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Abstract: Lettuce grown in indoor farms under fully artificial light is susceptible to a physiological
disorder known as tip-burn. A vital factor that controls plant growth in indoor farms is the ability to
adjust the growing environment to promote faster crop growth. However, this rapid growth process
exacerbates the tip-burn problem, especially for lettuce. This paper presents an automated detection of
tip-burn lettuce grown indoors using a deep-learning algorithm based on a one-stage object detector.
The tip-burn lettuce images were captured under various light and indoor background conditions
(under white, red, and blue LEDs). After augmentation, a total of 2333 images were generated and
used for training using three different one-stage detectors, namely, CenterNet, YOLOv4, and YOLOv5.
In the training dataset, all the models exhibited a mean average precision (mAP) greater than 80%
except for YOLOv4. The most accurate model for detecting tip-burns was YOLOv5, which had the
highest mAP of 82.8%. The performance of the trained models was also evaluated on the images taken
under different indoor farm light settings, including white, red, and blue LEDs. Again, YOLOv5 was
significantly better than CenterNet and YOLOv4. Therefore, detecting tip-burn on lettuce grown in
indoor farms under different lighting conditions can be recognized by using deep-learning algorithms
with a reliable overall accuracy. Early detection of tip-burn can help growers readjust the lighting
and controlled environment parameters to increase the freshness of lettuce grown in plant factories.
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1. Introduction

Indoor vertical farms have been developed to grow fresh high-quality vegetables
in buildings without being restricted by extreme climate or land availability limitations.
Indoor farms serve as a significant alternative or supplement to conventional agriculture
to meet the demands of major cities seeking fresh, safe, and locally grown veggies. To
promote faster crop growth and to maximize total production within limited cultivation
areas, the plants grown on indoor farms are highly dependent on artificial light sources [1].
Lettuce is one of the most widely planted vegetables grown in indoor farms, not only
because of its nutritional content, but also due to its short growth cycle and high planting
density. However, lettuce grown with this rapid growth process is prone to a physiological
disorder known as tip-burn. Tip-burn is a major problem for most vegetable cultivation
under a controlled environment [2], especially the completely closed environment of an
indoor farm equipped with artificial light [3,4].

The primary cause of tip-burn stress which occurs on plants cultivated in completely
closed environments, such as indoor farms, is calcium deficiency [5,6]. The deficiency is
not because of a lack of calcium in the supply nutrients but rather is caused by the inability
of calcium to enter the rapidly developing younger leaves. Commonly, the deficiency
symptoms appear first on these younger leaves as calcium is one of the immobile nutrients
that helps in leaf formation and growth. Due to the rapid growth changes, the leaf grows
faster than the supply of calcium reaching the growth areas, which limits the plant’s
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ability to translocate an appropriate amount of calcium to a specific portion of the leaves.
Additionally, environmental conditions, including a poorly formed root system, high light
intensity, high electrical conductivity (EC), insufficient air movement, especially between
the plants, and fluctuating temperatures and humidity also contribute to the incidence of
tip-burn [1,2,5].

The typical symptom of tip-burn is when necrotic (brown) spots can be seen on the
tips and margins of the rapidly developing young leaves of the lettuce. The affected leaves
deform and cannot grow properly as they expand, which reduces the quality of the lettuce
and significantly affects its commercial value [1–3]. Therefore, the detection of tip-burns in
an early stage is crucial so that a proper and timely treatment process can be performed.
Currently, a visual assessment is the primary method used by experts and growers to
identify tip-burn problems [7]. This method may often result in poor decisions because
it is highly prone to human error, which will negatively impact agricultural products.
Furthermore, particularly under the complicated and condensed growth conditions of
an indoor farming system, the availability of specialists in assessing such issues may be
limited and difficult. Thus, using computer or machine vision systems to automatically
identify tip-burn problems is the most impactful method for early and proper treatment
processes to maintain leaf quality.

Several machine vision applications have been developed to identify plant diseases or
stress, such as the imaging method based on visible and near-infrared reflectance [8]. These
methods combine spectral information with machine vision information. However, a detec-
tion process based on reflectance is not suitable for plant growth in dense conditions inside
indoor environments due to the difficulty in image acquisition, environment constraint,
and accessibility [8]. Additionally, a high implementation cost, time-consuming process,
and the requirement for laboratory equipment setup make it ineffective for automatic and
real-time identification of plant diseases [9]. In the training or learning process of image
classification or object detection, deep-learning-based convolutional neural network has
the potential for high accuracy of prediction with minimum preprocessing [8,10].

