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Abstract: Autonomous vehicles (AV) are a hot topic for safe mobility, which inevitably requires
sensors to achieve autonomy, but relying too heavily on sensors will be a risk factor. A high-definition
map (HD map) reduces the risk by giving geographical information if it covers dynamic information
from moving entities on the road. Cooperative intelligent transport systems (C-ITS) are a prominent
approach to solving the issue and local dynamic maps (LDMs) are expected to realize the ideal C-ITS.
An actual LDM implementation requires a fine database design to be able to update the information to
represent potential risks based on future interactions of vehicles. In the present study, we proposed an
advanced method for embedding the geographical future occupancy of vehicles into the database by
using a binary decision diagram (BDD). In our method, the geographical future occupancy of vehicles
was formulated with Kamm’s circle. In computer experiments, sharing BDD-based occupancy data
was successfully demonstrated in the ROS-based simulator with the linked list-based BDD. Algebraic
operations in exchanged BDDs effectively managed future interactions such as data insertion and
timing of collision avoidance in the LDM. This result opened a new door for the realization of the
ideal LDM for safety in AVs.

Keywords: local dynamic map; binary decision diagrams; branching programs; Geohash; cooperative
ITS; collision avoidance; Kamm’s/traction circle

1. Introduction

Driving a vehicle is an unavoidable daily task for millions of people, and, simulta-
neously, driving carries risks as a fate due to unsafe driving [1]. In the current direction
toward autonomous vehicles (AVs) to contribute to a significant reduction of car accidents,
the Society of Automotive Engineers (SAE) has defined various levels of autonomy from
Level 0 (fully manual) to Level 5 (fully autonomous) [2]. Even though an autonomous ego
vehicle can sense its environment effectively using sensors to keep safe navigation, physical
sensors have limitations to sense behind buildings and obstacles [3]. In the sensing limita-
tions, cooperative intelligent transport systems (C-ITS) are necessary to compensate for the
drawbacks of sensors. In the proximity range between vulnerable road users and vehicles,
sensors are necessary to detect what happens in front of vehicles at a high speed and high
accuracy, while its accuracy gets worse in proportion to the distance. Therefore, sharing
information among traffic participants represented in a consistent geographical way is
crucial for safe mobility in middle and long distances. In a C-ITS, the mission of a high level
of autonomy for safe driving has proposed for vehicles to use exchange information using
vehicle to vehicle (V2V), vehicle to infrastructure (V2I), and vehicle to everything (V2X).
Thus, a hieratical representation of static and dynamic information with different update
time scales is critical to realize the facilities layer of every intelligent transport system
(ITS) station. In other words, information from other participants in traffic conditions is
aggregated in a consistent geometrical way. According to the demand, the SAFESPOT [4]
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project has introduced the concept of LDM, which integrates static road geometry with
dynamic information from other vehicles and participants. In LDM, static, quasi-static,
quasi-dynamic, and highly dynamic data are mapped consistently and promptly for real
traffic scenarios. It indicated the integration of traffic participants’ information based on
its dynamic properties to manage complex traffic scenarios. LDM is divided into four
conceptual layers:

• Layer 1: Contains permanent static information. It is a map database that preferably
contains detailed road map information with application to advanced driver assistance
systems (ADAS).

• Layer 2: This layer is an extension of layer 1. It includes quasi-static information, e.g.,
traffic signs, trees, and buildings.

• Layer 3: LDM stores temporary information for a particular region in this layer, e.g.,
traffic jams, weather conditions, and traffic signals.

• Layer 4: Contains temporary information about dynamic or highly dynamic objects,
e.g., moving vehicles and pedestrians.

In the realization, LDM requires relational, graph, or streaming databases [4–7] and
assumed query languages for the possible database to store and monitor target data for
the ITS station to handle various dynamic entities in the traffic scenarios mapped on the
world model. In past studies of LDM implementations [5–7], the geographical occupancy
of vehicles was handled in individual time segments, and risks due to collision of nearby
vehicles were evaluated for those mutual distances in each time segment. It is a natural
consideration in ordinary discrete time step models of moving objects. There is no problem
if the occupancy is assured to be updated in the database with enough speed and precision
to prevent accidents. However, assurance of updating speed and precision is seemingly
unsolvable because increasing time resolution in the discrete-time model to adapt to
high-speed movements, such as on highway roads, will be a trade-off issue with respect
to computational costs. This is the reason why current implementations of LDM have
limitations and inevitable drawbacks. Therefore, the issue that needs to be addressed in
the LDM implementation is the possibility of extended representation of the geographical
occupancy of vehicles across time segments or space-time representation over time. In this
sense, rich space-time representation is vital for detecting potential future interactions and
the safe navigation of vehicles.

Kumar et al. [8] have proposed a computational scheme with BDD encoding Geohash
information. An extended present-and-future spatial representation of the LDM is required
to tackle the above problem. A consistent framework can be established if BDD representa-
tions can be applied to reachable Geohash locations depending on each moving vehicle
over time.

