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Abstract: For decentralized energy management in a smart grid, there is a need for electric load
forecasting at different places in the grid hierarchy and for different levels of aggregation. Load
forecasting functionality relies on the load time series prediction model, which provides accurate
forecasts. Complex and heterogeneous multi-source load time series in a smart grid require flexible
modeling approaches to meet the accuracy demand. This work proposes an adaptive load forecasting
methodology based on the generalized additive model (GAM) with the big data estimation method.
It is based on a set of GAM terms, constructed for a specific multi-source load forecasting application
in the grid and a procedure that dynamically selects the most relevant terms and generates forecasts
for particular load time series. Data from publicly available New York Independent System Operator
(NYISO) databases are used for testing. The 24-hour-ahead forecasting results for eleven New York
City zones, of different sizes and types, indicate the applicability of the proposed methodology.

Keywords: electricity load forecasting; generalized additive model; automatic variable selection;
smart grid

1. Introduction

An accurate electricity load forecast is the main prerequisite for various activities in
the grid that enables its stability, reliability, and operating cost reduction, hence the quality
of electricity supply. This information is important for the operation of many applications
and services, as well as for all those in charge of timely grid management, planning,
and electricity market optimization. The supported decisions and applications rely on
forecasts for different time horizons that could be from minutes to years ahead, categorized
into very-short-, short-, medium-, and long-term forecasting functionality. For most of daily
tasks in the grid, such as production scheduling, economic load dispatch, demand side
management (DSM), peak load reduction, etc., the forecasting horizon from the next hour
to a day ahead is of interest, which is the domain of short-term load forecasting (STLF).

The increased penetration of renewable energy sources (RESs), integration of new
loads such as, e.g., electric vehicles, and new energy market mechanisms introduce signifi-
cant variability and uncertainty to both the supply and demand side in the power system,
imposing the need for its management at the local level. Access to local energy systems
and different load aggregations enables better integration of RESs, the implementation
of DSM programs and other electricity market products, and services and general grid
optimization. Such circumstances change the specification of STLF forecasting tools devel-
oped for centralized management, typically for a single, system load time series. The main
challenges in developing local forecasting functionality could be summarized as follows:

• Local load time series, produced by a smaller number of consumers, generally have
more complex profiles, requiring advanced modeling techniques for achieving satis-
factory forecasting accuracy.

• A higher level of automation and adaptation to data and over time is required for
supporting local load forecasting functionality. The energy management in the smart
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grid implies operation with multiple energy sources, and the forecasting tool has to
cope with many heterogeneous load time series and their changes, which requires
versatile models and adaptive methodologies.

• The load forecasting functionality evolves to a more general predictive tool, and the
interpretability of the implemented model has recently been emphasized as useful for,
e.g., the exceptional events’ forecasts, creating tariffs, energy purchasing, etc.

Achieving satisfactory load forecasting accuracy is, by itself, a demanding task due
to multi-seasonality, the nonlinear dependency of externals, and the nonstationarity of
load time series. The new challenges are in the complexity and diversity of the load
profiles at the different places in the grid hierarchy. The traditional approaches, based
on multivariable linear regression (MLR) or time series (TS) models, i.e., ARMA and its
variants, verified, mainly, for a higher level of aggregations, are, also, in use for smart-
meter-based forecasting [1] or for energy management in buildings [2]. Simple and fast
algorithms make them favorable solutions for real-time forecasting functionalities, as for,
e.g., dynamic demand response, presented in [3]. The improvement in modeling the
nonlinearities in the load, resulting in better forecasting accuracy, has been obtained with
the machine learning (ML) and artificial intelligence (AI) techniques. An often used
approach is based on support vector machine (SVM) and examples of SVM-based load
forecasting could be found, either, for the system and distribution level [4] or for office
buildings [5]. Random forest (RF) is a computationally inexpensive technique, which
is used for the load prediction of the whole country load [6], but also for diverse types
of building clusters [7]. Artificial neural networks (ANNs) are the most popular ML-
based load forecasting approach, widely accepted and applied for the overall system [8],
substations [9], buildings [10], and consumers [11]. With the emergence of deep neural
networks (DNNs), their application to the STLF problem became available, having a better
perspective to capture the load profiles with higher accuracy. In [12], the DNN-based STLF
methodology, tested on 40 industrial customers, outperformed the shallow NN and classical
TS models in the accuracy of forecasts. Recently, the recurrent neural networks (RNNs)
have gained attention, as they are suitable for modeling sequential data such as time series.
In particular, long short-term memory (LSTM) networks, a type of RNN for long-term
dependencies, produced better accuracy compared to several TS models in [13] and several
benchmarks in [14]. A number of developed STLF approaches aim to take advantage of
the favorable properties of two or more models, by their hybridization, e.g., ARIMA/NN
in [15], used for the overall system and 18 Spanish sub-regions, or through the concepts of
ensemble prediction, as in [16], where four prediction algorithms, i.e., the Holt–Winters
model (HWT), sigma support vector regression (sSVR), seasonal ARIMA, and the State-
Space Model (SSM), were fused in order to improve the forecasting accuracy and robustness
for smart meter aggregates. In [17], to optimize the computational efficiency and forecasting
accuracy, the authors used the ensemble empirical mode decomposition (EEMD) algorithm
for the separation of the smooth and periodic low-frequency load component, modeled
with the MLR, from high-frequency load variations, described by the LSTM.

Although various modeling techniques are capable of capturing local load profiles
with satisfactory accuracy, for smart grid applications, it is necessary to evaluate their
performances on larger load populations. Depending on the adopted modeling approach,
the generalizability is achieved through relevant load features’ selection, the proper choice
of model parameters, and/or hyperparameters. For example, in the mentioned paper [4],
the authors developed an automatic SVR model-building procedure, using the particle
swarm global optimization (PSG) technique for model parameter optimization and feature
selection automation. Furthermore, in [7], auto-encoder (AE)-based feature extraction was
proposed for the RF model and tested on several datasets for diverse types of building clus-
ters. In [11], an optimal ANN architecture and set of model inputs, for 37 consumer groups,
were obtained through multiple prediction simulations. In [18], the authors exploited
the statistical properties of the load time series (i.e., correlation structure) to optimize the
hyperparameters of the convolutional neural network (CNN) model. For building-level
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forecasting application, the RNN and CNN were used for the day-ahead load forecasting
of three buildings in [19]. The same hyperparameters (layers and number of neurons) for
all buildings and separate model parameters (weights and bias) were selected and tuned
through the cross-validation approach. In order to avoid prior analysis and to automate the
search of the optimal model structure, in [20], the authors proposed the GA-LSTM approach
where the genetic algorithm (GA) was used to find the optimal inputs and the hidden
neurons of the LSTM network, for particular data. Although new NN topologies dominate
traditional approaches in forecasting accuracy, the computational burden and sensitivity to
hyperparameters could limit their wider application. In practice, there is a need for often
model updating and methodologies based on iterative parameter tuning (manually using
cross-validation) or on slow optimizers (such as GA), which could be suboptimal.

