
Citation: Xiao, C.; Chen, J.; Wang, L.

Optimal Mapping of Spiking Neural

Network to Neuromorphic Hardware

for Edge-AI. Sensors 2022, 22, 7248.

https://doi.org/10.3390/s22197248

Academic Editor: Raffaele Bruno

Received: 26 August 2022

Accepted: 21 September 2022

Published: 24 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Optimal Mapping of Spiking Neural Network to Neuromorphic
Hardware for Edge-AI
Chao Xiao , Jihua Chen and Lei Wang *

The College of Computer Science, National University of Defence Technology, Changsha 410000, China
* Correspondence: leiwang@nudt.edu.cn

Abstract: Neuromorphic hardware, the new generation of non-von Neumann computing system,
implements spiking neurons and synapses to spiking neural network (SNN)-based applications.
The energy-efficient property makes the neuromorphic hardware suitable for power-constrained
environments where sensors and edge nodes of the internet of things (IoT) work. The mapping of
SNNs onto neuromorphic hardware is challenging because a non-optimized mapping may result in a
high network-on-chip (NoC) latency and energy consumption. In this paper, we propose NeuMap, a
simple and fast toolchain, to map SNNs onto the multicore neuromorphic hardware. NeuMap first
obtains the communication patterns of an SNN by calculation that simplifies the mapping process.
Then, NeuMap exploits localized connections, divides the adjacent layers into a sub-network, and
partitions each sub-network into multiple clusters while meeting the hardware resource constraints.
Finally, we employ a meta-heuristics algorithm to search for the best cluster-to-core mapping scheme
in the reduced searching space. We conduct experiments using six realistic SNN-based applications
to evaluate NeuMap and two prior works (SpiNeMap and SNEAP). The experimental results show
that, compared to SpiNeMap and SNEAP, NeuMap reduces the average energy consumption by 84%
and 17% and has 55% and 12% lower spike latency, respectively.

Keywords: spiking neural network (SNN); neuromorphic computing; internet of things (IoT); energy
efficiency; mapping

1. Introduction

Internet of things (IoT), an emerging computing paradigm, integrates various sensors
over a wireless network. The traditional IoT transfers the collected data by sensors to
the cloud. However, with an increase in the number of IoT devices, it becomes difficult
to centrally process the collected data in the cloud for a variety of reasons, such as the
massive workload on the IoT network, latency, and privacy concerns [1]. Edge computing
moves the data processing from the cloud to the edge nodes close to the sensors. The data
collected by sensors can be processed locally or transferred to the cloud after the local
preprocessing. An artificial neural network (ANN) has been deployed on IoT devices to
perform special tasks such as voice recognition and verification [2]. However, the intensive
memory and processing requirements of conventional ANNs have made it difficult to
deploy deep networks to resource-constrained and power-constrained IoT devices.

The spiking neural network (SNN), known as the third generation of the neural
network, has been introduced into many application fields including electrocardiogram
heartbeat classification [3], object recognition [4], waveform analysis [5], odor data clas-
sification [6], and image classification [7]. SNN has the potential to effectively process
spatial-temporal information. Compared with ANN, SNN has the characteristics of lower
power consumption and smaller computation load. Neurons in an SNN communicate with
each other by sending spikes across synapses. A spiking neuron accepts spikes from its
presynaptic neurons and integrates the corresponding weights to update its membrane

Sensors 2022, 22, 7248. https://doi.org/10.3390/s22197248 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22197248
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3167-7941
https://doi.org/10.3390/s22197248
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22197248?type=check_update&version=3

Sensors 2022, 22, 7248 2 of 17

potential. A neuron fires a spike when its membrane potential reaches the firing threshold
and then the membrane potential is reset.

Neuromorphic hardware, the new generation of brain-inspired non-von Neumann
computing system, has the potential to perform complex computations with less memory
footprint, more energy efficiency, and faster than conventional architectures. Neuromor-
phic hardware implements spiking neurons and synapses, which makes them suitable for
executing SNN-based applications. Recently, many neuromorphic processors have been de-
veloped, such as TrueNorth [8], Loihi [9], SpiNNaker [10], Unicorn [11], and DYNAPs [12].
Zhang et al. [13] propose a scalable, cost-efficient, and high-speed VLSI architecture to
accelerate deep spiking convolution neural networks (SCNN). The neuromorphic hardware
typically consists of multiple cores and each core can only accommodate a limited number
of neurons. For example, the TrueNorth includes 4096 neurosynaptic cores and a single
core has 256 axons, a 256×256 synapse crossbar, and 256 neurons. To support the inter-
core communication, the Network-on-Chip (NoC) [14] is adopted as an interconnecting
mechanism in the neuromorphic hardware.

Before an SNN is executed on neuromorphic hardware, the neurons of the SNN should
be assigned to the target neuromorphic hardware. This step is typically segmented into
two substeps. First, a large-scale SNN is partitioned into multiple clusters so that the
number of neurons per cluster does not exceed the capacity of a single neuromorphic core.
Second, it selects appropriate cores for the execution of clusters present in the partitioned
SNN-based application.

Recently, numerous methods [15–20] have been proposed to map SNN-based applica-
tions to neuromorphic hardware. PACMAN [15] is proposed to map SNNs onto SpiNNaker.
Corelet [16] is a proprietary tool to map SNNs to TrueNorth. Some general-purpose map-
ping approaches [17–20] employ heuristic algorithms [21–23] to partition an SNN into
multiple clusters, with the objective of minimizing the spike communication between
partitioned clusters. After the partition, they use meta-heuristic algorithms [21,24] to search
for the best cluster-to-core mapping scheme.

Figure 1 shows the high-level overview of some existing SNN mapping approaches.
Before the partitioning stage, those methods need to simulate an SNN, using SNN software
simulators such as Brian2 [25] and CARLsim [26], to statistically obtain communication
patterns (i.e., the spike times of all neurons). Before the simulation, researchers should
build the given SNN using the application programming interfaces (APIs) of the specific
simulator, which may be challenging for researchers who are unfamiliar with the simulator.
In addition, it will spend lots of time simulating a large-scale SNN on a software simulator.
The simulation process is also included in PSOPART and NEUTAMS.

Step 1
SNN simulation

(Brian2, CARLsim)

SNN-based applications

Samples
Step 2

Parse log files and extract
communication patterns

Step 3.1
SNN partitioning

Step 3.2
Cluster mapping

Step 4
Deploy SNN-based

applications

Step 3

Figure 1. High-level overview of SpiNeMap [19] and SNEAP [20].

The second limitation of prior works is that they treat an SNN as a graph and partition
the entire graph into multiple clusters directly, ignoring the characteristic of synapses.
Exploiting the characteristics of synapses can further reduce the spike communication

Sensors 2022, 22, 7248 3 of 17

between clusters. The third limitation is that they always search for the best cluster-to-core
scheme in the entire neuromorphic hardware, which makes them prone to trapping in the
local optimum.