Geohash offers an efficient partitioning of geographical locations, and therefore it
matches a Boolean string manipulation to treat geographical problems. The advantage
of Boolean encoding associated with target Geohashes is set operations to minimize com-
putational costs by implementing them into BDDs. It implies that the present-and-future
spatial representation can be treated as a reachable set for the given vehicle over time by
introducing the formulation of their future positions based on the concept of Kamm’s circle.
The extended framework enables us to verify situations with risks of a collision with other
cars in the form of algebraic operations in BDDs. In the present study, the following main
contributions are discussed, as listed below:

1. The vehicle’s future geographical occupancy over time as a feature in the LDM.
2. A extended method of data representation for a vehicle’s geographical occupancy

information using a BDD.
3. Possible algebraic operations between the exchanged BDDs can confirm the possibility

of future interaction, which is consistent with the C-ITS nature of data sharing.
4. Ways of data insertion and database operations for vehicle properties in the linked-

list-based BDD running on the PostgreSQL database-based LDM.
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The rest of the paper is structured as follows: Section 2 reviews the state of the art
of the LDM approach. Section 3 describes the materials and methods used in the present
study. Sections 4 and 5 describe the experimental setup and analyzed the results. Finally,
Section 6 examines the discussion and future work and concludes the paper.

2. Literature Review

The SAFESPOT project was co-funded by the European Commission Information
Society and Media and was supported by European Council for Automotive R&D (EUCAR)
from 2006 to 2010 and introduced the LDM [4] to manage the data in the C-ITS scenario,
which constructed an LDM on the top of a database. It indicated that the LDM integrates
information received from the vehicles and infrastructure with geometry information is
realized in the database. In other words, it provides real-time data of static, temporary,
and dynamic elements involved in a traffic scenario. Tele Atlas (PG-LDM) and NAVTEQ
(NAVTEQ-LDM) were two implementations of the system. PG-LDM introduced a Post-
greSQL database with a PostGIS extension, whereas NAVTEQ-LDM introduced SQLite. A
schema for the relational databases for constructing the LDM is also crucial for an actual
application. In their system, grouped tables in four layers are updated depending on the
dynamic properties of the target, moving entities, and their relationships with data stored
in other tables. Thus, tables were divided into four conceptual categories or layers which
are consistent with the LDM concept.

The European Telecommunications Standards Institute (ETSI) and International Or-
ganization for Standardization (ISO) have made standardization efforts for LDM. The
initial standard was given by ETSI as TR 102 863 (V1.1.1) [9], which described LDM as
an embedded conceptual data storage in an ITS station. It maintains the topographical,
positional, and status information related to the ITS station within the host station’s geo-
graphic area. Therefore, it identified LDM as a key facility function in the facilities layer
of an ITS station. Essential data sources of LDM were discussed in cooperative awareness
messages (CAMs) and decentralized environmental notification messages (DENMs). For
standardization, various applications of the LDM were considered such as “Cooperative
navigation Location-based services", which can provide location-based information for
cooperative navigation. In the ITS applications analysis, the functionality [9] portion of
the standard clearly mentioned use cases related to the LDM, for example, UC_CA_03
(across traffic turn collision risk warning), UC_CA_04 (merging traffic turn collision risk
warning), UC_CA_05 (co-operative merging assistance), UC_CA_06 (intersection colli-
sion warning), and UC_CA_07 (co-operative forward collision warning) use cases. The
document highlighted the requirement of a mechanism to update the LDM by storing
processed information on target moving entities and stressed the importance of the LDM
for other applications and stakeholders in transportation. It indicates that the selection
of the updating method in the database is not a minor problem at the implementation
level because computational costs for estimating vehicle interactions increase rapidly in
principle when the number of vehicles increases. Therefore, the BDD-based geographical
information storing was proposed by Kumar et al. [8], which is easily extended to Geohash
locations as a reachable set to represent future locations, allowing the database to store
those in JSON data format. According to the standard, various types of data were termed
Type 1 (static), Type 2 (transient static), Type 3 (transient dynamic), and Type 4 (highly
dynamic). Especially in the case of the highly dynamic data (Type 4) focusing on nearby ve-
hicles, it requests an extension of the LDM to support the “vehicle occupancy” as discussed
above. Indeed, ETSI EN 302 895 (V1.1.0) [10] extended the previous report and added
descriptions of new functionalities associated with compositional data structures and LDM
data providers and customers. In an international standard, ISO/TS 17931:2013 [11] and
ISO/TS 18750:2015 [12] defined a comparable standard to ETSI.

In past studies on LDM implementations, Eggert et al. [5] proposed relational local
dynamic maps (R-LDM), a fully interconnected graph-based approach, instead of layered
structures. They were concerned with computational costs due to the complexity of layered
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models to update data and proposed a consistent world model as an improvement, which
used the Neo4j database and CYPHER query language for the LDM implementation.
Camera-to-map alignment and risk-based behavior were demonstrated in their model to
exhibit the benefit of a fully interconnected graph-based approach, while inconsistency with
layered data structures in standards discussed above is a concern for LDM data providers
and customers. Eiter et al. [7] introduced semantic web technologies and combined
ontologies with a spatial stream database. LDM ontology with expressive spatial-stream
query language is beneficial and suitable for the hierarchical data structure to infer new
information over streams. They demonstrated the integration of semantic web technologies
with LDM and V2X. The experiment involved the PostgreSQL extension PIPELINEDB
database and PTV VISSIM simulation environment, which may have a potential problem
of computational costs due to limitations of processing speed in reasoner accompanied
with combined ontologies. Netten et al. [13] introduced DynaMap, a dynamic map for
roadside or central ITS stations. They discussed the importance of the difference between
the dynamic map requirement for roadside units and the dynamic map for vehicles and
formulated an architecture for world models, objects, and data sinks. Koenders et al. [14]
focused on the fact that conventional LDM implementations cannot store the data of
all things simultaneously and improved it with a streamed filtering technique to delete
irrelevant data. Their relational schema was a sophisticated model to carry tables for areas,
roads, and objects. Zoghby et al. [15] built a distributed LDM in the context of VANets
(vehicular ad hoc networks). In their model, vehicles cooperate to increase their field of
view and provide an extended map called a dynamic public map (DPM), depending on the
dynamic properties of moving entities represented in dynamic distributed maps (DDMs).
Their computer experiments demonstrated that a number of vehicles can be treated in the
distributed dynamic map consistently. Nieto et al. [16] implemented the real-time LDM
using RTMaps as a middleware. As a successful fusion, the database was designed in the
vehicle and roadside units (RSU). Biral et al. [17] described the SAFESTRIP project, and
their developed road strips can detect and estimate lateral and longitudinal positions of
the detected vehicle at the lane level.