In this work, a methodology based on the generalized additive model (GAM) [21] is
proposed. The GAM is an interpretable ML technique, which extends the standard linear
model framework with the nonparametric terms for modeling nonlinear relationships.
The capability of the GAM to capture load profiles generated at the different places in the
grid has been verified with good forecasting accuracy at the national [22], regional [23],
and substation levels [24], buildings [25], and for small aggregates of consumer clusters [26].
The advantages of the GAM’s interpretability are presented in [25], on the example of mon-
itoring and diagnosing activities in smart buildings. In the recently published paper [27],
the GAM was coupled with the Kalman filters for quick adjustment to changes of electricity
consumption caused by the COVID-19 lockdown in France. The important improvements
of the standard GAM estimation procedure, up to big data methods, were presented
in [28,29]. Based on these results, the GAM framework is used to develop an adaptive load
forecasting method, projecting its general application in the grid. In this regard, the main
contributions of this paper are as follows:

• An approach is presented for constructing a dictionary of GAM terms for a specific
forecasting application in the grid. The terms standardize the main load features deter-
mined by the level of aggregation, forecast horizon, and available data. As an example,
the dictionary for eleven New York Independent System Operator (NYISO) zones,
for day-ahead load forecasting functionality and available data for loads and tempera-
tures, was constructed and evaluated. Differences between NYISO zones in population
density, weather conditions, rural/urban balance, and average consumption support
testing the generalizability of the approach.

• A dynamic, shrinkage-type term selection, embedded into the fast GAM estimation
procedure, is developed. It automatically and continuously removes uninformative
terms from the dictionary, serving as a mechanism for its dynamic adaptation to a
specific load.

• The ability of the proposed methodology to describe all load time series from the
NYISO dataset and the predictive performances for each zone are evaluated and
improvements recommended.

• Promising results of 24-hour-ahead forecasts, for real working conditions, were ob-
tained.

The paper is organized as follows: Section 2 summarizes the basics of the GAM
framework used in this work. Section 3 describes a way to define GAM terms for a
given load forecasting application. Section 4 details the results, while Section 5 gives the
conclusions and future research directions.

2. Methodology

The proposed methodology relies on an adopted class of the GAM structure and the
automatic variable selection method, developed for additive models, presented in the next
few subsections.
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2.1. GAM Structure

A generalized additive model, GAM covers a wide range of structures, and the
“prototype” of the one considered in this paper has the form:

y = ∑
i

β0ixi + ∑
j

f j(xj) + ∑
k

Dk fk(xk) + ∑
l

fl(xl1, xl2) + e (1)

where variable y (or its transformation) is represented with the sum of several types of GAM
terms, which are functions of the input variables, i.e., features, xi, xk, xl1, xl1. Each term is
constructed separately and implements the effect that the input variable or combination
of variables produces on y. The type of GAM term is determined by its functional form,
depending on whether it models a linear or nonlinear effect of one or more variables.
β0ixi is a standard linear model term, for modeling the linear effect of xi. f js, fks, and fls
are the smooth, unspecified functions of one or more variables, i.e., smoothers, used for
representing nonlinearities in the model. There are no prior assumptions about the shape
of the smoother, which is a fully data-driven, nonparametric term. The Dk fk(xk) term
models the smoother fk of xk whose shape depends on some other known variable, Dk.
Of interest, here, is the case where Dk is a categorical variable, where fk is assumed to have
a different shape for each of the categories. In more specific cases, when Dk is a binary
variable, the presence (Dk = 1) or absence (Dk = 0) of smoother fk in the model is coded.
fl is a smooth interaction term, derived from the bivariate function of xl1 and xl2, which
models their mutual effect on y.

GAM estimation is based on regression techniques, and for this purpose, the smoothers
in Model (1) are realized with the splines. Accordingly, a one-variable smoother ( f j and
fk) of a general form, fx(x), is approximated by a linear combination of q known basis
functions, bi(x), put in the columns of matrix Bx, and corresponding coefficients, βi from
vector βx, as:

fx(x) =
q

∑
i=1

bi(x)βi = Bxβx (2)

The smooth interaction term of two variables, x1 and x2, is constructed using the
tensor product of the bases b1,i1(x1) and b2,i2(x2), which belong to their individual spline
representations, fx1(x1) and fx2(x2), according to:

f (x1, x2) =
q1

∑
i1=1

q2

∑
i2=1

b1,i1(x1)b2,i2(x2)βi1i2 (3)

The set of bases in the sum above implicitly contains the individual representations for
fx1(x1) and fx2(x2) and a pure interaction, fx1x2(x1, x2), which exclusively describes their
mutual effect. To extract the basis representing only the interaction, the tensor product is
decomposed, according to the procedure described in [21]. Then, the smooth interaction
term is represented with the extracted basis, Bx1x2 , and corresponding coefficients, βx1x2

,
as Bx1x2 βx1x2

.
The choice and specification of splines used for a smoother representation determine

its modeling flexibility. For efficient approximation, the number of spline functions, q, has
to be sufficient as it determines the smoother’s capacity to capture the nonlinearity of the
models. Regarding the type of splines used, different realizations are possible, and they
could be combined in the same model. Here, a cyclic cubic regression spline, CCRS, and a
thin plate regression spline, TPRS, were used [21]. The CCRS spline is suitable for modeling
cyclic nonlinearities. It uses cubic polynomials as basis functions to approximate segments
of nonlinearity, joined at so-called knots. For cyclic nonlinearity, as, for example, weekly
load seasonality, the knots placement is usually put equidistantly, for each a day of a week.
For noncyclic nonlinearities, a common solution is a thin plate regression spline, TPRS,
which is a general-purpose spline of any number of variables. The TPRS avoids knot
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placement consideration by using eigen decomposition for the automatic generation of q,
the most informative basis for the given data.

