random noise appears in the image, the accuracy
of the algorithm degrades rapidly, so the algorithm does not perform well in real-world
images. This random sampling-based algorithm only needs one correct sampling to find
the true circle, which often has strong robustness [10] and has a good tolerance for noise.
However, this kind of algorithm has a very low probability of correct sampling and often
needs to use an algorithm with a time complexity of O

(
n2) to screen candidate circles,

which results in a serious time-consuming algorithm, and this kind of algorithm generally
cannot verify the defect circle.

The main reason for the time-consuming methods of the above random classes is the
large number of point iterations and traversal computations [13]. To solve this problem,
another method is to connect the edge points in the image into a curve and then obtain the
circle parameters through the information analysis of the curve. Le et al. [14] used a line
segment detector [15] to extract circular curves, followed by least squares fitting to obtain
circular parameters. Although this method achieves good performance, it also suffers from
the problem of useless least squares fitting and redundant computation caused by straight
lines [16], resulting in longer detection times. Different from Le, Zhen et al. [17] proposed a
circle detection algorithm based on the curvature of the edge, which estimated the circle
parameters through the curvature and performed hierarchical iterative screening of the
radius, but the radius layer of the algorithm needed to be preset, and a lot of time is wasted
for larger images. This algorithm of connecting edge points into a curve tends to run faster
and exhibits better performance for images with clear and continuous edges, but it is very
dependent on the edge extraction results, and for some edges with a large number of edge
curves crossing each other or discontinuous edges, the image performance is often poor.
We summarize the previous work in Table 1.

Table 1. Summary of previous work.

Circle Detection Algorithm —Previous Work

HT HT transforms the original image into the parameter space and finds the
true circle by voting [7].

RHT RHT finds the true circle by randomly picking three points to vote [8].

RCD
The RCD randomly samples four points; three points are used to
determine the circle parameters, and the fourth point is used for
verification [9].

Jiang’s algorithm Jiang uses difference region sampling to improve sampling accuracy and
find true circles [11].

Wang’s algorithm Wang uses the sub-pixel algorithm to regularly sample the gradient of the
pixel points in order to find the true circle [12].

Le’s algorithm Le obtains the circle parameters by the least squares method [14].

Zhen’s algorithm Zhen finds the true circle by calculating the radius of the curvature of the
arc [17].

In order to improve the speed and accuracy of the random sampling stage in circle
detection, reduce the time complexity and memory consumption of the candidate circle
screening algorithm and ensure good performance for discontinuous edges and complex
curves, this paper proposes a fast circle detection algorithm based on information compres-
sion. First, we compress the circle information on the image into information points and
then delete some interference information. Then, we use an average sampling algorithm
with a time complexity of O(1) to filter out candidate circles and finally verify the complete
circle and defect circle, respectively. The experimental results show that the algorithm has
the characteristics of high speed, high precision and strong robustness.

The main contributions of this paper are as follows:
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(1) Proposing a method to record the information of the inner circle of the image with
a few points (information points) and to remove some noise in the image according to the
information points.

(2) Proposing an average sampling candidate circle verification method with a time
complexity of O(1) and a verification method for defect circles.

The rest of the paper is organized as follows: Section 2 presents our circle detection
principle, Section 3 presents the algorithm flow and pseudocode, Section 4 presents the
running results of the algorithm and the threshold analysis of parameters and Section 5
concludes the paper.

2. Principles of Circle Detection

Our proposed circle detection algorithm consists of four stages: image preprocessing,
information compression and filtering, average sampling to verify candidate circles and
finding true circles.

2.1. Image Preprocessing

In order to smooth the image and reduce the impact of noise on subsequent algo-
rithms [10–14,16,17], we first perform Gaussian filtering on the image. Then, we use an
adaptive canny edge extraction algorithm [18] to obtain edges. After edge extraction, we
connect adjacent edge points into arc point sets. Note that if the endpoints of two arc point
sets are not more than one pixel apart, they are to be merged into the same arc point set.
Arc point sets smaller than λ (in this paper, λ = 30) pixels are considered to be caused by
noise or unimportant details and should be removed [16,17,19]. In our method, the value
of parameter λ does not depend on factors such as image size, noise, etc. In each arc point
set, we use the method in reference [20] to roughly estimate the sharpness transformation
on the curve, which is calculated as follows:

R(Pi) =
d1

d2 + d3
(1)

where:
d1 =

√
(PXi−k − PXi+k)

2 + (PYi−k − PYi+k)
2 (2)

d2 =

√
(PXi − PXi−k)

2 + (PYi − PYi−k)
2 (3)

d3 =

√
(PXi − PXi+k)

2 + (PYi − PYi+k)
2 (4)

In Figure 1, P1 − PN is the points on the curve, and PXi and PYi refer to the abscissa
and ordinate of the i point, respectively. PXi+k, PYi+k, PXi−k, PYi−k are to move k pixels
forward and backward, respectively, and R(Pi) refers to the sharpness of the point.
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Figure 1. The curvature estimation measurement algorithm we use.

Traverse the points in each edge set, find the points with a similar sharpness and
record them. When the points meet the condition (5), they are considered to have a
similar sharpness: 

R(Pi) 6= 1
R(Pi−1) 6= 1
abs(R(Pi)− R(Pi−1)) < 0.2

(5)
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When R(Pi) = 1, the selection is ended. If the length of the arc at this time is greater
than L (see 4.1 for parameter analysis), record this arc. In Figure 2, (a) is the image after
removing arcs with lengths less than 30, and (b) is the image after sharpness estimation.
The recorded arcs are marked in red.
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Figure 2. Intermediate results obtained by the algorithm: (a) the result of adaptive canny edge
extraction, (b) the image after sharpness estimation. The recorded arcs are marked in red.

2.2. Information Compression and Filtering
2.2.1. Definition of Information Point

For convenience, the definitions of information points are given here. In the image, the
information point is the point used to store the circle information on the image. It contains
the coordinates of two points, one of which is called the information point calculation
parameter, which is used to calculate the circle parameter, and the other is called the
information point verification parameter, which is used to validate circle parameters. As
shown in Figure 3, ‘*’ represents the information point calculation parameter, which is used
to calculate the circle parameter; ‘+’ represents the information point verification parameter,
which is used to verify the circle parameter. ‘*’ and ‘+’ are located at both ends of the
arc marked in the sharpness estimation, respectively, and the circle information can be
obtained by calculating parameters from any three information points on the same circle.
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calculation parameters, and ‘+’ represents information point verification parameters.

2.2.2. Selection of Information Points and Deletion of Interference Information

The interference curve is relatively random, and the distance from the point on the
arc to the end point is decreasing. As shown in Figure 4, Pi, Pi+1, respectively, represent
two consecutive points on the arc, X, Y are the two endpoints of the arc point set, respec-
tively, and the Manhattan distance from the two points to the endpoints can be represented
by ||PiO1|+ |O1Y|| and ||Pi+1O2|+ |O2Y||, respectively. In this regard, we perform di-
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rection screening on the result of sharpness estimation to select information points. The
specific direction screening is as follows:

DirX = (PXn−2 + PXn−1 + PXn)− (PX1 + PX2 + PX3) (6)

DirY = (PYn−2 + PYn−1 + PYn)− (PY1 + PY2 + PY3) (7)

Ft(i) =
{

1, (PXi − PXi−1)× DirX < 0 or (PYi − PYi−1)× DirY < 0
0, other

(8)

FalseNum =
n

∑
i=2

Ft(i) (9)
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P1, P2, · · · , PN−1, PN is the point on the curve. PXi and PYi represent the horizontal
and vertical coordinates of the i point, respectively. DirX and DirY record the direction of
the end point relative to the start point. FalseNum indicates the number of times the curve
does not follow the trend. When FalseNum ≥ n× η (the value of η; see 4.1), these arcs are
considered to be noise or unimportant information, and we remove them from the image.
The results obtained by our algorithm are shown in Figure 5.
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information points we selected and used. ‘*’ and ‘+’ mark the information points.
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As can be seen from Figure 5, although the canny edge extraction algorithm can extract
the edge of the circle very well, it is also accompanied by a large number of unimportant
details and interference curves. In Figure 5c, we can see that our algorithm removes a large
number of unimportant details and interfering curves, and, as shown in Figure 5d, the
circle information on the picture is well preserved in information points. We validated the
effect of this method on three datasets and recorded the results in Table 2.

Table 2. The performance of our algorithm on the dataset.