The LDM concept was extended not only to road vehicles but also to aerial vehicles.
Lee et al. [18] proposed an algorithm to generate a 3D local dynamic map for unmanned
aerial vehicles (UAVs). García et al. [19] recently introduced an interoperable graph-based
LDM (iLDM) using Neo4j. In their model, the system introduced a graph database for the
LDM construction, the same as R-LDM proposed by Eggert et al. [5]. In iLDM, a common
input system is provided an interoperable data access across multiple data sources, which
is OpenLABEL as a common data format. Shimada et al. [6] implemented the LDM that
was assumed to be fully compatible with the specification of the SAFESPOT project and
demonstrated the performance of the LDM while changing the number of vehicles in their
computer environments for the collision detection task. In this case, LDM was established
with the Postgres database with PostGIS extension and a geographical map in the database
with the “osm2pgsql” tool for data in static layers concerning tables. For sensor information
in their computer experiments, PreScan and Simulink generated sensor data depending on
vehicle movements by accessing dynamic layer tables.

3. Materials and Methods

This section briefly introduces the material, methods, and technologies to achieve our
objective.

3.1. Geohash

In our proposed model, Geohash was introduced to represent the geographical loca-
tions, which is a sequence of characters consisting of English letters except “a”, “i”, “l”, “o”,
and digits 0–9 at every level of the representation. The string length corresponds to the size
of the geographical area designated by the Geohash, as shown in Table 1. It is a hierarchical
spatial data structure subdividing the space into smaller subspaces depending on the
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Geohash length. For example, the first character divides the space into 4× 8 (four rows and
eight columns), and the division of regions alternates between 8 × 4 and 4 × 8 ([20,21]). A
space-filling curve decides the sequence number of the areas. When alternate characters’ bi-
nary representations are combined in Geohash, two strings for determining row X (latitude
bits) and column Y (longitude bits) cross bit by bit, see Figure 1.

Table 1. Geographical size of Geohash encoding.

#Label in Geohash Distance in North
and South (m)

Distance in East and
West (m) A Geohash Example

1 4,989,600 4,050,000 w
2 623,700 1,012,500 wy
3 155,925 126,562.5 wyh
4 19,490.625 31,640.625 wyhb
5 4872.65625 3955.07813 wyhby
6 609.082031 988.769531 wyhby3
7 152.270508 123.596191 wyhby3k
8 19.0338135 30.8990479 wyhby3kf
9 4.75845337 3.86238098 wyhby3kf5
10 0.59480667 0.96559525 wyhby3kf5f
11 0.14870167 0.12069941 wyhby3kf5fs

12 0.01858771
(≈ 1.86 (cm))

0.03017485
(≈ 3.02 [cm]) wyhby3kf5fst
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Y- longitude bits

X – latitude bits

Figure 1. Geohash follows an alternate sequence of space-filling curves. Characters binary represen-
tation determining latitude X bits and longitude Y bits cross bit by bit.

According to the above formulation, each Geohash has its unique binary representa-
tion. This binary representation for locating a region in space motivated us to use BDD since
BDDs are relatively small for multiple Boolean functions compared to the corresponding
binary tree representation (see Figure 2). It supports logical operations on BDDs, which cor-
respond to equivalent set-theoretic operations (Section 3.3). Interestingly, computer-aided
design (CAD), formal verification, and other related fields have successfully introduced
BDDs for Boolean operations.
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Figure 2. (a) Binary decision tree representation for a given set has a fixed size and is large compared
to BDD representation. (b) Binary decision diagram representation for a given function has compact
representation.

3.2. Boolean Function and Reduced Ordered Binary Decision Diagrams (ROBDD)

In the proposed model, ROBDD was introduced to represent the Boolean function
represented by the set of Geohash locations.

3.2.1. Boolean Function

A Boolean function is of the form f : {0, 1}k → {0, 1} , where k-tuples of Boolean
variables takes values to 0 (false) or 1 (true). Suppose valuation V means the total com-
bination of values that k-tuple Boolean variables can take. Each k-tuple assignment in
V can be written as Γ : v → [0, 1] from a value in fixed set V to a Boolean value, where
vεV. The Boolean function can also be represented using Boolean variables and Boolean
operations (and, or, not), also known as literals, e.g., x1x2x3 + x4, where concatenation, +
and x represent and, or, and not operations over variables, respectively.

3.2.2. Reduced Ordered Binary Decision Diagrams (ROBDD)

The BDD is a graph representation of the Boolean functions. The basic idea behind
the BDD is divide and conquer. More specifically, BDD is a rooted directed acyclic graph
(DAG), where non-leaf nodes have labels with Boolean variables and leaf nodes have labels
0 (false) or 1 (true), which correspond to Boolean function output.