In this paper, we propose an efficient toolchain for mapping SNN-based applications
to the neuromorphic hardware, called NeuMap (Optimal Mapping of Spiking Neural
Network to Neuromorphic Hardware for Edge-AI). NeuMap focuses on SNN-based appli-
cations with a feed-forward topology. NeuMap first obtains the communication patterns
of an SNN by calculation, instead of simulation. Based on the calculated spike firing
rates, NeuMap then partitions the SNN into multiple clusters using a greedy algorithm,
minimizing the communication traffic between clusters. Finally, NeuMap narrows the
searching space and employs a meta-heuristic algorithm to seek the best cluster-to-core
scheme. The main contributions of this paper can be summarized as follows:

(1) We study the impact of different parameters of an SNN on the spike firing rate and
obtain the communication patterns of an SNN by calculation, instead of simulation.
The calculation can simplify the end-to-end mapping process and get rid of challenges
derived from the simulation in specific simulators.

(2) We exploit the characteristic of synapse and propose the local partitioning strategy,
which first divides the entire network into several sub-networks and partitions each
sub-network into multiple clusters. The local partitioning strategy further reduces the
spike communication between neuromorphic cores.

(3) Instead of searching for the best cluster-to-core scheme across all neuromorphic cores,
we reduce the searching space in advance and employ a meta-heuristic algorithm
with two optimization objectives to seek the best mapping scheme. The reduction in
searching space helps to avoid trapping in the local optimum.

We evaluate NeuMap with six SNN-based applications. The experimental results
show that, compared to SpiNeMap and SNEAP, NeuMap reduces the average energy
consumption by 84% and 17% and has 55% and 12% lower spike latency, respectively.

The remainder of this paper is organized as follows: Section 2 introduces the back-
ground and related works. Section 3 details the proposed toolchain. The experimental
setup and experimental results are discussed in Sections 4 and 5, respectively. Finally,
Section 6 concludes the paper.

2. Background and Related Works

This section describes the theory of SNNs, the conversion of images to spike trains,
and the architecture of neuromorphic hardware. The prior mapping methods are presented
in this section.

2.1. Spiking Neural Network

SNN, as the third generation of the neural network, has attracted extensive attention
because they are capable of processing spatio-temporal information with high energy
efficiency in an event-driven way. The basic units of SNNs are spiking neurons and
synapses interconnecting the neurons. Figure 2 illustrates an SNN with three presynaptic
neurons connected to a postsynaptic neuron via synapses with weights w1,4, w2,4, and w3,4,
respectively. The leaky integrate-and-fire (LIF) model [27] is a kind of popular spiking
neuron model to be implemented in neuromorphic hardware. The dynamics of the LIF
neuron are defined as

τ
dV(t)

dt
= −(V(t)−Vrest) + X(t) (1)

where V(t), X(t), Vrest, and τ are the membrane potential at time t, the input, the resting
potential, and the membrane time constant, respectively. When the membrane potential
V(t) exceeds the threshold potential, the neuron will fire a spike and then the membrane
potential V(t) goes back to the resting potential.

Sensors 2022, 22, 7248 4 of 17

1

2

3

4

pr
es

yn
ap

tic
 n

eu
ro

ns

postsynaptic
neuron

synapse

w1,4

w3.4

w2,4

6 7 8

3 4 5

0 1 2

1 2

3

4

（a）An SNN with four neurons （b）Map an SNN to the neuromorphic processor

Figure 2. Map of an SNN to the neuromorphic hardware. (a) An SNN with three presynaptic neurons
connected to a postsynaptic neuron. (b) A neuromorphic hardware has nine cores interconnected by
the NoC.

Deep multi-layer neural networks have achieved outstanding performance in solving
complex problems. To overcome the vanishing-gradient problem, Inas et al. [28] proposed
OSLD, a new anti-vanishing back-propagated learning algorithm. Prior works [29] di-
rectly train SNNs using backpropagation; however, it is insufficient when training spiking
architectures of the size of VGG-16 [7]. A more straightforward approach is to convert
the pre-trained ANNs into equivalent-accurate SNNs [7], which has achieved a great
improvement in accuracy.

2.2. Input Coding

SNNs use spike trains to encode the information. Rate coding is one of the most
commonly used coding techniques for spikes in SNNs. In rate coding, the number of spikes
fired over a period of time is counted, and the spike firing rate is proportional to the signal
intensity. The spike firing rate r of a neuron can be formulated as Equations (2) and (3).

r = ∑T
t=1 S(t)

T
(2)

S(t) =

{
1, i f the neuron f ires a spike at time t
0, otherwise.

(3)

Figure 3 shows an image from the Fashion-MNIST dataset [30] converted into Poisson-
distributed spike trains for ten time steps. The Fashion-MNIST dataset is a collection of
28 × 28 pixel images in ten classes. Each pixel corresponds to an input neuron and the
firing rate of an input neuron is proportional to the intensity of the pixel.

Figure 3. An image of Fashion-MNIST [30] dataset is presented in the form of Poisson-distributed
spike trains.

2.3. Architecture of Neuromorphic Hardware

The neuromorphic hardware is a large-scale parallel system composed of multiple
computing units called neuromorphic cores. Each core implements a limited number of
spiking neurons, with each neuron having a finite number of input axons. On-chip memory
is used to store synaptic weights, routing tables, intermediate states, and other parameters.
The computations within cores take place in parallel.

Network on chip (NoC) [14] has been extensively used as a communication framework
in neuromorphic hardware due to its flexibility, scalability, and parallelism compared to

Sensors 2022, 22, 7248 5 of 17

traditional bus-based communication. Each core is connected to the router via the network
interface (NI). The NoC transports all spikes between cores in packetized form. If a
neuron fires a spike, the processor will query the routing table and obtain the addresses of
destinations. Based on the query, packets with routing information, including neuron ID,
source, and destination addresses, are generated and sent to NoC.

According to the topology of NoC, two types of NoC are commonly used: NoC-
tree and NoC-mesh. The examples of NoC-tree are BrainScaleS [31] and DYNAPs [12].
The mesh structure with many connection channels has advantages in bandwidth and
scalability. The examples of NoC-mesh include SpiNNaker [10] and TrueNorth [8].

2.4. Related Works

Figure 2 illustrates the mapping of an SNN with four neurons (N1, N2, N3 and N4)
to the neuromorphic hardware with nine cores. N1 and N4 are mapped to core1. N2 and
N3 are mapped to core2 and core4, respectively. When N2 (N3) reaches the firing threshold
and fires a spike, the processor transmits the spike to core1 via NoC. When N1 exceeds
the firing threshold and generates a spike, there is no need to transmit the spike on NoC.
If the four neurons are placed in the same core, there would be no spike message on NoC.
Therefore, an optimized mapping of SNNs onto neuromorphic hardware helps to alleviate
the communication pressure and reduce the performance penalty.