Number of Edge Points Number of Information Points Information Compression Ratio Retention Rate of the Circle

Geometry 21,969 238.25 1.12% 100.00%
GH [21] 21,339.27 166.73 1.00% 98.94%
PCB [21] 13,911.45 86.09 0.63% 100.00%

The number of edge points in Table 2 refers to the average number of edge points
obtained by the adaptive canny edge extraction algorithm, the number of information
points refers to the points used to store the circle information on the image, the information
compression ratio refers to the compression effect of the edge point information, the
retention rate of the circle refers to the degree of the algorithm’s retention of the circle and
100% means that no circle information is lost.

It can be seen from Table 2 that our algorithm can effectively store the circle information
on the image in a minimum of 0.63% of the information points, and the retention rate of the
circle information can reach 100% in the process. Even on the dataset GH, which contains a
lot of ambiguity, it still has 98.94% retention. This method of storing information on the
image with a small number of points can not only reduce iterations but also increase the
robustness of the algorithm.

It can be seen from Figure 5b that the adaptive canny edge extraction results are often
accompanied by a large amount of interference. The proportion of circles in the edge points
is only 11.89%. In the canny edge extraction results, only the curves where the information
points are located are retained. Curves without information points will be treated as useless
arcs. The performance of our algorithm on three datasets is shown in Table 3. Our method
can remove, at most, 71.16% of the points, with the lowest error rate being only 0.16%.
After filtering, the proportion of points on the circle on the image has increased by up to
236.20%. Our algorithm does not perform as well on the dataset Geometry as the other
two datasets, mainly because the background in the dataset Geometry is relatively clean
and free of ambient noise.

Table 3. The result of useless arc removal.

Geometry GH [21] PCB [21]

Number of edge points 21,969 21,339.27 13,911.45
Number of points after filtering 16,487.50 9895.81 3966.84

Clear rate 24.36% 51.38% 71.16%
Percentage of points on the
circle among edge points 24.66% 11.89% 11.97%

The percentage of points on the
circle after clearing 30.35% 23.44% 38.42%

Probability boost 26.95% 135.47% 236.20%
Mistaken deletion ratio 0.93% 0.35% 0.16%

2.3. Average Sampling to Verify Candidate Circles

Traverse all the information points and select the calculation parameters (P1(X1, Y1),
P2(X2, Y2), P3(X3, Y3)) of the three information points each time to calculate the circle param-
eters O(x, y, r). Then, substitute the verification parameters of the three information points
for verification. If the error of the verification result is greater than max (0.5 , min(5, r/30)),
the circle is considered to be a false circle. After the verification is successful, start from
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just above the center of the circle, and perform sampling point verification for every radian.
The sampling point coordinate formula is:

Theta = 2× Pi × i (i ∈ 0, 1, . . . , 36) (10){
cx = round (x + r × cos (Theta))
cy = round (y + r× sin (Theta))

(11)

where cx and cy represent the horizontal and vertical coordinates of the sampling point, re-
spectively, i represents the number of i sampling times and x, y, r refers to the circle parameter.

During the sampling process, we recorded the following parameters:
samples: Refers to the number of successful sampling verifications. If there are pixels

in the 9 neighborhoods of the sampling point (when r > 100, take 16 neighborhoods), we
consider the sampling verification result to be true;

MaximumArc: We connect the adjacent successfully sampled points into an arc. If the
interval is less than 1 sampling point, merge the two arcs, and record the longest arc;

Left: The radian corresponding to the left endpoint of the longest continuous arc;
Right: The radian corresponding to the right endpoint of the longest continuous arc;
DiscreteArc: The number of successful samplings not on the longest continuous arc.
Here, the circles are divided into two categories according to the sampling verification

results: complete circles and defect circles. The following two cases are discussed to
determine whether the circle parameters are candidate circles:

Complete circle judgment
The circle whose number of successful samplings and verifications is greater than

ϕ1 is considered as a candidate circle. At the same time, if the number of success-
ful samplings and verifications exceeds ϕ2, it is considered that the circle has reached
the optimal parameters, and the information points whose Euclidean distance is less
than max (0.5 , min(5, r/30)) will be deleted. According to our experimental parameters
ϕ1 = 28, ϕ2 = 33, the running result is the best. Parameters ϕ1 and ϕ2 did not need to be
changed in all datasets run in this paper.