Deep neural network models can be implemented in the plant factories for near real-
time detection of tip-burn. The evaluation of these models may provide new insight related
to tip-burn detection, particularly in choosing the best deep-learning model for the relevant
task. Furthermore, having an automated tip-burn detection for indoor farming or plant
factories can alert growers to manipulate the controlled growing environment or regulate
the nutrient supply system by increasing the calcium concentration, especially in inner
leaves. Different indoor farming systems may adopt different light conditions, as they
impact plant growth, physiology, and quality [11]. There are different spectrums of lighting
that is also required for plant growth in the indoor plant environment. Thus, it is highly
necessary to detect tip-burn at the different lighting conditions for prompt treatment of
leaves and to provide nutrients so that they reach the deficient areas.

Therefore, the purpose of this research is to detect tip-burn disease of lettuce from
single images captured under different light conditions (colors) in an indoor plant growing
system. The light condition and background of the images are required to adjust with
indoor plant growth environment under white, red, and blue LED colors. To achieve
the purpose of this study, images were collected from the different lighting conditions
and the images were trained with three different established one-stage detection models:
CenterNet, YOLOv4, and YOLOv5. In this regard, this paper is organized into several
sections: Section 1 highlights the tip-burn disease problem of indoor systems. In Section 2,
relevant works and the potential of deep learning are discussed. Section 3 presents the dataset
used for training and testing to predict tip-burn in lettuce plants. Sections 4 and 5 discuss
the results of applying deep-learning models for tip-burn detection. Finally, Section 6
summarizes this work by presenting concluding remarks on the results and future research.
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2. Related Works

A convolutional neural network (CNN) is a subset of the deep-learning techniques that
are frequently used on image data to perform a variety of tasks, such as segmentation, object
detection, and image classification. Generally, deep-learning-based detection algorithms
can be divided into two-stage object detection and one-stage object detection. The core
principle of a two-stage object detection is based on the use of a selective search algorithm
to create a region proposal in the image for the targeted object, which is subsequently
classified using a CNN [12]. Some popular models of this method include SPP-Net [13],
RCNN [14], Fast R-CNN [15], and Faster R-CNN [16]. High detection accuracy may be
attained with these approaches, but the drawbacks are the complexity of the network that
require a longer training time and result in a diminished detection speed. In contrast, a
one-stage detection method predicts all the bounding boxes in only a single run through
the neural network [12]. Examples of the one-stage detector are SSD [17], YOLO [18], and
CenterNet [19]. These one-stage detectors are not only able to reach high accuracies, but
also have a faster processing speed [12], making them notable in the field of agriculture,
where plant images are collected and utilized to classify plant species [20–22], count plants
or fruits [23,24], identify pests [25–27] and weeds [28,29], and detect diseases [26,27,30–34].

Despite the fact that there are many deep-learning studies on the detection of different
plant diseases, most of them have focused on plant detection in outdoor environments.
Several public datasets have greatly contributed to plant disease detection, such as PlantVil-
lage [20], PlantDoc [30], and PlantLeaves [35]. However, all the publicly accessible datasets
only have available images of plant diseases that were cultivated in an outdoor environment.
No public datasets are found for diseases or for stress analyses in indoor environments,
particularly in indoor farming or plant factories, where plants are cultivated in multilayer
structures that are closely clustered and are under artificial light [36,37].

Early detection of tip-burns in lettuce in the highly dense growing conditions of in-
door environments is of great importance in reducing the cost of manual identification
and improving lettuce quality and yield. Based on our literature search, there are very few
studies on automatic tip-burn detection specifically for indoor farms. Shimamura et al.
(2019) introduced tip-burn identification in plant factories using GoogLeNet for two classi-
fications of tip-burn types from single lettuce images [7]. The images were collected under
white lighting and a white background. Instead of single plant images, Gozzovelli et al.
(2021) conducted tip-burn detection based on images of very dense plant canopies in plant
factories, and Wasserstein generative adversarial network (WGAN) was applied to solve
the problem of dataset imbalance (between healthy and unhealthy lettuces). YOLOv2 back-
bone Darknet-19 was used to detect tip-burns in their study [36]. Most recently, Franchetti
and Pirri (2022) developed a new method for tip-burn stress detection and localization
that was also deployed on plant canopy images. This technique used classification and
self-supervised segmentation to locate and closely segment the stressed regions using
ImageNet-1000 backbone Resnet-50V2 [37]. All of the studies collected the data on the
uniform setup background, especially lighting conditions [7,36,37].