Prior methods generally regard an SNN as a graph, use heuristic algorithms to parti-
tion the entire SNN directly, and search for the best cluster-to-core mapping scheme across
all neuromorphic cores. PSOPART [17] utilizes particle swarm optimization (PSO) [21] to
partition an SNN. Both SpiNeMap [19] and NEUTRAMS [18] employ the Kernighan–Lin
graph partitioning algorithm (KL) [22] to partition an SNN. The multi-level graph parti-
tioning algorithm (ML) [23] is adopted by SNEAP [20] to partition an SNN into multiple
clusters. The KL algorithm arbitrarily distributes neurons into multiple clusters while
meeting the hardware resource constraints. Then, it uses three exchange strategies to swap
neurons between clusters to reduce the spike messages. The ML algorithm iteratively
merges two neurons with high-frequency communication into a new node, the (coarsening
step). Then, it preliminarily partitions the SNN into k clusters by distributing the nodes with
high-frequency communication in the same cluster, the (initial partitioning step). Finally, it
fine-tunes the neurons to satisfy the hardware resource constraints, the (uncoarsening step).
The ML algorithm outperforms the KL algorithm in reducing spike messages between
clusters [20].

After the partition, SpiNeMap and SNEAP use the PSO and simulated annealing (SA)
algorithm [24] to search for the optimal cluster-to-core mapping scheme.

3. Methods

Figure 4 shows the high-level overview of our proposed approach which is composed
of four steps, including obtaining the spike firing rates of all neurons, partitioning the
SNNs, mapping the clusters to the target neuromorphic hardware, and evaluating.

For an incoming SNN-based application, NeuMap first extracts the connections and
synaptic weights between neurons. NeuMap counts the spike firing times of the input
neurons and then calculates the spike firing rates of other neurons. NeuMap uses a heuristic
algorithm to partition an SNN into multiple clusters, minimizing the inter-cluster spike
communication. By reducing the inter-cluster communication, NeuMap reduces the energy
consumption and latency on NoC. Next, NeuMap uses a link congestion-aware algorithm
to map the clusters to the selected cores, minimizing the hop distance that each spike
message traverses before reaching its destination.

Sensors 2022, 22, 7248 6 of 17

S0

S4

S1

S5

S2

S3

S6

S7

S10

S8

S9

S13

S11

S12

S14

S15

R RR R

R RR R

R RR R

R RR R

Core

R Router

Step 1: Calculate the spike firing rate
Input layer Input layer

Step 3: MappingStep 4: Evaluation

S0

S4

S1

S5

S2

S3

S6

S7

S10

S8

S9

S13

S11

S12

S14

S15

Step 2: Local partitioning

Cluster 1

Cluster 2

Cluster 3

1

32

3
5

5
4

7

2

1 2

3

searching space
Hardware Simulator

Figure 4. High-level overview of our proposed approach.

3.1. Calculating the Spike Firing Rates

As shown in Section 2.1, a spiking neuron accepts spikes from its presynaptic neurons,
integrates the corresponding weights to update its membrane potential, fires a spike when
reaching the firing threshold, and resets the membrane potential. Therefore, there are three
factors affecting the firing of neurons: the synaptic weights, the external input (i.e. spikes
from presynaptic neurons), and the difference between the threshold potential and resting
potential. Increasing the synaptic weights or the spike firing rates of presynaptic neurons
will stimulate the postsynaptic neurons to fire more frequently. On the contrary, increasing
the difference between the threshold potential and resting potential reduces the spike firing
times. This is because after firing a spike and resetting the membrane potential, the neuron
needs to receive more spikes to reach the threshold potential again. Therefore, the spike
firing rate of one neuron is positively associated with the synaptic weights and the spike
firing rates of its presynaptic neurons and negatively correlated with the difference between
the threshold potential and resting potential.

For an SNN-based application with N neurons, including m input neurons, we first
extract the connections and synaptic weights in the network. NeuMap builds an adjacent
matrix WN×N , where nodes are spiking neurons and edge weights between nodes are
synaptic weights. In terms of the spike firing rates of all neurons, NeuMap constructs a
spike firing rate vector S:

S = {S0, S1, S2...SN−1} (4)

Si is the spike firing rate of the ith neuron.
As shown in Figure 5, NeuMap transforms the network without recurrent connections

into a tree structure. The root nodes are the neurons from the input layer. Before calculating
the spike firing rate of a neuron, the spike firing rates of its all presynaptic neurons should
be calculated in advance. Therefore, the calculation of spike firing rates is from up to down.

In the beginning, NeuMap counts the spike firing times of the input neurons. The rep-
resentative samples from the training dataset or validation dataset are transformed into
Poisson-distributed spike trains, with firing rates proportional to the intensity. NeuMap
adds up the total firing times in all representative samples for every input neuron. The spike
firing rates of all input neurons can be formulated as

Si =
∑K

j=1 ∑T
t=1(S

j
i(t))

K× T
(0 ≤ i < m) (5)

where K is the number of input samples and T is the time step for a single sample.

Sensors 2022, 22, 7248 7 of 17

After calculating the firing rates of input neurons, NeuMap calculates the spike firing
rates of other spiking neurons from up to down. The computation of the spike firing
rates of other spiking neurons is based on the above analysis. The computation can be
formulated as

Si =
∑ wj,i × Sj

Vth −Vrest
(m ≤ i < N, 0 ≤ j < N) (6)

The jth neuron is one of the presynaptic neurons of the ith neuron and wj,i is the
synaptic weight between the jth and the ith neuron. It should be noted that the spike firing
rate cannot be more than 1 and less than 0. Therefore, when the computed firing rate
exceeds 1, it will be set to 1. When the computed firing rate is less than 0, it will be set to 0.
We compare the calculated spike firing rates and actual spike count in Section 5.1.

After calculating the spike firing rates of all neurons, NeuMap replaces the synaptic
weights with the computed spike firing rates. For the synapse (i, j) from the ith neuron to
the jth neuron, the weight is replaced by Si. After the transformation, the given SNN is
represented as a graph G(Ne, Sy) where Ne is the set of nodes and Sy is the set of synapses.

S0 S1

S2 S4S3

S0 S1 S0 S1

S5 S7S6

S2 S4S3

input layer input layer input layer input layer

Figure 5. The computing process of the spike firing rates.

3.2. Local Partitioning

Let Φ(Vc, E) be the partitioned SNN with a set Vc of clusters and a set E of edges
between clusters. The SNN partitioning problem is transformed into G(Ne, Sy)→ Φ(Vc, E),
which is a classical graph partitioning problem. The graph partitioning problem has been
proven to be an NP-complete problem.

The connections in the SNNs are localized. Take the spiking convolutional neural
network, shown in Figure 6, for example. The spiking neurons in the first layer L1 only
connect to the second layer L2. In terms of the neurons in the second layer, the presynaptic
neurons are located in the first layer and the postsynaptic neurons are distributed in the
third layer L3. Therefore, the synapses are distributed in the neighboring layers.

Pooling
Fully Connected

ConvolutionConvolution

L1 L2 L3 L4 L5 L6

Figure 6. A spiking convolutional neural network with six layers.

Prior works directly partition an entire SNN, ignoring the localized connections.
They traverse all neurons contained in the SNN and put neurons with high-frequency
communication in the same cluster. The global searching strategy ignores the local property
and often puts the neurons from multiple layers in the same cluster, which may scatter the
neurons from the adjacent layers in multiple clusters.

Sensors 2022, 22, 7248 8 of 17

Based on this knowledge, instead of directly partitioning the entire network into
multiple clusters, we first divide the network into several sub-networks, shown in Figure 7.
A sub-network is comprised of multiple adjacent layers. For an SNN with L layers, there is
at least one sub-network after the division (i.e., the entire network) and at most L layers (i.e.,
every layer is treated as a sub-network). Therefore, the number of sub-networks ranges
from 1 to L, i.e.,

1 ≤ Nsub ≤ L (7)

where Nsub is the number of divided sub-networks.