The GAM terms are estimated simultaneously. By spline expansion, the GAM struc-
ture from (1) takes the form of a linear model, Y ≈ Bβ, where the set of observations
of the variable being modeled Y = [y1 y2 . . . ]T is represented with the model matrix
B = [X . . . Bxj . . . Bxk . . . Bxl1,xl2 . . . ], containing all linear terms, X, and evaluated basis func-
tions Bxj , Bxk and Bxl1,xl2 for the f j, fk, and fl smoothers. β = [β0 . . . βj . . . βk . . . βxl1,xl2

. . . ]T

is a vector of corresponding model coefficients that need to be calculated. The model is
estimated by the penalized regression method, where the penalization controls the “wig-
gliness” of the smoothers. For any smoother in the model, f , represented with the spline
coefficients β, its “wiggliness” is expressed by the functional βTSβ, where S is the known
penalty matrix, specific to the type of spline used. For the interaction terms, a separate such
penalty is associated with each variable. Combined with the associated parameter λ for
smoothness control, the penalties are added to model the likelihood, l(β), to estimate the
model by:

β̂ = argmax
x
{l(β)− 1

2 ∑
j

λjβ
T
j Sjβj} (4)

For solving the above optimization problem, a penalized iteratively reweighted least
squares (PIRLS) was chosen, while smoothing parameters were automatically selected
by the restricted maximum likelihood (REML) [21]. The coefficients were estimated by
iterating the PIRLS/REML as in [28,29].

2.2. Automatic Variable Selection

A key step in GAM specification is the proper choice of the input variables and
corresponding terms so as to obtain the desired model performances. The variable selection
(VS) procedure in the GAM searches a pool of initially nominated model terms and selects
those that, for particular data, meet the specified model selection criteria. For practical
multi-source data application, where the same set of GAM terms is evaluated for different
data, the VS search needs to be automated.

In papers with the GAM-based load forecasting models, the VS is, usually, performed
through numerous iterations, controlled by, for example, the results of residual check-
ing [22] or forecasting accuracy [23]. Iterative search could be automated using some
searching scheme (subset selection, stepwise procedures), controlled with the criteria,
such as the Akaike information criterion (AIC), the Bayesian information criterion (BIC),
or through cross-validation (CV). However, as the number of input variables increases,
the searching becomes more time-consuming and computationally demanding.

An alternative method is shrinkage, which has good stability and predictive accuracy
and a low computational cost. In the GAM, shrinkage additionally penalizes the estimation
such that the model terms are “encouraged” to be shrunk to have zero effect and significant
GAM terms that “survive” are automatically obtained. An example of shrinkage use for
additive models is presented in [30], where the authors proposed a two-stage procedure,
combining the Group least absolute shrinkage and selection operator (LASSO) method for
model selection and regular model estimation, with three different model selection criteria,
i.e., BIC, AIC, and Generalized CV.

An approach where the shrinkage mechanism is embedded into the estimation pro-
cedure is considered. In this regard, several methods, designed for additive models, are
offered, as for example the component selection shrinkage operator (COSSO), [31], sparse
additive models (SpAMs) [32], and generalized additive model selection (GAMSEL) [33].
Here, the method, introduced by Marra and Wood in [34], is used, primarily because of its
simplicity and its easy integration into the estimation. Its main property is that the terms
are selected along with the model estimation, in a single step, outputting a single model.
The authors reported high predictive ability, while the results were comparable to the best
subset selection method, which searches for all possible combinations of variables.
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Marra and Wood exploited the fact that any type of spline space could be decomposed
into a “wiggly” component (range space) and the rest (null space). The penalized estimation
(explained in the previous section) removes the wiggliness of the function and reduces the
model complexity. However, to eliminate the term effect in the model, its null space has
to be penalized. The authors proposed two such methods, and for more details, one can
see the original paper [34]. In the double-penalty (DP) approach, the authors introduced
an additional penalty for penalizing the null space. The null space was obtained by
decomposing the penalty matrix Sj of each smoother into the eigenspace according to:

Sj = UjΛjUT
j (5)

where Uj and Λj are an eigenvector and eigenvalue matrix. The spline basis space for
which Λj contains zeros belongs to the basis null space. The shrinkage penalty matrix is
then produced as:

S∗j = U∗j U∗j
T (6)

where U∗j is the matrix of the eigenvectors for the corresponding zeros eigenvalues of Λj.
With this mechanism, the model estimation criterion (4) is corrected up to:

β̂ = argmax
x
{l(β)− 1

2 ∑
j
(λjβ

T
j Sjβj + λ∗j βT

j S∗j βj)} (7)

where additional shrinkage parameters λ∗j are to be estimated. The criteria from (7) is an
objective of the regular GAM estimation procedure, now with twice as many smoothing
parameters for each penalized term.

2.3. Forecasting Procedure

GAM application to the time series forecasting problem is exemplified with variable y,
modeled as:

yt = gam(yt−1, yt−2, . . . , xt, xt−1, . . . ) + et (8)

where y in t depends on its previous realizations at t− 1, t− 2, · · · , etc., due to intrinsic
correlation and on current and lagged values of variables explaining the external factors,
placed in vector x. gam denotes the adopted initial GAM structure, defined with the set
of terms. Based on (8), the rolling procedure arises: with each new value of y and x,
in any t, the most recent N observations of model inputs, including yt and xt, are used
by PIRLS/REML/DP for model retraining and variable reselection. For available values
of externals for t + 1, x̂t+1, either real values or forecasts, the generated gamt outputs the
forecast ŷt+1 according to:

ŷt+1 = gamt(yt, yt−1, . . . , x̂t+1, xt, . . . ) (9)

Further forecasts, i.e., ŷt+2, ..., can be obtained from (9), recursively, having a prognosis
for external variables, x̂t+2, ..., etc. Continuous updating with VS re-initialization allows the
model to dynamically adapt to changes in the input data. The described procedure supports
the forecasting engine, which automatically generates forecasts for all time series for which
the initial set of terms in gam and specified training set size, N, are valid assumptions.