Defect circle judgment
A circle with a number of successful samplings between 0.75× ϕ1 and ϕ1 is considered

a defect circle, and we will resample the defect circle and rotate all sampling points clock-
wise by 5◦. At the same time, compare the samples and MaximumArc of the two samples.
If the difference is less than 2, it will be added to the candidate circle.

2.4. Find True Circles

According to [22], the following formula is used to express the overlap ratio of circles.
When the overlap ratio is greater than 0.8, we consider them to be the same circle and retain
the circle with better sampling results.

Ratio(Cd, Ct) =
area(Cd) ∩ area(Ct)
area(Cd) ∪ area(Ct)

(12)

area(Cd) and area(Ct) refer to the areas of Cd, Ct, respectively, and Ratio(Cd, Ct) refers
to the overlap rate of the two circles. For the candidate circle, use the following formula to
verify the true circle:

F(i) =

 1,
∣∣∣∣√(PXi − cx)2 + (PYi − cy)2 − cr)

∣∣∣∣ < di f f

0, other
di f f = max (0.5 , min(5, r/30))

(13)

PointNum = ∑ F(i) (14)

Depending on the type of the circle, there are two situations that can be discussed to
determine whether a candidate circle is a true circle.



Sensors 2022, 22, 7267 8 of 17

1. Complete circle judgment

If the candidate circle is marked as a complete circle and satisfies Point > 2× π × r× 0.8,
we think it is a true circle.

2. Defect circle judgment

If the candidate circle is marked as a defective circle, we perform defect circle veri-
fication. First, Circles that do not satisfy Point > 2× π × r× 0.6 will be excluded. Then,
to prevent random noise from interfering with the average sampling verification, we use
ArmSum and DisSum to record and verify the longest arc and discrete arc of the defect
circle, respectively. When the number of points of the longest arc and the number of points
of the non-longest arc satisfy formula (19), we consider the defective circle to be a true circle.

angle(i) = arctan(
PYi − cy
PXi − cx

× 180
π

) (15)

mark(i) =
{

1, le f t ≤ angle(i) ≤ right
0, other

(16)
ArcDet(i) =

 1, mark(i) = 1 and
∣∣∣∣√(PXi − cx)2 + (PYi − cy)2 − cr)

∣∣∣∣ < di f f

0, other
ArmSum = ∑ ArcDet(i)

(17)


DisDet(i) =

 1, mark(i) = 0and
∣∣∣∣√(PXi − cx)2 + (PYi − cy)2 − cr)

∣∣∣∣ < di f f

0, other
DisSum = ∑ DisDet(i)

(18)

{
ArmSum > 2× π × r× (right−le f t)

36
DisSum > 2× π × r× DiscreteArc

(19)

where PXi and PYi are the abscissa and ordinate of the i point in the edge image, respec-
tively, and cx, cy, r are the abscissa and radius of the center of the candidate circle.

3. Proposed Circle Detection Algorithm

This section shows the flow and pseudocode of our proposed circle detection algorithm.
Our proposed circle detection algorithm can be described as follows:

Step 1. Input a picture and perform Gaussian filtering on it, along with adaptive canny
edge extraction;

Step 2. Perform arc extraction on the result of canny edge detection, connect adja-
cent points to an arc and merge the arc point sets whose endpoints are not more than
one pixel apart;

Step 3. Click on the arc to estimate the sharpness, and save the arc segment whose
length is greater than L;

Step 4. According to the direction screening, select the information points in the arc
segments selected by the sharpness estimation; then, filter out the information points and
remove the useless arcs on the picture;

Step 5. If all the points of the information point are judged, or the number of informa-
tion points is less than 3, we jump to Step 6. Otherwise, the circle parameters are calculated
for the points in the candidate field in turn, and the candidate circle is determined; then,
jump to Step 5;

Step 6. Delete the duplicate circles in the candidate circles;
Step 7. The circle detection algorithm ends, and, finally, the detection results are verified.
The proposed algorithm can also be expressed in pseudocode, as follows Algorithm 1:
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Algorithm 1: Proposed Circle Detection Algorithm