L1 L2 L3 L4 L5 L6
Sub-network 1 Sub-network 2

L1 L2 L3 L4 L5 L6
Sub-network 1 Sub-network 2 Sub-network 3

Figure 7. Two schemes to partition the SNN into multiple sub-networks.

We formalize the entire partitioning process in Algorithm 1. The algorithm increases
the size of sub-networks from 1 to L in turn and divides the entire SNN into dL/sizee sub-
networks (line 2). The variable size in the algorithm is the number of layers contained in
each sub-network. After the division, only the connections between the neurons belonging
to a sub-network are preserved in the sub-network. Then, we employ the multi-level
graph partitioning algorithm to partition each sub-network into multiple clusters while
satisfying the hardware resource constraints (lines 3–5). After partitioning all sub-networks
into multiple clusters, the algorithm calculates and records the sum of spike firing rates
between clusters (line 7). Finally, the algorithm selects the partitioning scheme which has
the minimum spike communication between clusters (lines 9–10).

Algorithm 1 Partitioning algorithm

1: for size = 1 to L do
2: Divide G(Ne, Sy) into dL/sizee sub-networks
3: for each sub-network in the divided sub-networks do
4: Multi-level_Partition (sub-network)
5: end for
6: Record the partitioning result Φsize(Vc, E)

7: Count and Record the sum of spike firing rates between clusters Ssize
p
′

8: end for
9: Select the minimum Si

p
′

10: return Φi(Vc, E)

After selecting the partitioning scheme, we calculate the spike communication fre-
quency between all pairs of clusters and assign it to the corresponding edge in Φ(Vc, E).

3.3. Mapping

After an SNN is divided into multiple clusters, the next step is to map all the clusters
to the multicore neuromorphic hardware. The NoC-based neuromorphic hardware can be
represented as a graph Ψ(C, I), where C is the set of neuromorphic cores and I is the set of
physical links between those cores. Mapping of an SNN onto the neuromorphic hardware
is defined as a one-to-one from the set of partitioned clusters to the set of cores:

Mapping : Φ(Vc, E)→ Ψ(C, I), s.t.Mapping(Vi) = Cj; ∀Vi ∈ Vc, ∃Cj ∈ C (8)

Sensors 2022, 22, 7248 9 of 17

Different mapping schemes lead to different utilizations of interconnect segments,
which impacts both energy consumption and spike latency. Figure 8 shows that an SNN
has been partitioned into three clusters and the neuromorphic hardware has nine cores
arranged in 3× 3 mesh topology. This case uses the X–Y routing algorithm, a deterministic
dimensional routing algorithm. The number attached to each edge is the sum of spike
messages passing through the physical link. There are three candidate mapping schemes
for the partitioned SNN on the right-hand side of Figure 8. Compared with scheme2 and
scheme3, the maximum link workload of scheme1 is higher. The scheme2 and scheme3 have
the same maximum link workload. Unfortunately, compared with scheme3, the clusters
in scheme2 are mapped to distant cores, which leads to higher spike latency and energy
consumption on NoC. Therefore, the scheme3 is the best mapping scheme among the
three candidates.

1

32

3
5
5

4
7

2

1 2 3
7 9

12 9
1 3

2

4

9
5

5
55

Partitioned SNN Scheme 1 Scheme 3

1 3

2

4

9
555

Scheme 2

5 5 5
5

Figure 8. The link workload differences caused by different mapping schemes.

Communication latency and energy consumption are two main concerns of the on-chip
domain. Therefore, the spike latency and energy consumption are the most direct and
effective optimization goals. Unfortunately, the evaluation of spike latency and energy
consumption is time-consuming because those metrics should be obtained by simulation in
the software simulator or the real hardware.

Placing communicating clusters in close proximity will decrease the energy consump-
tion and the congestion probability on NoC. Furthermore, compared with spike latency and
energy consumption, the calculation of the average hop of all spike messages takes less time.
Therefore, in this paper, the average hop is adopted as one of the optimization objectives.

On the other hand, unbalanced link load distribution may cause severe local congestion
on NoC such as the link from core2 to core1 in scheme1. Hence, balancing link load is selected
as another optimization goal in this paper. Instead of balancing the link loads directly, we
minimize the maximum link load. After determining the partitioning scheme, the sum of
spike messages on NoC is constant. The maximum possible number of spike messages on
a single link is the sum of spike messages on NoC and the minimum is 0. Minimizing the
maximum link load can narrow the gap between the maximum and minimum link loads,
which balances the link load indirectly. The optimization objective of average hop can be
formulated as:

Hmin = min{H(Mappingi) i ∈ 1, 2, ..., R} (9)

where H(Mappingi) is the average hop in the ith mapping scheme. The optimization
objective of maximum link load can be formulated as:

Wmin = min{Wmax(Mappingi) i ∈ 1, 2, ..., R} (10)

where Wmax(Mi) is the maximum link load in the the ith mapping scheme.
In this paper, we employ a meta-heuristic algorithm, the Tabu Search (TS) algo-

rithm [32], to search for the best mapping scheme. For the partitioned SNN Φ(Vc, E)
and the target neuromorphic hardware Ψ(C, I), there are A|V||C| cluster-to-core mapping
schemes. Iterating over all mapping schemes is time-consuming, especially when the
sizes of the SNN and neuromorphic hardware are large. Furthermore, when there are
more alternative mapping schemes, the search algorithm is more likely to fall into the
local optimum.

Sensors 2022, 22, 7248 10 of 17

To avoid trapping in the local optimum, we first reduce the searching space. Figure 9
shows two searching spaces in the mapping stage. If the searching space is set as the entire
neuromorphic hardware (shown in the middle subfigure), the mapping algorithm is easily
trapped in the local optimum. As shown in the right subfigure of Figure 9, the searching
space is set as the 2× 2 square region in the upper-left corner, which contributes to a better
mapping scheme. The reduction in the searching space not only helps to seek a better
mapping scheme but decreases the time consumed in the mapping stage. In this paper,
the searching space is set as d

√
|V| e × d

√
|V| e. After setting the searching space, we

use the TS algorithm, with two fitness functions Hmin and Wmin, to search for the best
cluster-to-core scheme.

1

32

3
5

5
4

7

2

1

Partitioned SNN

2

3

1 2

3

searching space

Figure 9. Different searching space in the mapping stage.

4. Evaluation Methodology

In this section, we present the experiment platform. This section presents six SNN-
based applications to evaluate our proposed method.

4.1. Experiment Platform

Unicorn [11], supporting unconstrained fan-out and flexible fan-in of neurons, is em-
ployed as the target neuromorphic hardware. Unicorn supports two spiking neuron models,
the leaky-integrate-fire (LIF) and integrate-fire (IF). Unicorn contains 36 neuromorphic
cores arranged in 3 × 3 C-Mesh.

