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Abstract: Federated Learning (FL) enables multiple clients to train a shared model collaboratively
without sharing any personal data. However, selecting a model and adapting it quickly to meet
user expectations in a large-scale FL application with heterogeneous devices is challenging. In this
paper, we propose a model selection and adaptation system for Federated Learning (FedMSA), which
includes a hardware-aware model selection algorithm that trades-off model training efficiency and
model performance base on FL developers’ expectation. Meanwhile, considering the expected model
should be achieved by dynamic model adaptation, FedMSA supports full automation in building and
deployment of the FL task to different hardware at scale. Experiments on benchmark and real-world
datasets demonstrate the effectiveness of the model selection algorithm of FedMSA in real devices
(e.g., Raspberry Pi and Jetson nano).

Keywords: federated learning; model selection; device adaptation; model adaptation; orchestration;
distributed system

1. Introduction

Cloud computing has positively affected people’s daily life and industrial production
since it was proposed around 2005 [1], such as social media, cloud storage services and
industry 4.0. Meanwhile, the Internet of Things (IoT) industry is developing rapidly, and the
number of IoT devices worldwide will reach more than 41 billion by 2027, which is five
times that of about 8 billion in 2019, as forecasted by Business Insider [2]. Billions of IoT
devices connect to the Internet to produce large volumes of data daily, which are transferred
and stored in cloud servers. However, the challenges of complying with rigorous data
protection regulations such as EU/UK General Data Protection Regulation (GDPR) [3] make
it extremely difficult to collect data across heterogeneous sources. Besides, centralized data
storage, unified servicing and modelling in the cloud are also facing massive pressures from
the constraints of network bandwidth of IoT devices and users’ privacy leakage problem [4].
As a consequence, Machine Learning (ML)-applied device intelligence becomes vital and
important development direction of IoT. The emergence of on-device learning solves the
problem of bandwidth and privacy by directly using local data to train ML models and
make predictions instead of using the predominant paradigm of ML that trains a model in
the cloud and inferences locally [5].

However, because of the enormous difference in data distribution and diversity, the on-
device learning may lead to a serious problem in that the model trained locally cannot
achieve the same performance as the model trained centralized in the cloud. To cope with
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the aforementioned challenge, Federated learning (FL) was proposed to let different clients
(e.g., mobiles, servers or companies) collaboratively train a unified model while keeping
the training data locally [6,7]. FL has been applied to various privacy-critical scenarios such
as hospitals [8], banks [9] and autonomous vehicles [10]. In FL, sharing raw personal data
is strictly prohibited, and only model parameters can be transmitted between the server
and clients. In this way, the local model performance of all clients could be improved while
ensuring privacy security. One round model training process of horizontal FL is shown in
Figure 1: ¬ A central server broadcasts the global model to all clients;  all clients train
the latest global model using their local data to get the latest local model; ® all clients then
upload their latest local model to the central server; ¯ finally, the central server aggregates
all local models from clients to update the global model. Since the aggregation progress will
happen after receiving all local trained models in horizontal federated learning, the overall
system training time is determined by the slowest client. To address this problem, authors
in [11] proposed an adaptive deadline determination algorithm for mobile device selection.
Nevertheless, it effectively reduces the FL system’s training time but does not trade-off
both training efficiency and final model performance.

Local Training

Server update

Local update

Local ModelGlobal Model

Local Training

Local ModelGlobal Model

Local Training

Local ModelGlobal Model

Local Model Aggregation

Global Model

Client

Client

Client

Central Server

1
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Figure 1. Vanilla Federated Learning Workflow.