Input: Grayscale image
Output: Detected circles
1: Initialization parameters
2: Gaussian filter for image
3: Adaptive canny edge extraction for images
4: Sharpness extraction from images
5: if Direction filter passed then
6: add to information point collection Ω
7: end if
8: Image cleanup
9: for ai ∈ Ωdo
10: for aj ∈ Ωdo
11: for ak ∈ Ωdo
12: if i == j or i == j or j == k then
13: continue;
14: end if
15: Select three information points to calculate circle parameters
16: if Information point verification parameter verification failed then
17: continue;
18: end if
19: Perform average sampling verification on the circle parameters
20: if not then
21: continue;
22: end if
23: if The number of successful sampling is greater than 33 times then
24: delete information points on the circle
25: end if
26: end for
27: end for
28: end for
29: Remove duplicate circles in candidate circles
30: Verification of candidate circles (Section 2.4) to find true circles
31: if not then
32: continue;
33: end if

4. Experiments and Results Analysis

In this chapter, we compare the proposed algorithm with five other algorithms. The
first is the voting-based RHT [8] algorithm, the second is the sampling-based detection
RCD [9] algorithm, the third is the Jiang [11] proposed optimization algorithm, which
we refer to as Jiang for short, the fourth is the curvature-based CACD [17], the fifth is
the middle-time Wang’s algorithm and the last is our algorithm. In order to unify the
standard, it is stipulated here that the proportion of the occluded part of the circle cannot
exceed 0.4 times the circumference of the circle. All the above algorithms were executed in
MATLAB R2019b in order to exclude language interference on the running time, and they
were all run on the same computer using an Intel Corei5 CPU 2.90 GHz and 8 GB RAM. For
the objectivity and accuracy of the experiment, the following four indicators will be used to
measure: Precision, Recall, F-measure and Time. Time refers to the time from inputting the
picture to outputting all of the found circle information.

Precision =
TP

TP + FP
(20)

Recall =
TP

TP + FN
(21)
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F−measure = 2× Precision× Recall
Precision + Recall

(22)

The experiments refer to the verification indicators used in the literature [16,19,23–26],
and when the coincidence rate of the circles is not lower than 0.8, they are considered to be
the same circle. Treat it as a true positive (TP); otherwise, it is a false positive (FP), and the
ground truth that is not correctly identified is treated as a false negative (FN). Formula (12)
is used to define the overlap ratio between circles Cd and Ct:

The test images in this paper are mainly from our dataset and two public datasets
available on the internet:

Dataset Geometry. It is a dataset containing complex curves and consists of 13 images.
Large-size pictures, complex curve interaction and large radius changes bring difficulties
to the measurement of circles.

Dataset GH. It is a complex dataset from [21] consisting of 257 real-world gray images.
Blurred edges, large changes in radius and occlusions make measurements inconvenient.

Dataset PCB. It is an industrial dataset from [20] which contains 100 printed circuit
board images. A large amount of noise and a large number of concentric circles with
blurred edges make the measurement difficult.

4.1. Threshold Analysis

Our algorithm mainly involves two parameters: L and η. Due to the complexity of the
images, it is impossible to fix all parameters for optimal performance. Furthermore, the
relationship between the parameters L and η is “ L× X = Z1, η× Z1 = Z”. We can obtain
the optimal intermediate result Z1 by adjusting the parameter L. On this basis, we adjust η
to obtain the final result. The process of adjusting the parameter L to obtain the optimal
intermediate result Z1 and adjusting the parameter η to obtain the final result is shown in
Figure 6.

In the sharpness estimation stage, the parameter L is used to filter the arc, which is
very important for the selection of subsequent information points. If L is too small, the
number of arcs will increase, and the algorithm efficiency will decrease. If L is too large,
part of the circle information will be lost. We suggest that the value should be appropriately
increased in images with sharp edges and should be appropriately decreased in real images.

In the screening stage of information points, parameter η represents the allowable
error rate. With the increase in η, the number of information points increases. The Recall
rate will increase relatively, while the Precision will decrease accordingly, and the Time will
also increase. In a real image, due to the interference of noise, the edge lines of the circle
will be disturbed, so this parameter needs to be appropriately increased, and on an ideal
picture with a clear background, this parameter can be appropriately decreased.

4.2. Performance Comparison
4.2.1. Dataset Geometry

We first report the detection results for the dataset Geometry in Figure 7. The F-
measure and Time of the six algorithms on each image are shown in detail in Tables 4 and 5.
Finally, the run results for the entire dataset are summarized in Table 6.