To test the scalability of NeuMap, our experiment uses the hardware configuration of
8 × 8 2D-mesh NoC with the X-Y routing algorithm. The capacity of the neuromorphic
core is set to 256. We first simulate the evaluated applications in different SNN software
simulators using representative samples and record the spike firing information. Then, we
partition the SNNs and map the partitioned clusters to the experiment platform. Finally,
the spike firing information, partitioned and mapped results are used to create the routing
files. Noxim++ [19], an extension version based on Noxim [33], is a cycle-accurate NoC
simulator. We use Noxim++ to obtain the key performance statistics of NoC, such as energy
consumption and spike latency.

We use the Python programming language to implement NeuMap. All experiments
are performed on a system with the i7-10700 CPU, 16GB RAM, and NVIDIA RTX2060 GPU,
running Ubuntu 16.04.

4.2. Evaluated SNN-Based Applications

We evaluate six SNN-based machine-learning applications: (1) image classification
with the multi-layer perceptron (MLP-Fashion-MNIST) [30]; (2) handwritten digit recogni-
tion with the multi-layer perceptron (MLP-MNIST) [34]; (3) handwritten digit classification
with with the LeNet-5 (LeNet-MNIST) [35]; (4) image classification with an CNN (CNN-
Fashion-MNIST) with images from the Fashion-MNIST dataset [30]; (5) image classification
with LeNet-5 CNN (LeNet-CIFAR10) [35] with images from the CIFAR dataset [36]; and (6)
image classification with a standard CNN (CNN-CIFAR10) [7].

MLP-Fashion-MNIST and MLP-MNIST are simulated in Brian2 [25], an SNN software
simulator, with the LIF model. LeNet-5-MNIST, CNN-Fashion-MNIST, LeNet-5-CIFAR10,
and CNN-CIFAR10 are first trained using backpropagation. Then, we convert the four

Sensors 2022, 22, 7248 11 of 17

ANN-based applications into spiking neural networks using the ANN-to-SNN conversion
tool SNN-TB [7]. Finally, the four converted applications are simulated in the INIsim,
a built-in simulator of SNN-TB, supporting the IF model.

The topology, the number of neurons, and the number of synapses are summarized in
Table 1.

Table 1. The SNN-based applications used to evaluate our approach

SNNs Topology Neuron Model Neurons Synapses

MLP-Fashion-MNIST [30] FeedForward(784,256,128,10) LIF 1178 234,752
MLP-MNIST [34] FeedForward(784,400,10) LIF 1194 317,600
LeNet-5-MNIST [35] CNN 1 IF 6598 286,120
CNN-Fashion-MNIST [30] CNN 2 IF 7962 359,680
LeNet-5-CIFAR10 [35] CNN 3 IF 11,166 659,024
CNN-CIFAR10 [7] CNN 4 IF 12,266 971,776

1 Input(28 × 28) − [Conv, Pool] × 6 − [Conv, Pool] × 16 − FC(120) − FC(84) − FC(10); 2 Input(28 × 28) − [Conv,
Pool] × 8 − [Conv, Pool] × 16 − FC(128) − FC(10); 3 Input(32 × 32 × 3) − [Conv, Pool] × 6 − [Conv, Pool] × 16
− FC(120) − FC(84) − FC(10); 4 Input(32 × 32 × 3) − Conv × 16 − [Conv, Pool] × 32 − Conv × 8 − FC(10).

5. Results and Discussion

In this section, we show all experimental results, including the accuracy of the calcu-
lated spike firing rates, the number of spike messages on NoC, the average hop of spike
messages, the spike latency on NoC, and the energy consumption on NoC.

5.1. Accuracy of the Calculated Spike Firing Rates

We count the spike firing times at different layers from different applications when
executing the applications. Figures 10 and 11 show the calculated spike firing rates and the
actual spike count of two different layers from two applications, CNN-Fashion-MNIST and
LeNet-5-CIFAR10. It can be seen that the calculated spike firing rates are nearly consistent
with the actual spike count. The precondition of accurate calculation for a neuron’s spike
firing rate is that the spike firing rates of presynaptic neurons are computed accurately.
Therefore, in the computing process, NeuMap first counts the actual firing times of the
input neurons, which ensures the accuracy of the input layer. After that, NeuMap calculates
the spike firing rates of other neurons from up to down.

Prior works, such as SNEAP, SpiNeMap, and PSOPART, obtain the communication
patterns of an SNN by simulating the SNN in a software simulator. Researchers need
to be familiar with the APIs of the specific simulator and reproduce the SNN before the
simulation. We can get rid of the simulating process and obtain the communication patterns
by calculating the spike firing rates using representative data.

5.2. Partitioning Performance

In the partitioning stage, all evaluated methods try to minimize the spike communica-
tion between the partitioned clusters while meeting the hardware resource constraints.

We illustrate the total number of spike messages in Figure 12. Compared with
SpiNeMap, SNEAP has an average 63% lower spike count. This improvement is due
to the ML algorithm outperforming the KL algorithm. The KL algorithm arbitrarily dis-
tributes neurons to K clusters on initialization. Next, three random exchange strategies
are applied to fine tune the clusters to minimize the number of spikes between clusters.
The ML algorithm iteratively folds two adjacent nodes with high-frequency communica-
tion into a new node. Compared with the KL algorithm, the ML algorithm reduces more
spike messages.

Sensors 2022, 22, 7248 12 of 17

Sp
ik

e
co

un
t

C
al

cu
la

te
d

sp
ik

e
fir

in
g

ra
te

s

A convolutional layer of CNN-Fashion-MNIST A pooling layer of CNN-Fashion-MNIST

0 500 1000 1500 2000 2500 3000

0 500 1000 1500 2000 2500 3000

0 200 400 600 800 1000 1200

0 200 400 600 800 1000 1200

0.04

0.00

0.03

0.02

0.01

0.04

0.00

0.03

0.02

0.01

800

0

600

400

200

1000

800

0

600

400

200

1000

Figure 10. The calculated spike firing rates and actual spike count in different layers of CNN-Fashion-
MNIST. The horizontal axis is the number of neurons.

Sp
ik

e
co

un
t

A convolutional layer of LeNet-5-CIFAR10 A pooling layer of LeNet-5-CIFAR10

C
al

cu
la

te
d

sp
ik

e
fir

in
g

ra
te

s

0 500 1000 1500 2000 2500 3000

0 500 1000 1500 2000 2500 3000

0 200 400 600 800 1000 1200

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

1400

200

400

600

800

1000

1200

1400

0.05

0.04

0.03

0.02

0.01

0.00

0.05

0.04

0.03

0.02

0.01

0.00

Figure 11. The calculated spike firing rates and actual spike count in different layers of LeNet-5-
CIFAR10. The horizontal axis is the number of neurons.

Sensors 2022, 22, 7248 13 of 17

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

CNN-CIFAR10 CNN-Fashion-MNIST LeNet-5-CIFAR10 LeNet-5-MNIST MLP-Fashion-MNIST MLP-MNIST

Sp
ik

e
co

un
t n

or
m

al
iz

ed
 to

 S
pi

N
eM

ap

SNEAP NeuMap

Figure 12. The number of spike messages on NoC normalized to SpiNeMap.