3. Materials and Methods
3.1. Plant Material and Cultivation Condition

Due to the limited availability of a public dataset of tip-burn lettuce grown in an
indoor environment, to acquire the dataset, the lettuce plants were grown under conditions
that can manifest tip-burns. As mentioned before, several conditions contribute to tip-burn
in plants cultivated on indoor farms, including high temperature, high light intensity,
extended day length, poor air flow, and a high concentration of nutrient solution [1,3,4,7].
Therefore, in this experiment, the aforementioned considerations were taken into account
while estimating and adjusting the parameters for growing tip-burn lettuce.

The experiments were conducted in a small-scale cultivation room located at the
Bioproduction and Machinery Laboratory, Tsukuba-Plant Innovation Research Center (T-
PIRC), University of Tsukuba, Japan, in the spring season during the period from March to
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June 2022. Green leaf lettuce seeds (Lactuca sativa) (Sakata Seed Corporation, Yokohama,
Japan) were sown in hydroponic sponges for 14 days before they were transplanted to
the hydroponic setup based on the nutrient film technique (NFT). Two sets of hydroponic
systems were constructed from food-grade polyvinyl chloride (PVC) pipes, with each set
consisting of three layers. The hydroponic systems were occupied with 189 total lettuce
plants. The growing cycle was repeated twice. The lettuce plants were cultivated under
a fully artificial light source with a combination of red, blue, and white LEDs, which
contained wavelengths that are suitable for the plant photosynthesis process.

The lettuce cultivated in a solution culture had its roots immersed in a hydroponic
nutrient solution (Hyponica Liquid Fertilizer, Kyowa Co., Ltd., Takatsuki, Japan). Initially,
all the lettuce plants were cultivated normally with the standardized nutrient solution
for the first two weeks after they were transplanted into the system. Then, the deficient
solutions were induced through the system through a supply of nutrient solutions that had
higher concentrations of nitrogen but were deficient in calcium. To obtain faster symptoms
of tip-burn lettuce, the nutrient pH and EC were also adjusted within the range between
6.2–7 and 2.0–2.5 mS/cm, respectively, every three days to make the nutrient parameters
fluctuate. The photoperiod was set to 24 h/day during the vegetative stage and 20 h/day
during the harvest stage. The temperature and humidity observed throughout the growing
period were 18–23 ◦C and 48–56%, respectively. The experiment was carried out until the
plants showed symptoms of tip-burn.

3.2. Data Collection

Images of lettuce plants with tip-burn spots were collected starting from the first day
they were visible by eye observation until the harvesting period. As tip-burn manifests
on the tip of the leaves, the images were captured from the top of each infected plant with
different angles, LED colors, and distances. The images were taken using a smartphone
camera (Samsung Galaxy A50, Samsung Electronics Co., Ltd., Suwon, Korea) with aspect
ratios of 1:1 and 3:4. Each image is 1080 × 2340 pixels. The total initial collection dataset of
tip-burn lettuces was 538 images. The discolored leaf tips, brownish or blackish, indicated
tip-burn (Figure 1).
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(a) (b) 

Figure 1. Example of captured images of tip-burn lettuce: (a) under white LEDs; (b) under
red/blue LEDs.

3.3. Data Preparation
3.3.1. Data Labeling

Before labeling, we resized all the images to a uniform size and constant resolution of
640 × 640. The resized images were then uniformly numbered. After that, we performed
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the labeling process using an open-source and free image annotation tool called LabelImg
based on Python and Qt. Every visible and clear tip-burn spot was manually labeled by
a rectangular bounding-box. Each output training image had a corresponding .txt file,
containing the object class and coordinates of the bounding box of the upper left and lower
right corners for each labeled tip-burn spot. In this experiment, tip-burn spots that were too
small or highly indistinct were ignored and not labeled to prevent the possibility of these
samples from degrading the neural network detection performance. The .txt file dataset
was used for training in YOLOv4 and YOLOv5. Meanwhile, for CenterNet, we converted
the .txt dataset into JSON format.