BDD can represent most of the Boolean functions in feasible size compared to the truth
table or binary tree representation for Boolean functions that always take 2n space. Sheldon
B. Akers [22] first introduced the Boolean function in terms of a diagram. Later, Randal E.
Bryant [23] introduced ROBDD (reduced ordered binary decision diagram), in which the
relative ordering of variables on each path from the root to the leaf is fixed (also known
as ordered binary decision diagram (OBDD)), and it combines the isomorphic subgraphs
present in the graph to create ROBDD.

Each OBDD has the following components [24]—G = ((Q, v0, E), V ∪ {0, 1},<, L):

• (Q, v0, E) is a rooted directed acyclic graph. Q is a finite set of nodes. v0 is the root
node and E ⊂ Q×Q. Each non-leaf node has its successors, namely low and high.

• V is a finite set of Boolean variables.
• < is a total order on V ∪ {0, 1}.
• L is a mapping satisfying the following conditions:

– Leafs are mapped to 0 and 1 and non-leaf nodes are mapped to V.
– If (v,v’) ∈ E then L(v) < L(v’).
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Graph G over Boolean variables V represents a Boolean function. The interpretation
of BDD is based on the Shannon expansion.

f = x f [x] + x f [x] (1)

According to the Shannon expansion, each internal node of the graph has low and
high, and ROBDD can be obtained from OBDD by minimizing the redundancy in the
representation using the following rules:

• Merge all zero and one nodes to a single unit of zero and one node.
• Merge any isomorphic nodes, i.e., if l(x) = l(y) and h(x) = h(y) then merge these

nodes into one and point all incoming nodes to any one of them. Here l and h represent
the low and high child of any given node of a graph.

• Eliminate any node that has two children nodes as isomorphic.

The size of the ROBDD depends on the represented function and the variable order in
the proposed model. For a given variable order, ROBDD representation for the Boolean
function is the canonical representation, i.e., the function has a unique representation.

Due to the evolution of decision diagrams over the years, BDDs have many variants
such as ROBDD, ZDD (zero suppressed decision diagram) [25], SBDD (shared binary
decision diagram) [26], MTBDD (multi-terminal binary decision diagram) [27], and many
more. In the present study, ROBDD was introduced as well as BDD. For simplicity, ROBDD
is abbreviated as BDD in the following sections.

3.3. Geohash Set as a BDD

Geohash was introduced as a primary unit space, and then its size varied depending
on the number of characters/levels in Geohash. The present study formulated a Geohash of
ten levels/characters. It has approximately 0.59 m from north to south and 0.96 m from east
to west, see Table 1. For the representation of collection events, Geohashes were encoded
by using BDD.

1. BDD representation of a unit Geohash: A Geohash is a unique symbolic representation
of all the points available within the given area on the earth. For each character in
Geohash, 32 values (English letters except “a”, “i”, “l”, “o”, and decimal system digits
0–9) are possible to use, and, therefore, in our model, five Boolean variables (25 = 32)
were applied correspondingly (Figure 1). Consequently, five nodes in a BDD were
used to represent the corresponding Boolean variables for a binary representation
of a given character in a Geohash. For a given Geohash, each character had five
corresponding nodes in the BDD. For a Geohash of 10 characters/levels, 50 nodes
were needed for corresponding bits, plus two extra nodes representing zero (false)
and one (true) leaf node in a BDD. (for experiments, the vehicle was assumed to be
within a Geohash, having a distance of 4872 m (north to south) and 3955 m (east to
west); hence, a five-level BDD with 25 nodes served the purpose), i.e., the first five
levels of Geohash did not change in our setting. Every corresponding node, low or
high, has its values depending on the Boolean function represented. Therefore, to
represent a single Geohash using BDD corresponding binary string ends at one (1)
node of a BDD, and all other binary strings end in zero (0) (Figure 3).
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Figure 3. BDD representation for a unit Geohash.

2. BDD representation of a set of Geohash: A synthesis of BDD was applied (we borrowed
the term “synthesis" from [28]) to represent a set of Geohashes in a single BDD.
In the BDD synthesis, BDDs were built for complex sets/functions representing
Geohash locations (e.g., BDD for function f can combine with function g to represent
BDD for f AND g, f OR g, NOT f , f XOR g). Corresponding set interpretations were
necessary for a given BDD representing f and g sets (here Geohash sets) of the
above synthesis operations. The apply method in [23] was introduced to achieve the
following operations:

(a) f OR g is the set union operation. f ∪ g = {α | α ∈ f or α ∈ g}
(b) f AND g is the set intersection operation. f ∩ g = {α | α ∈ f and α ∈ g}
(c) f XOR g is the set symmetric difference operation. f ⊕ g = ( f \g) ∪ ( f \g)
Accordingly, adding a Geohash in a given BDD representation of a set of Geohashes
was performed with OR operation between two corresponding BDDs representations
(Figure 4). For example, encoded BDD using the OR operation of a set of 701 Geohash
BDDs is shown in Figure 5.

3.4. Reachable Positions by a Vehicle over Time t

For the prediction and inclusion of future occupancy of vehicles in the LDM, Kamm’s
circles were introduced to formulate an abstraction of reach and reachable sets, as discussed
in [29,30]. For example, reach and reachable sets in the discrete finite set of states are given
as follows.

Let S = (X, U, T) be a finite state machine. Where X is the finite set of states, U is the
finite set of control inputs, and T : X ×U → X is the transition function. X0 is the set of
initial states.
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difference operation.
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Figure 5. BDD for a set of 701 Geohashes. (Interconnection between the 25th–50th nodes is shown for
brevity.)