Compared with SNEAP, NeuMap has an average 7% lower spike count. Both SNEAP
and NeuMap partition the SNNs using the multi-level graph partitioning algorithm. Dif-
ferent from SNEAP, NeuMap exploits the local property of connections and divides the
entire network into several sub-networks. The partition is applied to each sub-network,
which avoids the dispersion of neurons from the adjacent layers. It should be noted that
in both MLP-MNIST and MLP-Fashion-MNIST applications, NeuMap achieves a 9% and
37% reduction in spike messages. This is because the MLP is a kind of synapse-intensive
network. The neurons of the same layer are easily distributed to many clusters when
partitioning the entire network directly.

5.3. Mapping Performance

The hop of one spike message is the number of routers from the source core to
the destination core. We illustrate the average hop of all spike messages in Figure 13.
NeuMap significantly reduces the average hop for all evaluated applications. The three
evaluated methods employ different meta-heuristics algorithms to search for the cluster-
to-core mapping scheme. SpiNeMap, SNEAP, and NeuMap employ the particle swarm
optimization, simulated annealing, and tabu search algorithms to search for the best
mapping scheme. The three searching algorithms are neighborhood search algorithms
and aim to obtain the global optimum solution from the solution space. Unfortunately,
as the solution space increases, the probability of those algorithms falling into the local
optimum increases.

Both SpiNeMap and SNEAP treat all neuromorphic cores as the searching space,
which makes them easily trapped in the local optimum. Furthermore, the probability of
trapping in the local optimum is greater when the size of the neuromorphic hardware far
exceeds the size of SNNs, such as MLP-MNIST and MLP-Fashion-MNIST. An effective
practice to avoid trapping in the local optimum is to narrow the solution space. NeuMap
sets the searching space as a d

√
|V| e × d

√
|V| e square region, which guarantees that the

selected cores can accommodate all partitioned clusters. Therefore, the searching space
is only related to the size of SNNs. Therefore, even if the neuromorphic cores greatly
outnumber the partitioned clusters, NeuMap can search for a better mapping solution than
SpiNeMap and SNEAP. The reduction in average hop improves both spike latency and
energy consumption on NoC.

Sensors 2022, 22, 7248 14 of 17

0

1

2

3

4

5

6

7

8

9

CNN-CIFAR10 CNN-Fashion-MNIST LeNet-5-CIFAR10 LeNet-5-MNIST MLP-Fashion-MNIST MLP-MNIST

Av
er

ag
e

ho
p

SpiNeMap SNEAP NeuMap

Figure 13. The average hop of spike messages.

5.4. Spike Latency on NoC

Figure 14 reports the spike latency of the six applications for the three evaluated
approaches normalized to SpiNeMap. We make the following two observations.

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

110.00%

CNN-CIFAR10 CNN-Fashion-MNIST LeNet-5-CIFAR10 LeNet-5-MNIST MLP-Fashion-MNIST MLP-MNIST

Sp
ik

e
la

te
nc

y
no

rm
al

iz
ed

 to
 S

pi
N

eM
ap

SpiNeMap SNEAP NeuMap

Figure 14. The spike latency normalized to SpiNeMap.

First, the average spike latency of SNEAP is 42% lower than SpiNeMap. The main
reason is that SNEAP reduces more spike messages than SpiNeMap, which alleviates
the NoC congestion and, consequently, decreases the time to transmit the spike packets
from the source core to the destination core. Second, NeuMap has the lowest average
spike latency among all the evaluated methods (12% lower than SNEAP, 55% lower than
SpiNeMap). There are three reasons accounting for this improvement. Firstly, NeuMap
reduces the most spike messages among the three methods by using a local partitioning
strategy. Secondly, in the mapping stage, NeuMap narrows the searching space, which
avoids trapping in the local optimum. Thirdly, both the maximum link load and average
hop are adopted as the optimization objectives in the searching process. Reducing the
maximum link load can relieve the local congestion and balance the load of all physical
links indirectly. Decreasing the average hop shortens the route path from the source core to
the destination core. Furthermore, a short route path covers a few physical links, which
decreases the congestion probability of the entire NoC.

5.5. Energy Consumption on NoC

This is the total energy consumption for transmitting the spike messages from the
source core to the destination core. Figure 15 illustrates the energy consumption of all the
evaluated applications for three proposed methods normalized to SpiNeMap. We make the
following two observations.

First, SNEAP has an average 67% lower energy consumption than SpiNeMap. This re-
duction is because SNEAP reduces more spike messages than SpiNeMap. Second, NeuMap
has the lowest energy consumption of all our evaluated approaches (on average, 84%
lower than SpiNeMap, 17% lower than SNEAP). Two reasons are responsible for this im-
provement. Firstly, NeuMap exploits the localized connections and reduces the most spike
messages among the three mapping methods. Second, NeuMap narrows the searching
space before seeking the cluster-to-core mapping scheme. The reduction in searching space
helps NeuMap to avoid falling into the local optimum and increases the probability of

Sensors 2022, 22, 7248 15 of 17

obtaining a better mapping scheme. As shown in Section 5.3, NeuMap significantly reduces
the average route path of spike messages, which is the main reason for the reduction in
power dissipation on NoC.

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%
100.00%
110.00%

CNN-CIFAR10 CNN-Fashion-MNIST LeNet-5-CIFAR10 LeNet-5-MNIST MLP-Fashion-MNIST MLP-MNIST

E
ne

rg
y

co
ns

um
pt

io
n

no
rm

al
iz

ed
 to

 S
pi

N
eM

ap

SpiNeMap SNEAP NeuMap

Figure 15. The energy consumption on NoC normalized to SpiNeMap.

5.6. Performance Comparison on Recurrent SNN

Liquid state machine (LSM) was first proposed by Maass [37], and is mainly composed
of the input, liquid, and readout layers. The synapses within the liquid layer are randomly
generated and remain unchanged, leading to many recurrent connections in the liquid layer.

We use the Brian2 to create two LSM networks (800 excitatory and 200 inhibitory
neurons in the liquid layer) with the LIF model. NMNIST [38] and FSDD (https://github.
com/Jakobovski/free-spoken-digit-dataset, accessed on 26 July 2022), two spike-based
datasets, are fed into the LSM networks, respectively.

Table 2 shows the comparison between the three mapping methods. We compare the
number of spike messages on NoC under four partitioning methods, including SpiNeMap,
SNEAP, NeuMap and random partition. As shown in Table 2, there are the same number
of spike messages for the four partitioning methods. This is because each neuron has large
numbers of connections compared to the others and there are many recurrent connections
in LSM. After the partition, the post-synaptic neurons of each neuron are distributed to
all clusters.

In terms of the spike latency and energy consumption on NoC, NeuMap is superior to
SpiNeMap and SNEAP. This is because NeuMap narrows the solution space and searches
for a better mapping scheme than SpiNeMap and SNEAP.

Table 2. The comparison for two LSM networks.