3.3.2. Data Augmentation and Splitting

A large dataset is required when training using a deep-learning algorithm as the
model must extract and learn features from the images to identify and localize the targeted
attributes. However, collecting a large dataset is very challenging and time consuming.
Therefore, a data augmentation approach was performed to enhance our minimal dataset
with the aim of being sufficiently able to be used to develop a reliable detection model [38].
In the experiment, several types of data augmentation were randomly used to increase the
tip-burn images dataset. The data augmentations included brightness changes, image flips
(mirrored original image horizontally or vertically), image rotations (rotated original image
at 90◦ clockwise or counterclockwise), and shift (shifted original image horizontally and
vertically and wrapped image around by the same image) (Figure 2).
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Figure 2. The data augmentation performed in this experiment: (a) original image; (b) increase image
brightness; (c) flipped image vertically; (d) rotated image 90◦ clockwise; (e) shifted image horizontally
and vertically.

The final dataset was expanded to a total of 2333 images as a result of the augmentation
process. Table 1 presents the number of images that were split into training, validation, and
test datasets.

Table 1. Data splitting for training.

Model Train Validation Test

CenterNet 1750 433 150
YOLOv4-5 1750 433 150

3.4. Training Process
3.4.1. CenterNet

CenterNet is an anchor-free target detection network which is an improvised model
of CornerNet. The CenterNet-improved working principle makes them faster and more
accurate than CornerNet. CenterNet recognizes each target object as a triplet of key points
instead of a pair, as in CornerNet, which produces better precision and recall. In CenterNet,
cascade corner pooling and center pooling were developed to enhance the data gathered
from both the top-left and bottom-right corners and of an object to identify data from the
targeted areas more clearly. The architecture of CenterNet begins with the input image
entering the convolution neural network and employing cascade corner pooling to generate
corner heatmaps, and center pooling to generate center heatmaps to the center point
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(heatmap), offset and boxes with three branches for prediction, to obtain the results. Then,
a pair of detected corners and corresponding embeddings were utilized, as in CornerNet,
to predict a potential bounding box. Finally, the final bounding boxes were identified by
using the detected center key points [19] (Figure 3).
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Figure 3. Working principle of CenterNet model (a) detection process of CenterNet based on backbone
DLA-34; (b) tip-burn detection based on triplet key points.

3.4.2. YOLOv4 and YOLOv5

The YOLO model is basically an object detector based on bounding boxes. During
the detection process, the input image is segmented uniformly into equal grids. If the
target is within the grid, the model generates a predicted bounding box and an associated
confidence score. Then, the target for a particular object class is recognized when the
center of the target-class ground truth lies within a specific grid (Figure 4). YOLOv4 is an
improved model based on the backbone of YOLOv3, namely Darknet-53, to improve the
accuracy of detecting small objects. A residual block skip connection and upsampling were
included in Darknet-53, which greatly enhanced the algorithm’s accuracy. YOLOv4 further
updates the network structure from YOLOv3 by changing to Cross Stage Partial Darknet-53
(CSPDarknet-53), where it utilizes convolution in the output layer. YOLOv4 additionally
comes with batch normalization, a high-resolution classifier, and other tuning parameters
to improve the detection result. The YOLOv4 model also employs multiscale prediction
for detecting the final target, resulting in a better result in detecting small targets with
high accuracy and speed. Additionally, YOLOv4 also offers a bag of freebies and a bag of
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specials to increase the performance of the algorithm. The bag of freebies includes complete
intersection over union (CIoU) and is mostly related to the different data augmentations,
including mosaic and self-adversarial training (SAT). The main purpose of SAT is to identify
the region in the image that the network depends on the most during training and then
modify the image to disguise this dependency. This teaches the network to generalize to
other new features when finding the target class. Bags of specials, on the other hand, consist
of distance IoU- non-maximum suppression (DIoU-NMS) and the additional activation
function, mish activation. The working architecture of YOLOv4 starts with inputting
images into the CSPDarknet-53 for feature extraction; then, it is sent to path aggregation
network (PANnet) to extract information in layers near the input by transmitting features
to the detector from multiple backbone levels [39].
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Figure 4. Working principle of the YOLO model: (a) detection process of YOLO model based on
backbone CSPDarknet-53; (b) tip-burn detection based on bounding boxes.