Table 4. F-measure of RHT, RCD, CACD, Jiang, Wang and our method in the dataset Geometry.

RHT RCD Jiang CACD Wang Our

1 1 1 1 0 1 1
2 0 1 1 0.8 1 1
3 0 0.667 1 0.667 1 1
4 0.8 0.667 0.667 0.571 0.5 1
5 1 0 1 0 1 1
6 0.4 0.571 0.5 0.571 1 1
7 0 0.8 0.222 0 0.857 0.857
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Table 4. Cont.

RHT RCD Jiang CACD Wang Our

8 0 1 0.667 0.667 1 1
9 0 0.4 0.571 0 1 1

10 0 0.4 0.095 0 0.8 1
11 0 0.5 1 0.4 1 1
12 0 0.444 0.667 0.75 1 1Sensors 2022, 22, 7267 12 of 19 
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Figure 7. Circle detection results on the dataset Geometry. From the left to right columns: input
image, RHT, RCD, CACD, Jiang, Wang and ours. As can be seen, the proposed method obtains better
performance than others.
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Table 5. Time of RHT, RCD, CACD, Jiang, Wang and our method in the dataset Geometry (unit: s).

RHT RCD Jiang CACD Wang Our

1 22.25 6.50 4.06 2.14 1.82 0.13
2 37.46 6.50 8.07 16.90 1.53 0.36
3 39.64 6.71 23.14 494.15 1.63 2.06
4 16.90 6.49 2.33 0.69 1.58 0.16
5 35.72 6.45 7.66 2.65 1.74 0.28
6 32.53 6.30 8.42 1.39 1.56 0.20
7 35.73 6.30 15.84 1.42 1.53 0.25
8 32.64 6.28 9.36 2.10 1.53 0.19
9 33.77 6.35 3.86 1.72 1.56 0.23

10 33.99 6.26 3.46 1.67 1.70 0.25
11 36.23 6.51 16.55 202.71 1.64 2.40
12 32.17 6.31 11.48 9.01 1.80 0.58

Table 6. Result of RHT, RCD, CACD, Jiang, Wang and our method in the dataset Geometry.

Precision Recall F-Measure Time (s)

RHT 0.31 0.27 0.27 32.42
RCD 0.69 0.66 0.62 6.41

CACD 0.40 0.40 0.37 61.38
Jiang 0.68 0.79 0.70 9.52
Wang 0.94 0.95 0.93 1.64
Our 1.00 0.98 0.99 0.59

As can be seen from the chart, the RHT algorithm has many missed detections. In
contrast, RCD has better performance than RHT. Jiang’s method has a better performance
in terms of Recall and F-measure, but the running time has increased, mainly because
the number of interference points in the area of differential evidence collection is large.
The CACD algorithm does not perform well in the dataset Geometry. The complex curve
interleaving makes circle fitting difficult, and with the change in image size (such as the
3rd and 11th pictures in Figure 7; the size is 1326 × 1536), the running time of the program
is greatly increased. Wang’s algorithm also performed very well on this dataset, with only
three images not correctly detected. Our algorithm has achieved the best results on this
dataset, and there is a missed detection in the seventh picture because the information points
in this part are relatively dense and our algorithm mistakenly deletes some information
points on the candidate circle during verification.

4.2.2. Dataset GH

Next, we report the detection results for the dataset GH. Combining the data in
Figure 8 and Table 7, it can be seen that RHT does not perform well on noisy images. RCD
has a high Recall but cannot ensure a high Precision. Jiang’s algorithm has improved time
and accuracy compared to RCD. The CACD algorithm performs well in most real images
without complex texture interference, but when there are many textures and the image is
large, the time is often very slow, and there will be missed detections and false detections.
Wang’s algorithm performed poorly on this dataset. This is because, in real images, a large
number of dense interference points make the algorithm detect a large number of false
circles that cannot be eliminated. Our algorithm removes many interfering edges before
detection, which not only speeds up the running time but also reduces their interference to
the circle validation stage, improves precision and recall and maintains good performance
for most images in the dataset GH.
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Figure 8. Circle detection results on the dataset GH, which is widely used by other algorithms. From
the left to right columns: input image, RHT, RCD, CACD, Jiang, Wang and ours. As can be seen, the
proposed method obtains better performance than the others.