Reach/Reachable Sets and Abstraction

Reach Set—The set of states x at time t for which sequence of control inputs u0, u1, · · · ,
ut−1 exists from the initial states x0 ∈ X0 are known as reach set R(X0, t) [31].
Reachable Set—Reachable set at time t is the union of all the reach sets ≤ t

R(X0, t) = ∪s≤tR(X0, t) (2)

Abstraction—For a model (refer to definition in [29]) M of a given vehicle, abstraction
was defined as the model Mi if the reachable set of the abstraction contains the
reachable set of the model M (Figure 6).

M

M
1

M
2

M
i

Figure 6. Abstraction of a model contains all reachable states which are reachable by the original
model. Here states reachable by all abstraction models M1, M2, · · · , Mi contain reachable states by a
vehicle model M.

∀t > 0 : R(M, t) ⊆ R(Mi, t) (3)
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Kamm’s circle was introduced as an abstraction [29] for the reachable positions of a
given car. Kamm’s circle as abstraction overapproximates the locations to estimate vehicle
positions that may be reached in a closed distance. Kamm’s/traction circle limits the
maximum forces applicable between tires and the road. In the model, alo longitudinal and
ala lateral acceleration satisfies Equations 4 and 5 without losing the grip (Figure 7).

Longitudinal force Potential

Lateral force 

Longitudinal force Potential

Lateral force 

(a) (b)

Figure 7. Overall force is limited to Ff . (a) An increase in longitudinal force limits the lateral force.
(b) An increase in lateral force limits the longitudinal force.

a2
lo + a2

la 6 Ff (4)

a2
lo + a2

la 6 µ2
r g2 (5)

where µr and g represent the friction coefficient and gravitational acceleration, respectively.
Equation (5) forms and circle of radius 1

2 µrgt2 and using Equation (6) amax = µrg.
It is challenging to consider the trajectory of whether the representation of a vehicle

over time is possible or not. Past studies [29,32] described the overapproximated occupancy
at time t with center c(t) and radius r(t), as shown in Figure 8:

c(t) =
[

sx(0)
sy(0)

]
+

[
vx(0)
vy(0)

]
; r(t) =

1
2

amaxt2 (6)

where

• c(t) is a position of a vehicle at time t.
• sx(0) and sy(0) is the position of the vehicle at time t = 0.
• vx(0) and vy(0) is the velocities in the x and y directions of the vehicle at time t = 0.
• r(t) is the radius of a Kamm’s/traction circle at time t.
• amax is the maximum acceleration possible of a given vehicle.

1
2 amaxt2

k is the radius of any Kamm’s circle at time tk (Figure 8). Kamm’s circle at
time tk contributes to the reach set at that time. The union of such reach sets at time <= t
gives the reachable set (reachable positions in our case). This formulation was applied to
approximate the future places reachable by the vehicle and include the Geohash of the
reachable Geohash locations as a BDD in the LDM.
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t
k+1

t
k

1/2 * a
max

 * t2
k+1

V * t
k+1

V * t
k

1/2 * a
max

 * t2
k

x

y

Figure 8. Kamm’s circle.

3.5. BDD for Geohash Set Enclosing Kamm’s Circle

Following operations from [23], Geohash-based BDD manipulation was used in the
present study.

1. Reduce: Give reduced BDD in its canonical form.
2. Apply: Perform synthesis operation between two BDDs. f1 < op > f2.
3. Satisfy-One: Returns any one element in S f , where S f is the set of all Geohash repre-

sented by a given BDD.
4. Satisfy-All: Output S f . All Geohashes, a given BDD, satisfy.

The previous section discussed vehicle occupancy possible over time t using the
Kamm’s/traction circle. This subsection explored the algorithms used to generate the
BDD for such vehicle occupancy. Algorithm 1 was designed to find neighboring Geohash
BDD for a given encoded BDD; Algorithm 2 was proposed to generate the concerned
Kamm’s/traction circle BDD.

Algorithm 1: Algorithm to find neighboring Geohash BDD.

1 Input: inpGeo -Geohash BDD. h in {west, east, null}, v in {south, north, null}.
2 Output: Neighbour in east, west, north, south, north-west, north-east, south-east,

south-west Geohash BDD.
3 S = Satisfy-One(inpGeo)
4 T = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
5 for i = 0 to T.length:
6 for j = 0 to i:
7 If j%2 == 0 then:
8 If h == west then:
9 T[j] = T[j] and not(S[j])

10 elif h == east then:
11 T[j] = T[j] and S[j]
12 else:
13 If v == south then:
14 T[j] = T[j] and not(S[j])
15 elif v == north then:
16 T[j] = T[j] and S[j]
17 if h! = null:
18 T[T.length-1] = 1
19 if v! = null:
20 T[T.length-2] = 1
21 for i = 0 to T.length:
22 S[i] = S[i] xor T[i]
23 return createStringtoBDD(S)
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In Algorithm 1, the Satisfy-One [23] method was introduced to find an input that satis-
fies the BDD. Then, T calculates the transition bits [33] needed to calculate the neighboring
Geohash. For the completion of the operations, the bit string was generated for nearby
vehicles after the XOR operation between the satisfying input with the transition string.

Subsequently, the mid-point circle generation algorithm is modified (see Algorithm 3)
to find the BDD for all the Geohash present inside a given circle of radius r. The mid-point
circle generation algorithm uses the eight-way symmetry present in the circle. If the points
in one octant are possible to calculate, the points in all seven other octants can be generated.
Assuming the center is (0,0), for mid-point circle generation algorithm in Step I, calculate
the first square/pixel at (x0, y0) = (0, r). After that, a decision parameter p finds its use
to generate the next squares/pixels in the first quadrant. Step II calculates the p decision
parameter initial value p0 = 5

4 − r. Then, in Step III, depending on the weight of decision
parameter p, the successive value of p and squares/pixels take their values as follows:

If pk < 0 then:
(xk, yk) = (xk + 1, yk) and new pk is calculated as pk+1 = pk + 2xk+1 + 1

else:
(xk, yk) = (xk + 1, yk− 1) and new pk is calculated as pk+1 = pk + 2xk+1 + 1− 2yk+1

Next, in Step IV, the algorithm determines symmetry points in the other seven octants
and repeats steps III to IV until x <= y.