3. Load Forecasting Model Construction

For multi-source load forecasting, the initially constructed set of GAM terms imple-
ments features common to all load time series for which the forecasting functionality is
being developed. As an example, in the next section, a dictionary of load GAM terms
is proposed, constructed for a day-ahead load forecasting for several NYISO zones. Al-
though prepared for a specific dataset, the proposed dictionary can, generally, be used in
the grid for forecasting the load of the same level of aggregation and for the same specifica-
tion of the forecast horizon, types of external variables, and the availability of historical
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data. Furthermore, it can be easily expanded with the additional terms for introducing new
inputs into the model and/or adapted for other forecasting application in the grid.

3.1. NYISO Data

The New York Independent System Operator (NYISO) controls the territory spanning
the entire state of New York, partitioned into eleven zones. They differ in geographical size
and population, from the highly populated, urban NYC zone of the New York City area,
then the large, but low populated Mohawk Valley and rural North zone, to geographically
small zones, such as Millwood. The zones, the abbreviations, their consumption level,
and the number of residents are listed in Table 1.

Table 1. NYISO zones’ average consumption and number of residents.

Zone Zone ID Average Load (MW) Population [×103]

West WEST 1790 1532
Genese GENESE 1140 1003
Central CENTRL 1850 1384
Capital CAPITL 1330 1215

Millwood MILLWD 330 190
Dunwoodie DUNWD 670 760

New York City N.Y.C. 6120 8186
Long Island LONGIL 2540 2835

Mohawk Valley MHKVL 910 891
Hudson Valley HUDVL 1150 1372

North NORTH 540 82

Load data and meteorological variables were collected from available databases on the
official NYISO site [35]. The data consist of consumption measurements and daily maximal
and minimal temperature values, for each zone. A particular convenience is that the NYISO
set also contains the historical values of temperatures forecasts in addition to the historical
values of their realizations, which allows testing for realistic working conditions.

3.2. Load GAM Terms’ Dictionary for NYISO Zones

The NYISO zones produce load profiles characteristic of higher levels of aggrega-
tion, since the least populated North has about 80,000 consumers. For constructing the
GAM terms for all NYISO zones, some general properties of the aggregated load and its
dependence on temperature were considered.

The calendar-based load factors produce characteristic patterns of annual, weekly,
and daily profiles, so that, in each instant, the load level depends on its position in the
day, week, and year. A separate model for instants that belong to each observed load in
a day (typically, for hourly, half-hourly measurements) was adopted, denoted as a single
load, Lt, for the t-th daily sample. Splitting the daily profile with the separate time series
models enables better incorporation of the load factors’ daily variation, projecting better
forecasting accuracy.

For aggregated loads, the cyclic weekly and yearly variations of a single load could be
represented with the smooth cyclic patterns fw(week) and fy(year), defined for each day of
the week, week, and each day of the year, year. The smoothers are realized using cyclic CRS,
with 7 equidistant knots for the weekly and 12 knots for the yearly cycle. The interaction
term, fw,y(week, year), for incorporating the effect of weekly profile changes over the year
was also added.

The most important external load factors are related to the weather conditions. To quan-
tify the human-perceived temperature and HVAC utilization, responsible for the weather-
induced load effect, in addition to the air temperature, the wind speed, humidity, cloud
cover, solar radiation, etc., were used. In practice, the choice of weather variables included
in the model depends on the availability and quality of the relevant data. For some grids
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(i.e., some regions), the air temperature is reported as sufficient for obtaining satisfying
STLF accuracy, not being improved by adding the other weather variables [15], while, for ex-
ample, in [36], it was shown that for estimating the summer load extremes, the additional
weather variables are needed.

Some properties of the load–temperature relationship are shown in Figure 1, using the
available data. The scatter plots represent the average hourly consumption for typical non-
working (left) and working (right) hours, versus average daily temperature. The differences
in load response to temperature for different days of the week (upper row) and for different
months within the year (bottom row) are highlighted. It is obvious that load–temperature
relationship is driven by, more or less, different nonlinearities for different days of the week
and times of the year, indicating the combined effect of temperature and basic calendar
variables to the load.
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Figure 1. The differences in the load–temperature relationship between days of the week (upper row)
and over the year (bottom row), for non-working (left) and working (right) hours.

For available daily maximum and minimum temperature values, Tmx and Tmn, their com-
bined effect on the load is fully represented with the separate terms fTmx(Tmx), fTmn(Tmn) and
interaction fTmx ,Tmn(Tmx, Tmn). For weekly and yearly change adjustments, fTx ,week(Tx, week)
and fTx ,year(Tx, year) are the interactions terms, where Tx is the maximum/minimum tem-
perature. With this set of terms, the overall daily weather-induced variation of the load is
modeled. In order to account for the impact of the temperature history, i.e., the influence of the
temperatures from previous days on current load, the same set of terms with the temperatures
from the previous two days were included.

For STLF models trained on a multi-year dataset, a significant feature is the long-term
variation in the consumption level, observed as an inter-annual trend. The economic
factors, changes in population, industry growth, technology development, and other long-
term factors are mentioned in the literature as the main causers of this effect. When not
externally identified, a long-term trend is included in the model as a function of time (linear,
polynomials, etc.) or in the GAM, with the dedicated spline, ft(trend).

The correlation in the load time series, not included with the basic profiles, is, typically,
modeled with the historical load values from previous time instances, days, and weeks.
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To adjust a single load value, Ld
t , on a day d with the information from recent history,

the loads from the entire previous week were added, with the splines f1(Ld−1
t ), . . . , f7(Ld−7

t ).
In the same way, the loads from the two previous time instances, f8(Ld

t−1) and f9(Ld
t−2),

were included, which is the way to account for the correlation between independently
modeled single loads.