YOLOv5 is a lighter version of the previous YOLO models that employs the PyTorch
framework rather than the Darknet framework. It also uses CSPDarknet-53 as the backbone,
similar to YOLOv4. The main difference in YOLOv5 is that it replaces the first three
layers in the backbone of the YOLOv3 algorithm with a focus layer. The aim of the
focus layer is to minimize the model size by eliminating certain parameter layers and
parameters, reducing floating point operations per second (FLOPS) and CUDA memory,
and increase the forward and backward speeds while minimizing the impact on the mean
average precision (mAP) [40]. This process speeds up inference speed, improves accuracy,
and reduces the computational load. In addition, YOLOv5 also utilizes PANet as its
head part. The most significant improvements from YOLOv5 are auto-learning bounding
box anchoring.
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Training of the YOLOv4 and CenterNet models was conducted on a desktop PC with
an NVIDIA® GTX 1650™ with 4 GB GPU and an Intel® Xeon™ E5-1607 CPU with 32 GB
of RAM memory. The YOLOv5 model was trained on the cloud platform known as Google
Colaboratory, a web-integrated development environment (IDE) with the GPU of Tesla
P100-PCIE 16GB.

3.5. Performance Metrics

In our dataset, the target for the deep-learning models was to detect the tip-burn
spot, hence we only had a single class, labelled as tip-burn. Outside of the target area or
bounding box was predicted as background. Several performance metrics were used to
evaluate the performance of the model, including intersection over union (IoU), precision,
recall, and mean average precision (mAP). These metrics are based on PASCAL VOC
which are well-known for use in object detection [41]. IoU is a measure of the distance
between the predicted box and the ground truth box which ranges from zero (no overlap)
to one (complete overlap). It highlights the preciseness of the algorithm in detecting the
tip-burn. With the IoU, the total number of true-positives (TP), false-positives (FP), and
false-negatives (FN) were determined. In this experiment, a TP is a tip-burn spot that was
detected as a tip-burn. A FP is when another object, i.e., background, was detected as a
tip-burn, while FN is when the tip-burn spot is not detected. Precision and recall are the
two metrics that are commonly used to evaluate objection models. Precision determines
the accuracy and preciseness of TP detection (Equation (1)), whereas recall indicates the
effectiveness of the trained model in identifying all the TPs (Equation (2)). The mAP is the
area under the precision and recall curve (Equation (3)).

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

mAP =
1
C

T

∑
k=1

P(k)∆R(k) (3)

where C is total class numbers, T is IoU threshold numbers, k is the IoU threshold, P(k) is
the precision, and R(k) is the recall.

Loss function in object detection is often used to indicate the degree of discrepancy
between the predicted value and the true value of the model. There are three main losses
in YOLOv5 denoted as: bounding box loss (box_loss), objectness loss (obj_loss), and
classification loss (cls_loss). Box_loss represents bounding box regression loss to evaluate
the preciseness of predicted bounding box on the target object (Equation (4)). Obj_loss is an
objectness loss used to measure a confidence that the object falls in the proposed region of
interest (Equation (5)). Cls_loss is a classification loss (Equation (6)).

Box_loss = λcoord

S2

∑
i=0

B

∑
j=0

Iobj
i,j bj(2 − w i × hi)

[(
xi × x̂i

j
)2

+
(

yi × ŷi
j
)2

+
(

wi × ŵi
j
)2

+
(

hi × ĥi
j
)2

]
(4)

Obj_loss = λnoobj

S2

∑
i=0

B

∑
j=0

Inoobj
i,j

(
ci − ĉj

)2
+λobj

S2

∑
i=0

B

∑
j=0

Iobj
i,j

(
ci − ĉj

)2 (5)

Cls_loss = λclass

S2

∑
i=0

B

∑
j=0

Iobj
i,j ∑

Cεclasses
pi(c)log(p̂l(c)) (6)

where s2 is the grids number, B is bounding boxes in each grid, λcoord is the coefficient of
position loss, x̂ and ŷ denote the target true central position, ŵ is the target width, and ĥ is
the target height. λnoobj is the coefficient of no object existing in the bounding boxes. ci and
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ĉj represent the true confidence of bounding box and predicted confidence of bounding box,
respectively. λclass is the coefficient of classes loss. pi(c) is defined as the class probability
of the target, and p̂l(c) is the true value of the class.

Therefore, the total loss function is accumulated by using Equations (4) to (6) and
expressed as:

Loss = Box_loss + Obj_loss + Cls_loss (7)

4. Results
4.1. Training

The total number of datasets in this study was 2333, from which 1750 images were
used for training, 433 images for validation, and the remaining 150 images for testing. The
training settings for the three models were applied differently according to the model and
dataset suitability (Table 2).