Table 7. Results on the dataset GH.

Precision Recall F-Measure Time (s)

RHT 0.14 0.13 0.13 11.07
RCD 0.03 0.69 0.04 6.74

CACD 0.5 0.73 0.54 4.33
Jiang 0.18 0.32 0.20 2.15
Wang 0.32 0.51 0.29 1.65
Our 0.71 0.80 0.70 1.30

4.2.3. Dataset PCB

Finally, we report the detection results for the dataset PCB. Combining the data in
Figure 9 and Table 8, it can be seen that, under the noise interference, the RHT algorithm has
some defects, including false detection, a low recall and a slower running speed. The RCD
algorithm still shows a low precision and a high recall. A large amount of noise interference
reduces the probability that the sampling points are on the same circle and also increases
the possibility of false detection. Jiang’s algorithm maintains good performance when
the edge is clear and improves the accuracy, but, as the blurring of the image increases,
the number of points in the difference evidence collection area increases sharply, which
will slow down the running speed and reduce the accuracy. CACD works well on this
dataset, but when the image is too blurry and the edge extraction algorithm cannot extract
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continuous edges, CACD will not be able to detect the corresponding circle, such as the
seventh image in the figure below. Wang’s algorithm outperformed Jiang’s algorithm on
this dataset and performed similarly to CACD, mainly because, on this dataset, there are
relatively few interference points. When the picture is blurred, the algorithm also cannot
find the circle correctly. Our algorithm does not rely on continuous edge extraction and
eliminates useless arcs. It not only runs faster but also prevents subtle errors and noise
from interfering with the results.
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Figure 9. Circle detection results on the dataset PCB, which is widely used by other algorithms. From
the left to right columns: input image, RHT, RCD, CACD, Jiang, Wang and ours. As can be seen, the
proposed method obtains better performance than the others.

Table 8. Result on the dataset PCB.

Precision Recall F-Measure Time (s)

RHT 0.35 0.40 0.30 15.11
RCD 0.19 0.65 0.25 6.35

CACD 0.65 0.80 0.69 2.09
Jiang 0.31 0.43 0.33 2.85
Wang 0.69 0.77 0.66 1.59
Our 0.97 0.91 0.93 0.46

4.3. Discussion

As can be seen from Tables 6–8, our proposed method has some advantages over other
methods. Compared with the above methods, our method can more effectively streamline
the circle information on the image to improve the detection speed. Compared with Wang’s
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method, our algorithm is more practical. In complex graphs with clean backgrounds,
Wang’s algorithm is able to maintain good performance. However, in images with more
noise, the performance of Wang’s algorithm degrades rapidly. Compared to CACD, our
method does not need to iterate over a large number of radius layers and remains stable
when the image size is large. On the dataset GH and the dataset PCB, our algorithm
exhibits different characteristics. The Recall on the dataset GH is higher than the Precision.
This is due to the large amount of interference in the dataset GH, which brings difficulties
for circle validation. The Precision on the dataset PCB is higher than the Recall; this is
because a large amount of blur makes information point compression troublesome, and
our algorithm inevitably loses some circle information. F-measure is a combination of
precision and recall, and we show, in Section 4.1, our process of adjusting the image to
achieve optimal parameters during the threshold analysis stage of the parameters.

5. Conclusions

This paper proposes a fast circle detection algorithm based on information compres-
sion and analyzes its performance. The algorithm achieves good performance through
four stages of image preprocessing, information compression and screening, average sam-
pling to verify candidate circles and finding true circles. (1) In terms of detection speed,
we introduce an idea of information compression: compressing the circle information on
the image into a few information points and using an average sampling algorithm with
a time complexity of O(1) to verify the candidate circle, which effectively speeds up the
speed of the algorithm. (2) In terms of detection accuracy, our algorithm removes interfer-
ence information and effectively eliminates the false detections caused by small edges on
the image.

We tested three datasets. The results show that our method can compress the circle
information on the image to the lowest 0.63% points and remove the highest 71.16% of
the interference points in the image, with the lowest false deletion ratio being only 0.16%.
Our algorithm outperforms RHT, RCD, Jiang and CACD in terms of Precision, Recall,
F-measure and Time.
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