The departure from the regular load behavior is for so-called special days, a typical
example being when the irregular behavior expected is for holidays. These irregularities
are specific for each special day type (holidays), for each system or subsystem. In practice,
special days are, usually, treated as a non-working day (Saturday/Sunday) or represented
with the same model. Here, the special day effect is implemented by using the categorical
variable, day type, DT, for coding four categories of forecasted days: a regular day that
follows a regular day (default), holiday after regular day, regular day after holiday, and hol-
iday after holiday. With DT in the model, the average changes in a single load level for
these days are set, while with its interaction with the previous day’s load, DTx f1(Ld−1

t ),
these changes are, also, locally adjusted.

Daylight saving time (DST) aims to make the most of day light in order to reduce
the lighting electricity usage by moving the clock one hour forward in spring and one
hour back in fall. For example, in the USA (for which we have testing data), DST lasts
for 238 days, starting by skipping the second a.m. hour on the second Sunday of March
and ends by doubling the second a.m. hour on the first Sunday of November. In load
forecasting practice, the usual strategy is to interpolate loads for the missed morning
2nd hour in March with neighbor values for the 1st and 3rd hours and average loads
for 2nd hour double occurrences in October, in order to enable the continuity of the 24-h
daily profile in operation. However, the changes that the DST effect produces on the load
profiles are rarely considered, and recently, in [37], it was shown that their inclusion in the
model improves the forecasting accuracy. In Figure 2, the normalized load daily profiles for
Sunday before and after the clock change in March (left) and in November (right) illustrate
the daily profile deviations caused by DST.
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Figure 2. Daylight saving time effect for the year 2013, for the NYC zone.

Changes in the load caused by DST for different times in the day are related to the
daylight period, which, for a certain region, depends on the time of the year. According
to [37], it can be expected that the DST-induced changes are, also, specific for each day of
the week. To include the DST load effect, we first adopted the daily binary variable, DS,
set to 1 for all days between clock changes in March and October, while for other days,
its value was 0. Next, we added a smooth, nonlinear difference to the yearly and weekly
profiles with the terms DSx fy(year) and DSx fw(week), respectively.

The natural logarithm of the load was considered instead of its raw value, which
has proven to be the most suitable transformation that gives the best results for the aggre-
gated loads.

Summarizing the above, a dictionary of GAM load terms that describes a single load
time series from the NYISO set is given in Table 2. The zonal STLF model is based on a set
of such daily submodels for each observed load in the day.
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Table 2. Dictionary of GAM load terms.

Model Term Feature

0 lnLt the load at time instance t, in a day d

1 ft(trend) TPRS spline for long-term trend

2 fy(year) cyclic CRS for an annual cycle with 12 knots

3 fw(week) cyclic CRS with 7 knots

4 fw,y(week, year) week and year smooth interaction term

5 DS fy(year) daylight saving/yearly cycle interaction

6 DS fw(week) daylight saving/weekly cycle interaction

7–12 f (Ty
x )

TPRS spline for each combination of temperature type, x, and day, y, where
x is the maximal/minimal temperature, for
y, the current and previous two days, d, d− 1, d− 2

13–15 fTy
mx ,Ty

mn
(Ty

mx , Ty
mn)

maximal/minimal temperature interaction term for
y current and previous two days, d, d− 1, d− 2

16–21 fTy
x ,week(T

y
x , week)

week/maximal temperature interaction term for
x, the maximal/minimal temperature, for
y, the current and previous two days, d, d− 1, d− 2

22–27 fTy
x ,year(T

y
x , year)

year/maximal temperature interaction term for
x, the maximal/minimal temperature, for
y, the current and previous two days, d, d− 1, d− 2

28 DT categorical variable for day type (realized as a factor variable)

29 DT f1(Ld−1
t ) day type/previous day load interaction

30–35 f2(Ld−2
t . . . f7(Ld−7

t ) TPRS splines for the same time, previous −2 to −7 days

36–37 f8(Lt−1), f9(Lt−2) TPRS splines for the two previous time instances

4. Results and Discussion

The adequacy of the proposed GAM dictionary for describing all loads from the
given set and the predictive performances of the generated zonal STLF models were first
considered. The 24-hour-ahead forecasting, for real working conditions, was observed.
The results, obtained for different seasons and for special days, are highlighted. The in-
fluence of the included daylight saving time effect on the accuracy of the forecast was
also observed.

4.1. Data Preparation

The load and temperature data for the period from 1 January 2009 to 31 December 2013
were extracted from the NYISO databases. This period is interesting because it contains
a ten-year consumption record peak of 33,956 MW at the end of a week-long heat wave
in July 2013, which was used for testing the forecasting results on prolonged temperature
extremes. In the data preparation, some errors in the databases were removed and missing
values interpolated. A considerable number of outliers were also found, and the most
obvious were treated as missing values. For each zone, we prepared the data set with the
average hourly load values and daily maximum/minimum temperature realizations and
forecasts. The impact of the special days was taken into account by incorporating New
Year Eve (31 December, 1 January), Easter (Good Friday, Easter Sunday), and several major
public holidays, i.e., Memorial Day, Independence Day, and Columbus Day. Holidays and
DST dates for the selected period were downloaded from the Internet. All analysis and
model development were conducted in the RStudio environment, using the mgcv package.

4.2. Residual Analysis

For hourly load values, for eleven zones, the NYISO set contains 24 × 11 = 264 load
time series. Each is modeled with the GAM terms from Table 2, selected and estimated
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using PIRLS/REML/DP. In order to investigate whether the proposed GAM dictionary has
sufficient capacity to describe them all, a residual analysis was conducted. Four years of
load and temperature data, covering 2009 up to 2012, were used for training the models.
First, the residuals of individual models were tested for any trend, level, or correlation
(left). The results are exemplified on hourly loads for the GENESE zone, in Figure 3: the
overlapped residual time plots for all hours (left) and corresponding autocorrelation plots
(right) are given. Except for the remaining outliers, present in all time plots, the residuals are
centered at zero with the variation that, for most of the time series, stays constant over the
whole period. Higher variance during the summer period was noticed for midday hours
(15th hour example highlighted in light grey), especially for more populated zones such
as NYC, LONGIL, WEST, and GENESE. This effect is typical for models with exclusively
temperature-based weather variables, which may have limitations in explaining the cooling
demands during the summer period. No significant correlation (left) was found for any of
the models.
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Figure 3. The overlapped residuals’ time plots (left) and corresponding autocorrelation (right) of
hourly time series, for GENESE zone.