The modified mid-point circle generation Algorithm 2 generated the BDD of all the
Geohashes in the circle of radius r(Figure 9). Step I is the initialization step. In Step II, the
BDD for all the Geohashes with black arrows were generated as shown in Figure 9 and
merged with the BDD (circle_BDD) to represent all Geohashes within the circle by using or
operation, as the or operation on BDD is the equivalent set union operation. Then, in Step III,
the algorithm initialized the decision parameter p with p = INTEGER(ROUND(5/4)− r).
Step IV, depending on the value of p, generated successive Geohashes available in the
boundary of the first quadrant (along red arrows); successive p values and more parameters
of the circle were as follows:

if p <= 0:

Generate east BDD and union it with circle_BDD. Additionally, update the value
x_k = x_k + 0.96, e_count = e_count + 1 and record the north limit of this
BDD from the center. Finally, update the value of the decision parameter as
p = p + 2 ∗ x_k + 1.

else:

Generate southeast BDD and union it with circle_BDD. Additionally, update the
value x_k = x_k + 0.96; y_k = y_k− 0.59 and record the north and east limit of
this BDD from the center. Finally, update the value of the decision parameter as
p = p + 2 ∗ x_k + 1− 2 ∗ y_k.

After completion of Step IV, quad1_north_limit contained the distance (in no. of Geo-
hash) of all Geohash in the first octant of the circle in the north direction and quad1_east_limit
distance (in no. of Geohash) of Geohash in the first octant of the circle in the east direction
with respect to inpGeo.

In Step V, the algorithm generated BDD3 and BDD4 in the east and west direction of
the origin (Figure 9), and depending on the value of BDD3 (east) and BDD4 (west) Geohash,
the algorithm generated BDDs in the north and south directions taken the first quadrant
north limit as a limit (green arrow). All caused BDDs are taken in union with circle BDD
(circle_BDD). Finally, in Step VI, depending on the value of the east limit of the first octant,
new limit a is calculated and generated BDDs on added with BDD representing the circle.
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Algorithm 2: Modified midpoint circle generation algorithm.
1 Input: inpGeo—Center Geohash BDD, r—radius in meters unit.
2 Output: BDD for a set of Geohashes enclosing Kamm’s circle.
3 /*Step I.*/
4 up_count = dradius/0.59e
5 quad1_north_limit = quad1_east_limit = []
6 circle_BDD = inpGeo
7 BDD1 = BDD2 = BDD3 = BDD4 = inpGeo
8 x_k = y_k = 0
9 n_count = e_count = 0

10 /*Step II.*/
11 for k = 0 to up_count:
12 BDD1 = Generate north BDD of BDDs.
13 BDD2 = Generate south BDD of BDDs.
14 y_k = y_k + 0.59
15 n_count = n_count + 1
16 BDD1∪ BDD2∪ circle_BDD./*Apply union with circle_BDD*/
17 /*Step III.*/
18 p = INT(ROUND(5/4) - r)
19 /*Step IV.*/
20 while x_k <= y_k:
21 if p <= 0:
22 BDD1 = Generate east BDD of BDD1.
23 x_k = x_k + 0.96
24 e_count = e_count + 1
25 quad1_north_limit.append(n_count)
26 BDD1∪ circle_BDD.
27 p = p + 2 * x_k + 1
28 else:
29 BDD1 = Generate south east BDD of BDD1.
30 BDD1∪ circle_BDD.
31 x_k = x_k + 0.96
32 y_k = y_k - 0.59
33 quad1_east_limit.append(e_count)
34 e_count = e_count + 1
35 n_count = n_count - 1
36 quad1_north_limit.append(n_count)
37 p = p + 2 * x_k + 1 - 2 * y_k
38 quad1_east_limit.append(x_count)
39 /*Step V.*/
40 for w = 0 to quad1_east_limit.length-1:
41 Generate BDD3 and BDD4 east and west of BDD3 respectively.
42 circle_BDD ∪ BDD3∪ BDD4
43 for k = 0 to quad1_north_limit[w]:
44 Generate BDD5 and BDD6 north and south of BDD3 respectively.
45 Generate BDD7 and BDD8 north and south of BDD4 respectively.
46 circle_BDD ∪ BDD5∪ BDD6∪ BDD7∪ BDD8
47 /*Step VI.*/
48 for w = quad1_east_limit.length-1 to 0:
49 Generate BDD3 and BDD4 east and west of BDD3 respectively.
50 circle_BDD ∪ BDD3∪ BDD4
51 a = dx_count[w] ∗ (1.6)e /*1.6, Geohash (10 level) breadth to height ratio*/
52 if a >= quad1_north_limit[w] then:
53 a = quad1_north_limit[w]
54 for k = 0 to a:
55 Generate BDD5 and BDD6 north and south of BDD3 respectively.
56 Generate BDD7 and BDD8 north and south of BDD4 respectively.
57 circle_BDD ∪ BDD5∪ BDD6∪ BDD7∪ BDD8
58 return circle_BDD
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Algorithm 3: Midpoint circle generation algorithm.