Total Spike Messages Spike Latency
(Normalized to SpiNeMap)

Energy Consumption on NoC
(Normalized to SpiNeMap)

FSDD NMNIST FSDD NMNIST FSDD NMNIST

Random partition 1,580,976 164,277 - - - -
SpiNeMap [19] 1,580,976 164,277 100.00% 100.00% 100.00% 100.00%

SNEAP [20] 1,580,976 164,277 91.54% 99.24% 92.11% 95.62%

NeuMap 1,580,976 164,277 72.09% 88.26% 55.54% 66.18%

6. Conclusions and Future Work

In this work, we introduce NeuMap, a toolchain to map SNN-based applications to
neuromorphic hardware. NeuMap calculates the spike firing rates of all neurons to obtain
communication patterns, which simplifies the mapping process. NeuMap then makes
use of the local nature of connections and aggregates adjacent layers into a sub-network.
The partition is only applied to each sub-network, which reduces the dispersion of neurons
from the adjacent layers. Finally, NeuMap employs a meta-heuristic algorithm to search
for the best cluster-to-core mapping scheme in the narrowed search space. We evaluated
NeuMap using six SNN-based applications. We showed that, compared to SpiNeMap and
SNEAP, NeuMap reduces average energy consumption by 84% and 17% and has 55% and

https://github.com/Jakobovski/free-spoken-digit-dataset
https://github.com/Jakobovski/free-spoken-digit-dataset

Sensors 2022, 22, 7248 16 of 17

12% lower spike latency, respectively. In this paper, the calculation of spike firing rate is
only applied to the SNNs with a feed-forward topology such as spiking convolutional
neural network.

In the future, we will exploit, such as the recurrent topology. In addition, other meta-
heuristics algorithms, such as the hybrid harmony search algorithm [39], can be used to
find the best mapping scheme.

Author Contributions: Conceptualization, C.X.; Data curation, C.X. and J.C.; Formal analysis, C.X.,
J.C. and L.W.; Investigation, C.X.; Methodology, C.X., J.C. and L.W.; Project administration, L.W.;
Software, C.X.; Writing—original draft, C.X.; Writing—review & editing, C.X. and L.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Key R&D Program of China grant number 2018YFB2202603.

Institutional Review Board Statement: Not applicable

Data Availability Statement: The data presented in this study are available on request from corre-
sponding authors.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Premsankar, G.; Francesco, M.; Taleb, T. Edge Computing for the Internet of Things: A Case Study. IEEE Internet Things J. 2018,

5, 1275–1284. [CrossRef]
2. Dai, T. Using Quantized Neural Network for Speaker Recognition on Edge Computing Devices. J. Phys. Conf. Ser. 2021,

1992, 022177. [CrossRef]
3. Xing, Y.; Zhang, L.; Hou, Z.; Li, X.; Shi, Y.; Yuan, Y.; Zhang, F.; Liang, S.; Li, Z.; Yan, L. Accurate ECG Classification Based on

Spiking Neural Network and Attentional Mechanism for Real-Time Implementation on Personal Portable Devices. Electronics
2022, 11, 1889. [CrossRef]

4. Xiang, S.; Jiang, S.; Liu, X.; Zhang, T.; Yu, L. Spiking VGG7: Deep Convolutional Spiking Neural Network with Direct Training
for Object Recognition. Electronics 2022, 11, 2097. [CrossRef]

5. Szczesny, S.; Huderek, D.; Przyborowski, L. Spiking Neural Network with Linear Computational Complexity for Waveform
Analysis in Amperometry. Sensors 2021, 21, 3276. doi: 10.3390/s21093276. [CrossRef] [PubMed]

6. Vanarse, A.; Espinosa-Ramos, J.I.; Osseiran, A.; Rassau, A.; Kasabov, N. Application of a Brain-Inspired Spiking Neural Network
Architecture to Odor Data Classification. Sensors 2020, 20, 2756. doi: 10.3390/s20102756. [CrossRef] [PubMed]

7. Rueckauer, B.; Liu, S.C. Conversion of analog to spiking neural networks using sparse temporal coding. In Proceedings of the
2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–5.

8. Debole, M.V.; Taba, B.; Amir, A.; Akopyan, F.; Modha, D.S. TrueNorth: Accelerating From Zero to 64 Million Neurons in 10 Years.
Computer 2019, 52, 20–29. [CrossRef]

9. Davies, M.; Srinivasa, N.; Lin, T.H.; Chinya, G.; Joshi, P.; Lines, A.; Wild, A.; Wang, H. Loihi: A Neuromorphic Manycore
Processor with On-Chip Learning. IEEE Micro 2018, 38, 82–99. [CrossRef]

10. Furber, S.B.; Lester, D.R.; Plana, L.A.; Garside, J.D.; Painkras, E.; Temple, S.; Brown, A.D. Overview of the SpiNNaker System
Architecture. IEEE Trans. Comput. 2013, 62, 2454–2467. [CrossRef]

11. Yang, Z.; Wang, L.; Wang, Y.; Peng, L.; Chen, X.; Xiao, X.; Wang, Y.; Xu, W. Unicorn: A multicore neuromorphic processor with
flexible fan-in and unconstrained fan-out for neurons. In Proceedings of the DAC ’22: 59th ACM/IEEE Design Automation
Conference, San Francisco, CA, USA, 10–14 July 2022; pp. 943–948. doi: 10.1145/3489517.3530563. [CrossRef]

12. Moradi, S.; Ning, Q.; Stefanini, F.; Indiveri, G. A Scalable Multicore Architecture With Heterogeneous Memory Structures for
Dynamic Neuromorphic Asynchronous Processors (DYNAPs). IEEE Trans. Biomed. Circuits Syst. 2018, 12, 106–122. [CrossRef]
[PubMed]

13. Zhang, L.; Yang, J.; Shi, C.; Lin, Y.; He, W.; Zhou, X.; Yang, X.; Liu, L.; Wu, N. A Cost-Efficient High-Speed VLSI Architecture
for Spiking Convolutional Neural Network Inference Using Time-Step Binary Spike Maps. Sensors 2021, 21, 6006. doi:
10.3390/s21186006. [CrossRef] [PubMed]

14. Benini, L.; De Micheli, G. Networks on chip: A new paradigm for systems on chip design. In Proceedings of the 2002 Design,
Automation and Test in Europe Conference and Exhibition, Paris, France, 4–8 March 2002; pp. 418–419.

15. Galluppi, F.; Davies, S.; Rast, A.; Sharp, T.; Plana, L.A.; Furber, S. A Hierachical Configuration System for a Massively Parallel
Neural Hardware Platform. In Proceedings of the 9th Conference on Computing Frontiers, Caligari, Italy, 15–17 May 2012;
Association for Computing Machinery: New York, NY, USA, 2012; p. 183–192.