A Lilliefors test (5% significance level) was used for checking the normality of the
residuals. In order to avoid the influence of outliers, the extreme values were excluded
from testing. For most of the residuals, the test rejected the assumption of normality,
with the exception of 7% of them, mostly those remaining from the 2nd and 3rd hour
models. The histogram and corresponding Q-Q plot indicated that all distributions were
symmetric about zero and bell-shaped, without skewness nor kurtosis. Two groups of test
outcomes were identified: the residuals whose distribution was close to normal and those
for the 13th–16th hours’ models, where the normality assumption was violated. As an
illustration, Figures 4 and 5 give the results for the 5th and 15th hours, for the GENESE
zone. For both, the Lilliefors test rejected the normality assumptions. For the fifth hour,
the descriptive statistics indicates a distribution very close to normal, which was a typical
result for most of the residuals. However, for the 15th hour, the deviation from normality is
evident and indicates a mixture of distributions. Further analysis revealed two overlapping
distributions, for the summer period and the rest of the year.
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Figure 4. Normality diagnostics of the residuals for the 5th hour, GENESE zone.
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Figure 5. Normality diagnostics of the residuals for the 15th hour, GENESE zone.

The overall residual for the GENESE zone, given in the Figure 6, obtained by com-
bining the individual hourly residuals, showed no signs of autocorrelation, which was
valid for all zones. This indicates that by including the loads from the two previous hours,
f8(Lh−1), f9(Lh−2), the between-hours correlations are fully captured.
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Figure 6. The autocorrelation of the overall residual for GENESE zone.

The partial residuals from the estimated smoothers were visually inspected to test
if their basis dimensions were properly chosen. As an illustration, Figure 7 shows the
partial effects of some terms selected by the VS procedure, for the 14th hour GENESE
zone. Weekly and yearly patterns, fw(week) and fy(year), maximal temperature for the
current day, f (Td

mx), previous day load on regular days, DT1x f (Ld−1
14 ), and holidays,

DT2x f (Ld−1
14 ), two days ago loads, f (Ld−2

14 ), and loads from the previous week, f (Ld−7
14 )

and from the previous two hours f (Ld
13), f (Ld

12) were selected as significant. The plots
were generated using the visreg R function, representing relative changes that particular
smoother produced, for the values of the input variable on the x-axis. It shows the estimated
mean of the smoother (black), the 95% confidence interval (blue), and partial residuals.
The residuals, well scattered over correctly modeled means, with no systematic deviation,
indicate properly dimensioned smoothers.

The results of the residual analysis, represented for a single zone above, were typical for
all NYISO time series. They showed that, for the available data, the proposed methodology
based on the GAM dictionary and the implemented VS has the capacity to capture the main
features of all loads from the dataset.
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Figure 7. Partial residual for the 14th hour for GENESE zone.

4.3. Some Comments on VS Results

As explained, the embedded variable selection mechanism selects the important load
features, while estimating the model. The VS results were approached by checking the
p-values (<0.05) associated with the model terms, using the dedicated mgcv function. Given
a large number of treated time series, some findings for all zones and hours are discussed.
The weekly and yearly profiles and impact of the loads from the previous hours are highly
significant for, almost, all load time series. The time series are predominantly determined,
either by basic load components (seasonalities, their interactions and trend) or by recent
loads, while some are temperature-driven. Night hours, for example, are described with the
yearly and weekly profiles and their variations, with a sporadically significant previous day
load and temperature. For morning (7th–9th) and afternoon (14th–17th) hours, the recent
load history effect converges to its minimal structure, which accounts for the previous day
and previous week values, while for diurnal non-working hours, the whole recent effect is
significant. Regarding the temperatures, generally, the actual day values (especially the
maximum) are of the most importance, while the previous two days’ temperatures and
variations over the week and year affect some hours and zones. The midday hours are
mostly temperature-driven. The special days are more significant for the diurnal hours,
starting from the seventh hour. From the VS results, for small zones, just separating holiday
after regular from regular after regular days proved to be sufficient, while for the NYC zone,
for example, all four categories were of use for describing the holiday effect. The changes
due to daylight saving (DS) mostly affects the 6th–10th hours in the morning and 17th–18th
hours in the evening, i.e., the time around the sunrise/sunset.

4.4. Predictive Performances

The predictive performances of the generated load models were evaluated with the
one-hour-ahead forecasting results, for selected test data. For a specific hour, the load
was forecasted by the procedure from Section 2.3, using gam, defined by the dictionary
from Table 2 and trained on historical loads for that hour and corresponding temperature
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realizations. The forecasts were generated using real temperature values. Four years of
data were chosen as the optimal training set size, assumed to be sufficient to capture the
dynamics of the implemented load features. Thus, loads and temperatures for the first four
years, i.e., from 1 January 2009 to 31 December 2012, initially, went to models’ training,
providing the first forecast and its evaluation for the first hour in 2013. The four-year
training data window and the procedure moved further, throughout 2013. The single
model estimation (with over 400 coefficients to be calculated) and forecast generation took
several seconds on an AMD Ryzen 5 3500U, 2.10 GHz, 8.00 GB RAM machine.

The quality of the prediction was measured with the mean absolute percentage er-
ror (MAPE) and mean absolute error (MAE), which, for M observations, are defined in
Equations (10) and (11), for the actual load value, Lh, and its forecast, L̂h:

MAPE =
100
M

M

∑
h=1

∣∣∣∣ Lh − L̂h
Lh

∣∣∣∣ (10)

MAE =
1
M

M

∑
h=1

∣∣Lh − L̂h
∣∣ (11)

The mean MAPE/MAE values for 2013, for each zone, are given in Table 3.

Table 3. One-hour ahead MAPE/MAE results for all NYISO zones for 2013.