1 Input: r—radius of a circle, (xc,yc) center of the circle.
2 Output: Squares to include on a square grid to form a circle of radius r.
3 I. First square to include ((x0, y0) = (0, r))
4 II. Calculate the initial value for the decision parameter.

p0 = 5
4 − r

III. For successive values of k, (xk, yk) is determined as follows.
If pk < 0 then:

(xk, yk) = (xk + 1, yk) and new pk is calculated as pk+1 = pk + 2xk+1 + 1
else:

(xk, yk) = (xk + 1, yk − 1) and new pk is calculated as
pk+1 = pk + 2xk+1 + 1− 2yk+1

IV. Determine the symmetry points in the other seven octants.
V. Repeat Steps III to IV until x ≤ y.

223 3 44 556 67 7

i P Xi+1,

Yi+1

2Xi+1 2Yi+1

−

−

r = 5 m

1

Figure 9. Modified midpoint circle algorithm.

4. Experiment

In computer experiments, the lanelet map [34] was introduced to simulate Scenario-1
and Scenario-2 (as shown in Figures 10 and 11, respectively) using JavaOpenStreetMap
(JOSM) and loaded them into ROS-based simulator CoInCar-Sim [35] with multiple vehicles.
Figure 12 demonstrates the loaded lanelet map corresponding to Figure 10 in the above
simulator. In addition, the vehicle data are generated in Scenario-2 and stored as a CSV
file. Data are fed from CSV files into the LDM at every interval of 50 ms. The ego vehicle
queries the LDM to get information for the collision detection task every 100 ms, the same
as the experimental setup in [6]. For comparing our proposal and past works, a schema of
LDM tables was applied, as mentioned in Shimada et al. [6], for their safe driving system
setup. The LDM was built based on the Postgres database with PostGIS extension.

A roadelement table was constructed to store the lanelets corresponding to scenarios 1
and 2 static layers. In addition, an egomotorvehicle and motorvehicle layer 4 tables were built
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to keep the ego vehicle and non-ego vehicle information, respectively. An alongroadelement
table was built to link the Layer 1 and Layer 4 tables ([6]).

Figure 10. (Scenario-1) An example of an intersection center (geographical data from OSM [36] are
illustrated as a superimposed background image).

Figure 11. (Scenario-2) A city road scenario (geographical data from OSM [36] are illustrated as
superimposed background image).

All experiments were performed in the Ubuntu 18.04 environment on a computer with
an Intel(R) Core(TM) i9-9900K CPU (3.60GHz) with 64 GB RAM. For the sake of simplicity,
amax = 10 m/s2 value were assumed to friction coefficient µ = 1.02 and g = 9.81 m/s2. For
the generation of Kamm’s/traction circles, a time step size ∆t = ti+1− ti of 0.4 s and up to a
time horizon of th = 1.2 s were assumed. The BDD of all the Geohash was computed inside
the concerned Kamm’s circles using Algorithm 2. Successively, the BDDs were converted
to JSON format to make them suitable to save in the databases.
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Figure 12. Loaded lanelet map in CoincarSIM simulator.

5. Results

In the experimental setup, Figure 13a shows the union of reachable Geohashes for the
Kamm’s circle/reach sets at the time t1 = 0.3, t2 = 0.7 and t3 = 1.2 s for the vehicle with
ID = 1; Figure 13b shows the union of enclosing Geohashes at the time t1 = 0.4, t2 = 0.8
and t3 = 1.2 s. In the experimental setup, the BDD was provided to represent the future
occupancy for a given vehicle as BDDv = ∪t∈{t1,··· ,tn}BDDt for Scenario 2, and we stored
the data in the PostgreSQL database-based LDM in JSON format. Then, the time needed
to store the vehicles layer 4 information was compared between vehicle ID, vehicle type,
velocity along x-axis, velocity along y-axis, longitude, latitude, lanelet id, and current
time and vehicle ID, vehicle type, velocity along x-axis, velocity along y-axis, longitude,
latitude, lanelet id, BDDv (in JSON format), and current time. An increase in insertion
time was observed when considering the BDD information as can be seen in Figure 14.
Insertion time increases because the amount of data fed into the LDM increased due to
the BDD. Although there was an increase in insertion time, our computer experiment
demonstrated that our formulation for LDM implementation could store much richer
spatial information, and even with 50 vehicles, data insertion took around 25 ms with
BDDv = ∪t∈{t0.4,t0.8,t1.2}BDDt, which is suitable for the real-time operation [37]. As shown
in Figure 13c, the BDD-based future occupancy information was utilized for the collision
avoidance task. Figures 15 and 16 indicate the timings for the following tasks:

In Figures 15 and 16, the difference was observed by introducing BDD in the LDM for
the following tasks:

• Task1—getLaneletId (to get the lanelet id and data corresponding to an ego vehicle).
• Task2—getVehicleInAdjacentLanelet (to retrieve data of all vehicles (other than ego)

present in the ego vehicle’s current lanelet or its adjacent lanelets).
• Task3—averageNoOfVehicles (to retrieve the number of vehicles present around an

ego vehicle for a given scenario).
• Task4—Collision avoidance, retrieve BDDs using Task2 and check for collision avoid-

ance following the “AND" operation on BDDs in Figure 15 and collision risk warning
task following the procedure in [6] for the experiment shown in Figure 16.