16. Amir, A.; Datta, P.; Risk, W.P.; Cassidy, A.S.; Kusnitz, J.A.; Esser, S.K.; Andreopoulos, A.; Wong, T.M.; Flickner, M.; Alvarez-Icaza,
R.; et al. Cognitive computing programming paradigm: A Corelet Language for composing networks of neurosynaptic cores. In
Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN), Dallas, TX, USA, 4–9 August 2013; pp. 1–10.

http://doi.org/10.1109/JIOT.2018.2805263
http://dx.doi.org/10.1088/1742-6596/1992/2/022177
http://dx.doi.org/10.3390/electronics11121889
http://dx.doi.org/10.3390/electronics11132097
http://dx.doi.org/10.3390/s21093276
http://www.ncbi.nlm.nih.gov/pubmed/34068538
http://dx.doi.org/10.3390/s20102756
http://www.ncbi.nlm.nih.gov/pubmed/32408563
http://dx.doi.org/10.1109/MC.2019.2903009
http://dx.doi.org/10.1109/MM.2018.112130359
http://dx.doi.org/10.1109/TC.2012.142
http://dx.doi.org/10.1145/3489517.3530563
http://dx.doi.org/10.1109/TBCAS.2017.2759700
http://www.ncbi.nlm.nih.gov/pubmed/29377800
http://dx.doi.org/10.3390/s21186006
http://www.ncbi.nlm.nih.gov/pubmed/34577214

Sensors 2022, 22, 7248 17 of 17

17. Das, A.; Wu, Y.; Huynh, K.; Dell’Anna, F.; Catthoor, F.; Schaafsma, S. Mapping of local and global synapses on spiking
neuromorphic hardware. In Proceedings of the 2018 Design, Automation Test in Europe Conference Exhibition (DATE), Dresden,
Germany, 19–23 March 2018; pp. 1217–1222.

18. Ji, Y.; Zhang, Y.; Li, S.; Chi, P.; Jiang, C.; Qu, P.; Xie, Y.; Chen, W. NEUTRAMS: Neural network transformation and co-design
under neuromorphic hardware constraints. In Proceedings of the 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), Taipei, Taiwan, 15–19 October 2016; pp. 1–13.

19. Balaji, A.; Das, A.; Wu, Y.; Huynh, K.; Dell’Anna, F.; Indiveri, G.; Krichmar, J.L.; Dutt, N.; Schaafsma, S.; Catthoor, F. Mapping
Spiking Neural Networks to Neuromorphic Hardware. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 28, 76–86. [CrossRef]

20. Zhang, S.L.S.G.L. SNEAP: A Fast and Efficient Toolchain for Mapping Large-Scale Spiking Neural Network onto NoC-based
Neuromorphic Platform. In Proceedings of the 30th Great Lakes Symposium on VLSI (GLSVLSI 2020), Beijing, China, 27–29
May 2020.

21. Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the MHS’95, Sixth International
Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43.

22. Kernighan, B.W.; Lin, S. An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 1970, 49, 291–307. [CrossRef]
23. Karypis, G.; Kumar, V. Multilevelk-way Partitioning Scheme for Irregular Graphs. J. Parallel Distrib. Comput. 1998, 48, 96–129.

[CrossRef]
24. Steinbrunn, M.; Moerkotte, G.; Kemper, A.H. Heuristic and randomized optimization for the join ordering problem. VLDB

J.—Int. J. Very Large Data Bases 1997, 6, 191–208. [CrossRef]
25. Stimberg, M.; Ette, R.B.; Dan, G. Brian 2, an intuitive and efficient neural simulator. eLife 2019, 8, e47314. [CrossRef] [PubMed]
26. Chou, T.; Kashyap, H.; Xing, J.; Listopad, S.; Rounds, E.L. CARLsim 4: An Open Source Library for Large Scale, Biologically

Detailed Spiking Neural Network Simulation using Heterogeneous Clusters. In Proceedings of the 2018 International Joint
Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8.

27. Dayan, P.; Abbott, L. Theoretical Neuroscience : Computational and Mathematical Modeling of neural systems. Philos. Psychol.
2001, 15, 154–155.

28. Abuqaddom, I.; Mahafzah, B.A.; Faris, H. Oriented stochastic loss descent algorithm to train very deep multi-layer neural networks
without vanishing gradients. Knowl.-Based Syst. 2021, 230, 107391. doi: doi: 10.1016/j.knosys.2021.107391. [CrossRef]

29. Pfeiffer, J.H.L.D. Training Deep Spiking Neural Networks Using Backpropagation. Front. Neurosci. 2016, 10, 508.
30. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv

2017, arXiv:1708.07747.
31. Schemmel, J.; Brüderle, D.; Grübl, A.; Hock, M.; Meier, K.; Millner, S. A wafer-scale neuromorphic hardware system for large-scale

neural modeling. In Proceedings of the 2010 IEEE International Symposium on Circuits and Systems (ISCAS), Paris, France, 30
May–2 June 2010; pp. 1947–1950.

32. Gallego, R.A.; Romero, R. Tabu search algorithm for network synthesis. IEEE Trans. Power Syst. 2000, 15, 490–495. [CrossRef]
33. Catania, V.; Mineo, A.; Monteleone, S.; Palesi, M.; Patti, D. Improving Energy Efficiency in Wireless Network-on-Chip Architec-

tures. J. Emerg. Technol. Comput. Syst. 2017, 14, 1–24. [CrossRef]
34. Peter.; U..; Diehl.; Matthew.; Cook. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front.

Comput. Neurosci. 2015, 9, 99. [CrossRef]
35. Lecun, Y. LeNet-5, Convolutional Neural Networks. Available online: http://yann.lecun.com/exdb/lenet/ (accessed on 25

August 2022).
36. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images; Technical Report; 2009. Available online: https://citeseerx.ist.

psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf (accessed on 25 August 2022).
37. Maass, W.; Natschläger, T.; Markram, H. Real-Time Computing Without Stable States: A New Framework for Neural Computation

Based on Perturbations. Neural Comput. 2002, 14, 2531–2560. [CrossRef]
38. Orchard, G.; Jayawant, A.; Cohen, G.; Thakor, N.V. Converting Static Image Datasets to Spiking Neuromorphic Datasets Using

Saccades. arXiv 2015, arXiv:1507.07629.
39. Al-Shaikh, A.; Mahafzah, B.A.; Alshraideh, M. Hybrid harmony search algorithm for social network contact tracing of COVID-19.

Soft Comput. 2021, 1–23. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/TVLSI.2019.2951493
http://dx.doi.org/10.1002/j.1538-7305.1970.tb01770.x
http://dx.doi.org/10.1006/jpdc.1997.1404
http://dx.doi.org/10.1007/s007780050040
http://dx.doi.org/10.7554/eLife.47314
http://www.ncbi.nlm.nih.gov/pubmed/31429824
http://dx.doi.org/10.1016/j.knosys.2021.107391
http://dx.doi.org/10.1109/59.867130
http://dx.doi.org/10.1145/3138807
http://dx.doi.org/10.3389/fncom.2015.00099
http://yann.lecun.com/exdb/lenet/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf
http://dx.doi.org/10.1162/089976602760407955
http://dx.doi.org/10.1007/s00500-021-05948-2
http://www.ncbi.nlm.nih.gov/pubmed/34220301

	Introduction
	Background and Related Works
	Spiking Neural Network
	Input Coding
	Architecture of Neuromorphic Hardware
	Related Works

	Methods
	Calculating the Spike Firing Rates
	Local Partitioning
	Mapping

	Evaluation Methodology
	Experiment Platform
	Evaluated SNN-Based Applications

	Results and Discussion
	Accuracy of the Calculated Spike Firing Rates
	Partitioning Performance
	Mapping Performance
	Spike Latency on NoC
	Energy Consumption on NoC
	 Performance Comparison on Recurrent SNN

	Conclusions and Future Work
	References