Table 2. Configuration for training for selected deep learning algorithms.

Model Input Size Learning Rate Batch Size Epoch

CenterNet ctdet_coco_dla_2x 416 × 416 0.00025 24 30
YOLOv4 - 416 × 416 0.0001 16 4000
YOLOv5 YOLOv5s 416 × 416 0.01 32 200

Table 3 shows the comparison of the validation results at 50% IoU for the three models.
CenterNet shows a recall value of 58% with mAP of 81.2%. The YOLOv5 model yielded
the highest training accuracy, with mAP of 84.1% and a recall score of 79.4%. The mAP
value at the same IoU level for YOLOv4 was 76.2%, which was the lowest among all the
models. Therefore, the YOLOv5 model had a relatively better performance in training than
both the CenterNet and YOLOv4 models.

Table 3. Comparison of recall and mAP between CenterNet, YOLOv4, and YOLOv5 deep-
learning algorithms.

Model Recall (%) mAP (%)

CenterNet 58.0 81.2
YOLOv4 74.0 76.2
YOLOv5 79.4 84.1

Figure 5 shows the results of losses and metrics obtained from the training and
validation process using YOLOv5. Initially, the losses showed a rapid decline when reached
at around 89 epochs from a total of 200 epochs. In this study, the classification loss was
constant at 0 as we only trained for a single class, tip-burn. At the same time, as the losses
decreased, the precision, recall, and mAP continued to increase before they reached the
plateau phase. The training was stopped early at 189 epochs as no further improvement
was observed (Figure 5).

4.2. Testing for Detection Accuracy

It is important to precisely detect tip-burn spots on lettuce to develop an effective
automated tip-burn detection method for lettuce grown indoors. To evaluate the detection
model, we tested 150 images by using the best trained weight obtained from each model.
From the testing results, YOLOv5 shows the highest accuracy at 82.8% followed by Center-
Net at 78.1%. YOLOv4 gives the lowest detection accuracy of only 67.6% (Table 4). The
results indicate that the YOLOv5 model demonstrates better detection accuracy compared
with CenterNet and YOLOv4.
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Table 4. Comparison detection of mAP between CenterNet, YOLOv4, and YOLOv5 deep-
learning algorithms.

Model mAP (%)

CenterNet 78.1
YOLOv4 67.6
YOLOv5 82.8

Figure 6 shows examples of tip-burn detection based on an image acquired under
white LEDs. All models were able to detect all the tip-burn spots on the lettuce under white
light conditions (Figure 6). However, YOLOv5 (Figure 6d) and YOLOv4 (Figure 6h) had
misdetection of two tip-burn spots, whereas CenterNet only missed one spot (Figure 6f).
This misdetection was plausible given that the very small tip-burn spots made it challenging
for the models to detect.

Detection under red/blue light conditions is shown in Figure 7. The YOLOv5 had false
positives that falsely detected tip-burns that were not in the image (Figure 7c). CenterNet
had one misdetection (Figure 7e). On the other hand, both YOLOv5 (Figure 7d) and
CenterNet (Figure 7f) missed the detection of one tip-burn. Meanwhile, YOLOv4 struggled
to detect all the tip-burn spots accurately in Figure 7h, where none were detected. Some of
these misdetections occurred due to an overlapping between the leaves in the background
of the exact tip-burn spot. Moreover, this is understandable under this light condition; it is
very difficult for even a human to identify where the exact tip-burns are in the image.

Figure 8 shows tip-burn detection under combination of white, red, and blue LEDs.
The total of TP from the two proposed test images were eight (Figure 8a,b). Both YOLOv5
(Figure 8c) and YOLOv4 (Figure 8g) were able to detect all the tip-burn spots accurately,
while CenterNet missed one (Figure 8e). YOLOv5 had a FP and one misdetection (Figure 8d).
CenterNet had only one misdetection (Figure 8f), whereas YOLOv4 had two missed spots
(Figure 8h).
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5. Discussion

Plant stress and disease detection is important not only for plants grown in the
outdoor environment, but also for plants grown indoors. Although the main advantage of
growing plants indoors is the potential to promote rapid growth for fast returns, it also has
drawbacks, particularly the occurrence of tip-burn leaves [1]. In this paper, the detection of
tip-burn lettuce grown on an indoor farm using three different deep-learning models based
on a one-stage detector was performed. The models used in the study were CenterNet,
YOLOv4, and YOLOv5. Overall, YOLOv5 outperformed the other two tested models with
the highest mAP of 82.8%.