An increase in time for tasks was observed, such as Task2 and Task4, by introducing
BDD in the LDM, as seen in Figure 15, compared to Shimada et al. [6] implementation in
Figure 16. Although an increase in computation time, the proposed framework enabled
the storage of possible future locations in the LDM, which is lacking in previous imple-
mentations of the LDM. Future occupation information is crucial compared to the vehicle’s
current location because vehicles in middle- and long-distance ranges may interact in the
future. In the current version of the implementation, nearby present vehicles may not
interact in some cases. In this sense, the accuracy of collision detection has to be verified in
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algebraic operations over BDDs, especially around the borders of Geohash spatial segments.
For up to 40 vehicles, the functions performed took less than 100 ms (Figure 15), which is
applicable for real-time operation.

lego = getLaneletId()

get the lanelet id of the ego 

getVehicleInAdjacentLanelet()

get the vehicle id’s present in ‘lego’

 and it’s adjacent lanelets 

#vehicles > 1
NO

Yes

select bdd
ego

 from egomotorvehicle

select bdd
m

 from motorvehicle

bdd
ego

 AND bdd
m

 

            =     0

Output 

Warning
Yes No

(a)

(b) (c)

Figure 13. (a) Projected reachable Geohash for the vehicle at t ∈ {0.3, 0.7, 1.2} s. (b) Projected
reachable Geohash for the vehicles at t ∈ {0.4, 0.8, 1.2} s. (c) Flow chart to avoid collision using BDD
in the LDM setup.

Figure 14. Layer 4 data insertion time with BDD vs. without BDD.
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Figure 15. Time in milliseconds for operations (get ego vehicle lanelet id, get vehicles ids in adjacent
lanelets of ego vehicle, average number of vehicles in adjacent lanelets, BDD intersection operation
with adjacent vehicles for collision avoidance).

Figure 16. Time in milliseconds for operations (get ego vehicle lanelet id, get vehicles ids in adjacent
lanelets of ego vehicle, average of vehicles in adjacent lanelets, collision risk warning algorithm from
Shimada et al.).

6. Discussions

In our proposal, we focused on the LDM implementation relying on V2V and V2I
communications and maximized the necessary computation time in the database scheme,
verified in computer experiments. On the other hand, actual vehicle verifications were out
of range in the present study. The transmission delay in V2V and V2I communications is
an inevitable drawback of this approach, and a sensor-based clarification of relationships
with nearby vehicles is required to compensate for the drawback. As Jo et al. [38] and
Vargas et al. in [3] reviewed, multiple sensor types are applicable for risk management
of AVs, such as stereo cameras, light detection and ranging (LiDAR), and radars. The
effective range of distance to detect obstacles varies depending on the types of sensors.
According to a review [3,38], stereo cameras work from 0.5 to 3 m (Roboception) and have
a limitation of 20 m (Intel RealSense). LiDAR can finely visualize targets surrounding
360 degrees within 20 m and works well in the 100 m range according to their specification.
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In radar, in the long-range mode, it works until 250 m, while the discrimination of targets
is not assured in comparison with stereo cameras and LiDAR. The limitation of sensing
range is a drawback of sensors and a fine detection of objects behind obstacles is a hard
problem. On the other hand, V2V and V2I approaches as alternative solutions with respect
to drawbacks of sensors also have other drawbacks, such as a transmission delay in
communication among vehicles and infrastructures. An assurance of detection of non-
vehicle entities as vulnerable road users such as pedestrians, joggers, and animals is highly
important for safe mobility. It is possible to detect those vulnerable entities if fine sensors
are embedded in road infrastructures. The coverage of sensing areas by road infrastructures
is still an unsolved problem. In this sense, the sensor-based approach and V2V and V2I
communications are not alternative options, which will be expected to integrate as a fusion
system to guarantee road safety. Sensors are necessary for high-speed detection in the
short- and middle-range of distance, which allows vehicles to avoid risks. In the middle-
and long-range distances, mapping geographical information is beneficial. Our proposal
extends the possibility of information sharing for vehicle future geographical occupancy
information and other types of road information by using the BDD scheme. Sharing
BDD-based geographical information can support to transfer of multiple road information
by using algebraic operations between the exchanged BDDs. It will be crucial for risk
avoidance in future interactions, which is expected with the C-ITS nature of data sharing.

In consideration of the accuracy of the future occupancy, the discrete model of Kamm’s
circle was introduced and verified in the present study. Theoretically, a continuous model
of Kamm’s circle is possible, while the formulation is unassured in complex traffic scenarios
for safe navigation.

In consideration of improvement of computation time, LDM implementation in our
results stores the reachable location up to the next 1.2 s. This factor will be improved in
future deployments by storing reachable areas for a more reasonable time, in the sense
of minimum swerving time for a given vehicle to avoid a collision. Furthermore, using
graph-based databases may improve the latency involved due to the databases. In addition,
ITE-based BDD implementation and variants of BDDs such as ZDD/MTBDD may be
helpful to future potentials for improvement of the performance and functionalities of
LDM. Rich algebraic properties from different decision diagrams (e.g., ZDD) can provide a
solution for a new set of problems in AVs.

7. Conclusions

In the present study, we proposed an advanced data representation method that
enables embedding future geographical occupancy of vehicles into the database using BDD.
In the proposed method, future geographical occupancy of vehicles was formulated with
Kamm’s circle. In computer experiments, sharing BDD-based occupancy information was
successfully demonstrated in the ROS-based simulator with the linked list-based BDD
on PostgreSQL as a database-based LDM, which is consistent with the C-ITS nature of
data sharing. Algebraic operations between the exchanged BDDs effectively updated the
possibility of future interactions, which was maintained by data insertion and timing of
collision avoidance in the LDM. This result opened a new door for realizing the ideal LDM
for safety in AVs.
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