Zone MAPE (%) MAE (MW)

WEST 0.50 10.3

GENESE 0.55 6.43

CENTRL 0.62 12.1

CAPITL 0.65 8.5

MILLWD 1.31 4.5

DUNWD 0.71 6.2

N.Y.C. 0.31 21.7

LONGIL 0.52 13.7

NORTH 0.78 9.0

HUDVL 0.98 9.4

MHKVL 0.52 4.6

The MAPE/MAE distribution by hour for each zone is given in Figure 8. The larger
errors around the daily peaks, especially those for the morning hours, are visible.
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Figure 8. Hourly MAE/MAPE results for NYISO zones for 2013.
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To gain insight into the performances of zonal models over time, we observed the
mean daily MAPE for the entire test period, for each zone. The bar graph from Figure 9
shows an example, only, for GENESE, as the results are qualitatively the same for the other
zones. Higher error values for the critical period around the consumption peak in July
were obtained.
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Figure 9. Mean daily MAPE for GENESE zone, for 2013.

4.5. Forecasting Results

As a basic STLF functionality, the real forecasting scenario for the next 24-h time hori-
zon was observed. Accordingly, the forecasting was initiated each day at 00 h, preceded by
an update of hourly submodels with the most actual available data history, up to the end of
the previous day. A step ahead forecast of each submodel, based on available temperatures
forecasts for the coming day, covers the next 24 h with the load prognosis. Since the model
also incorporates the load values from previous hours as inputs, the forecasts for 2. . . . 24 h
were obtained, recursively, using previous forecasts for 1. . . . 23 h. The same procedure was
run, also, for real temperature values (instead of forecasts) in order to gain insight into the
error caused by uncertainty of temperature forecasts.

Two-week time periods for each season, avoiding public holidays, were selected for
testing and representing the results: 7 January 2013–20 January 2013 (winter), 6 April 2013–
19 April 2013 (spring), 7 July 2013–20 July 2013 (summer), and 2 November 2013–15 Novem-
ber 2013 (fall). In Figure 10, which represents the hourly loads for 2013, for the NYC zone,
the chosen time periods are marked with the shaded intervals. As is obvious, the period
with maximum consumption in 2013 was also included for testing.
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Figure 10. Selected time intervals for testing (NYC zone).

The results of the zonal MAPE (MAE) over the corresponding time periods, for fore-
casted (f) and real (r) temperature values, are given in Table 4. The expected MAPE values
for each zone are given in the last column.
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Table 4. MAPE (MAE) results for selected time intervals, for each NYISO zone.

Zone f/r Winter Spring Summer Fall Averaged

WEST f 1.22 (22.87) 1.50 (27.29) 2.31 (49.87) 1.34 (25.42) 1.59 (31.36)
r 1.18 (22.28) 1.34 (23.41) 2.02 (42.55) 1.31 (24.90) 1.46 (28.29)

GENESE f 1.40 (20.05) 1.46 (16.35) 2.06 (30.87) 1.15 (12.53) 1.52 (19.95)
r 1.32 (19.01) 1.34 (14.71) 1.81 (26.43) 1.07 (12.14) 1.39 (18.07)

CENTRL f 1.42 (28.32) 1.28 (22.28) 1.93 (43.91) 1.46 (28.61) 1.52 (30.78)
r 1.32 (25.71) 1.20 (21.21) 1.85 (42.81) 1.42 (27.63) 1.44 (29.34)

CAPITL f 1.53 (20.84) 1.69 (23.82) 2.01 (35.79) 1.62 (21.92) 1.71 (25.59)
r 1.43 (19.38) 1.63 (20.62) 1.94 (34.76) 1.55 (20.81) 1.64 (23.89)

MILLWD f 2.75 (9.36) 2.92 (9,99) 2.97 (15.58) 2.94 (9.33) 2.89 (11.06)
r 2.35 (7.91) 2.73 (8.29) 2.88 (14.89) 2.73 (9.29) 2.67 (10.01)

DUNWD f 2.01 (14.51) 2.00 (13.58) 3.12 (36.87) 1.51 (10.32) 2.16 (18.82)
r 1.80 (12.26) 1.76 (12.37) 2.81 (36,87) 1.36 (9.14) 1.93 (17.66)

NYC f 1.10 (64.60) 1.31 (74.62) 2.42 (217.54) 0.83 (54.71) 1.42 (102.87)
r 0.90 (52.82) 1.03 (57.73) 2.06 (193.29) 0.79 (49.52) 1.20 (88.34)

LONGIL f 1.77 (45,94) 1.72 (40.22) 2.72 (112.38) 1.79 (41.62) 2.00 (60.04)
r 1.73 (45.73) 1.61 (36.01) 2.67 (108.23) 1.55 (35.92) 1.89 (56.47)

NORTH f 1.17 (9.53) 1.01 (7.81) 1.15 (8.83) 1.51 (11.83) 1.21 (9.50)
r 0.98 (8.00) 0.92 (7.06) 1.09 (8.33) 1.38 (10.64) 1.09 (8.51)

HUDVL f 1.65 (18.77) 1.68 (17.91) 2.82 (47.90) 1.64 (18.3) 1.88 (25.72)
r 1.60 (18.10) 1.53 (15.82) 2.69 (42.05) 1.42 (15.7) 1.81 (22.92)

MHKVL f 1.82 (20.21) 2.28 (25.41) 2.68 (30.67) 2.06 (19.54) 2.21 (23.96)
r 1.76 (19.03) 2.02(20.12) 2.63 (29.60) 2.00 (18.85) 2.01 (21.90)

Although no strict comparative study was conducted, it was found that the MAPE
values, obtained for 24 h ahead, are competitive with some recently reported for the NYISO
data set, [38,39]. The minimum accuracy was achieved for the MILLWD zone. This is the
zone with the lowest average consumption of about 300 MW, and a standard load variation
results in higher MAPE error. The MAPE errors are higher during the summer cooling
period than for other seasons, less pronounced for the low populated NORTH and small
MILLWD zones, while noticeable for highly urban, big regions. In general, the residual
tests and overall forecasting results indicate that further improvements of the proposed
model are needed to overcome limitations in explaining the summer rise in consumption
caused by the significant number of air conditioners. This is in accordance with the results
from [36], where it was reported that, for U.S. regions, the predictions based only on the
air temperature tend to underestimate the load during the summer period. The perceived
heat during the prolonged summer temperature extreme causes a faster-than-predictable
increase in the load, not explainable only with the temperature indices. The additional
weather variables, the near-surface humidity, recommended in [36], can be included in the
model with the appropriate GAM term, added to the dictionary.