However, for tip-burn detection between different light conditions, most of the models
could not perform well under red/blue LEDs. One of the reasons is due to the complex
scenes, especially under red and blue lights, where the color of the tip-burn is difficult to
differentiate from the background leaves, eventually confusing the models and producing
a misdetection. Additionally, as mentioned before, it is very difficult for even a human to
see and detect the tip-burn under these light conditions. In this case, a thermal camera may
be useful for collecting a dataset under different light conditions, as it is not affected by
visible light [42]. Apart from that, there may also be some errors and inconsistencies during
the labeling process with certain tip-burn locations not being labeled properly.

Datasets are the most important part of every deep-learning algorithm. The quantity
and quality of the input data are very crucial to generate the best model and most efficient
system. In this paper, the dataset used for the training is relatively small compared with
other deep-learning datasets. In this experiment, we prepared all the tip-burn datasets from
several batches of plant growth, starting from seeds’ germination, seedling, and growing in
an indoor environment. It is very difficult and time consuming to generate the tip-burn
dataset from batches after batches in the indoor plant growing systems. Moreover, the
generation of the tip-burn is also randomly occurring where the deficiency is observed.
Furthermore, the training dataset contained more images of tip-burn lettuce under white
light than under the other light conditions. The imbalanced dataset may have a bias
toward white light conditions during training, causing the models to lack enough data
to learn and resulting in the low detection of tip-burns under red/blue LED conditions.
We believe that the detection accuracy may be improved by collecting and appropriately
labeling more images, particularly by balancing the image numbers under red/blue light
conditions. Since growing batch data collection is difficult, we recommend exploring
advanced data augmentation strategies, such as generative adversarial network (GAN),
to produce additional high-quality artificial datasets. The GAN method can produce
artificial images realistically as brand-new data compared with traditional augmentation
methods such as flipping or rotating [36]. On the other hand, instead of using well-
known performance metrics, it is also recommended to choose performance metrics based
on dataset conditions either balanced or imbalanced dataset, which can provide more
comprehensive perspective on the performance of the deep-learning models [43,44].

From this study, it is also noteworthy that a complex model with large parameter
numbers, such as YOLOv4, had the lowest overall accuracy. YOLOv5 and CenterNet were
both smaller and lighter than YOLOv4, but they could produce better accuracy. As stated
in Table 3, we chose the YOLOv5s model and CenterNet ctdet_coco_dla_2x model, which
are both smaller version of their original models. This indicates that when the target class
and dataset are minimal, employing a model with large parameters may not be effective
and suitable. Therefore, utilizing a comparatively small model or network makes it still
possible to achieve accurate results with less computing facilities to develop a commercial
system for detection of tip-burn lettuces. The capability of this small model of YOLOv5 can
be further utilized for real-time monitoring of tip-burn lettuce detection in indoor farms,
allowing for prompt and accurate interventions for early detection of tip-burn, such as
modifying the growing environment with suitable humidity, temperature, light settings,
and air movement, and additionally, providing calcium nutrients to the plants in the indoor
farming systems.
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6. Conclusions

Lettuce plants cultivated in indoor environments are fully reliant on artificial lighting
sources. The ability to modify growing environments and lighting conditions can help
to accelerate plant growth. However, this rapid growth process prevents the developing
leaves from receiving an adequate amount of calcium, hence intensifying the incidence of
tip-burn on plants grown indoors. Therefore, in this study, a method for the detection of
tip-burn lettuce cultivated in an indoor environment under different light conditions was
developed. Images of tip-burn lettuces were collected under white, red, and blue LEDs and
were used as training, validation, and testing datasets for a deep-learning detection method.
The detection method used was based on one-stage detectors, namely, CenterNet, YOLOv4,
and YOLOv5. Among the three tested models, YOLOv5 achieved the best accuracy with
84.1% mAP. Nevertheless, further improvements can be made by using a larger dataset
with balanced conditions to increase the detection accuracy. We believe this study provides
an additional foundation for the automation of plant disease or stress detection in indoor
farming systems, particularly under the different growing light conditions. This work can
be extended in the future by employing this model for real-time application.
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