To test the special day effect, forecasts for selected holiday dates were compared
with those produced by a model treating all days as regular. Finally, the DT variable was
removed from the model. The obtained MAPE errors are given in Table 5 for the model
with all holidays accounted for (in) and excluded (out).

The proposed approach to the treatment of special days does not take into account the
specifics of individual holidays and models the hourly reduction in consumption, averaged
for all them. According to the values from Table 5, for most public holidays, which are
days off for most of the population, schools, and businesses, such as Memorial Day or
Independence Day, the MAPE error is reduced by more than 50%. For some zones/holidays,
this reduction is even close to the accuracy of a regular day. As an illustration, the case of
Independence Day for the NYC zone is shown in Figure 11: without treated special days,
the forecast results give 10.8% MAPE (blue to red line error), while including them in the
model, the MAPE decreased to 2.0% for that day (green to red line).



Sensors 2022, 22, 7247 17 of 20

Table 5. MAPE results for special days for each NYISO zone.

Zone In/Out 1 January Easter Sunday Memorial Independence Columbus

WEST in 2.91 0.94 2.23 2.72 2.03
out 7.94 5.72 10.50 8.30 2.15

GENESE in 3.52 1.51 2.15 3.82 1.92
out 11.59 8.72 12.50 10.10 2.14

CENTRL in 3.62 1.58 1.74 3.34 1.24
out 5.30 6.64 8.82 7.23 1.38

CAPITL in 4.92 2.24 3.25 3.13 1.52
out 10.12 3.82 11.81 7.94 1.77

MILLWD in 2.54 3.23 3.92 2.53 2.22
out 10.81 3.53 11.26 3.72 2.27

DUNWD in 3.72 2.53 2.10 2.31 2.43
out 10.12 2.95 9.74 9.34 2.55

N.Y.C. in 3.40 1.33 1.32 2.01 3.21
out 11.23 5.97 9.90 10.80 3.39

LONGIL in 2.84 3.17 3.41 3.32 3.50
out 9.16 3.95 10.92 5.27 3.67

NORTH in 1.72 0.88 1.24 0.92 0.91
out 1.83 1.84 2.63 2.32 1.01

HUDVL in 3.72 1.13 4.62 1.53 1.63
out 8.73 5.94 7.81 3.35 1.73

MHKVL in 3.21 2.10 3.26 1.92 2.21
out 9.97 4.72 14.62 4.56 2.34
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Figure 11. Special day effect for the example of Independence Day (4 July 2013), for NYC zone.

For Columbus Day, for example, the MAPE results without special day treatments
are not as bad, and consequently, the improvements are not as pronounced. It is possible
that it is only partially a non-working day and acts similar to a regular day. Easter, when
considered as a regular day, also has a slightly lower MAPE, as it falls on Sunday, and lower
consumption has been captured with week seasonality. However, NY Eve and Easter create
a more complex holiday effect, which requires more attention. In general, taking into
account some specifics of individual holidays or, at least, categories of holidays would
improve the accuracy of these days’ predictions.

The DST-induced load changes are most noticeable in the period immediately after
its implementation. Therefore, the first week after the spring clock change (covering the
period from 11–17 March) was selected as a reference for evaluating the incorporated DST
effect. As in the case of special days, the results of forecasting for these dates between
the full model and those with the excluded DST effect, i.e., without the DSx fy(year) and
DSx fw(week) terms, were compared. The average MAPE results for this week and for each
zone, given in Table 6, indicate an improvement in forecasting accuracy for the period
mostly affected by the DST effect.
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Table 6. DST effect for selected time intervals, for all NYISO zones.

Zone Without DST With DST

WEST 1.58 1.28

GENESE 1.84 1.65

CENTRL 2.32 2.21

CAPITL 1.94 1.66

MILLWD 4.50 4.23

DUNWD 2.05 1.78

N.Y.C. 1.97 0.85

LONGIL 1.92 1.58

NORTH 2.16 1.38

HUDVL 2.68 2.64

MHKVL 1.88 1.85

Since it is related to consumers’ habits, the DST effect, as well as its reduction are more
pronounced for highly populated zones. In Figure 12, the average MAPE error for each
hour in the day, over the post-DST week, for the NYC zone is given.
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Figure 12. Average MAPE result for each hour in a day for the week after DST (NYC zone).

The daylight saving effect is based on the clock change dates, with DST built into
the annual and weekly profiles of a single load. However, when daylight information is
available, as is the case in [37], it can be used to construct appropriate GAM terms for a
more general approach to the DST effect.

5. Conclusions

This paper presents a methodology for forecasting the multiple loads in the grid, using
the generalized additive model (GAM). It is based on an application-specific dictionary
of standardized GAM terms and a procedure for its dynamical adaptation and forecast
generation for individual loads.

The main advantage of the proposed approach is that it reduces the complex problem
of developing multi-load forecasting to a simpler task of GAM dictionary construction.
GAM terms are spline-based elements, able to capture complex dependencies, without sig-
nificant prior assumptions nor critical hyperparameters involved, which can be stan-
dardized for a specific load forecasting application, defined with the aggregation level,
forecasting horizon, and available data. The selection of terms and dictionary adaptation
to a specific load was performed by the shrinkage-type variable selection. In this work,
an example of a dictionary, constructed for loads for eleven NYISO zones, was presented,
prepared for a 24-h load forecasting functionality, using available historical values for loads
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and temperatures. Residual analysis and one-hour-ahead prediction results confirmed the
generalizability of the proposed methodology and its ability to cope with the heterogeneity
of the NYISO load profiles. A case study for 24-hour-ahead forecasting, in real conditions,
produced results competitive with some recently reported and demonstrated the ability
of the generated models to cope with the characteristic load features, such as the special
day effect, daylight saving effect, etc. However, the NYISO dictionary needs to be updated
with additional weather variables, to improve the modeling of the weather-induced load
during summer. The next step is to evaluate the approach for different consumer cover-
age, primarily for buildings and smaller consumer aggregations, which are of particular
practical importance in smart grids.

Another advantage of the presented methodology is the concept of dynamic variable
selection, addressed to the shrinkage embedded into the fast estimation procedure, which
enables fast, dynamic remodeling with each new datum. It represents an adaptive potential
of the load forecasting functionality in the presence of various uncertainties in the grid,
which has yet to be evaluated.
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