Based on [6], the FL setting could be divided into “cross-silo” and “cross-device”
regarding training among different organizations or devices. The focus of this paper is
on cross-device FL, which means the clients include a large number of mobile or IoT
devices. Selection and adaptation of the task model structure is a significant challenge for
cross-device FL with heterogeneous hardware. Historically, most FL research has directly
used the widely adopted model structure in centralised machine learning [7] or undertook
manual designing of the structure [12] based on the target training task. More recently,
several studies have started to focus on using Neural Architecture Search (NAS) [13] to
automatically generate an optimal model structure. They mainly focus on optimising
model performance for the reference stage, such as higher accuracy and lower inference
latency. In practice, this may hinder the applicability of FL since model training efficiency
and hardware heterogeneity also affect the efficiency and performance of the whole FL
system. Thus, FL developers find it difficult to achieve the expected results without cross-
platform model adaptation and training and inference running simultaneously.

To improve the applicability of practical FL, we consider a realistic setting in which
FL system contains heterogeneous hardware where some clients contribute to the central
model and use the local model to make predictions simultaneously. Our goal is to select an
expected model structure that trades-off the training efficiency (e.g., training time, network
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utility) and model performance (e.g., accuracy, inference latency), while considering the
developer’s choices. For example, some developers are more sensitive to model training
efficiency, and some want to get a model with optimal performance. Because NAS requires
high computational demand, some methods need thousands of GPU days to search the
best architecture for some tasks, which can be an unacceptable and catastrophic situation
for developers [14]. So our work is based on the pre-searched models’ metrics from NAS-
Bench-201 [15] and HW-NAS-Bench [16]. Nevertheless, although our model selection
algorithm can accurately select the optimal model structure under the given parameter, we
recognized that it is difficult to accurately select the optimal model structure that meets
the developer’s expectations through our model algorithm by one-time deployment as FL
developers may have more personalized preferences. Therefore, we need a system that
supports rapid task deployment at scale, iterating over the results to get the optimal result
that developers expect.

In this paper, we propose FedMSA, a Model Selection and Adaptation system for Federated
Learning, which can address the previously listed challenges. It reduces the complexity of
FL system deployment by providing automation of adaptation and deployment of training
task as microservices in a FL life-cycle along with model selection (MS) algorithm. Our MS
algorithm could help FL developers search for an optimal model structure based on their
expectations in training efficiency and final model performance. On comparing the results
of our MS algorithm with manual design and direct selection of a model by one factor from
NAS, the model selected by our algorithm achieves good performance in training efficiency
and model performance. Similar ideas have been proposed in network speed optimization;
for example, the MARS method proposed in [17] maintains balance for comprehensive
utilization, transmission efficiency, and monetary cost to optimize high-speed mobile
networks. But, to the best of our knowledge, this work is the first attempt to tackle the
challenges of training efficiency and model performance by identifying the optimal model
structure that meets developer expectations.

Our contributions are summarized as follows:

• Methodologically, we propose a model selection algorithm.
• Practically, we design and implement FedMSA system in real distributed devices with

heterogeneous hardware.
• Empirically, we demonstrate the effectiveness of MS algorithm on real-world datasets

and compare with other methods.

The paper is organized as follows. Section 2 deals with an overview of related works
and state-of-the-art studies. Section 3 discusses the motivation, while Section 4 describes
the proposed algorithm and the system. Section 5 presents the evaluation of our algorithm.
Finally, the paper is summarized, and future work is discussed.

2. Background and Related Work

Machine Learning (ML) was proposed in 1959 [18], as a part of artificial intelligence (AI).
ML imitates human learning by modelling experience (historical data) and can constantly
self-iterate to improve its performance. During the past two decades, ML made significant
progress by successful application in many areas of technology and science, for example,
computer vision, natural language processing, autonomous vehicle and robotics [19]. As for
the traditional ML tasks, such as classification or linear regression, the user only needs to
spend several minutes or hours training the model on a server or personal computer. Deep
learning (DL) made the number of technological breakthroughs after deep conventional
neural networks were proposed in 2012 [20] and significantly outperformed ML. Mean-
while, the number of layers of models designed by ML engineers is increasing, such as
ResNet [21]. ResNet allows the network layers of neural network (NN) to be continuously
superimposed without negatively affecting the model’s accuracy, so the authors of ResNet
tried increasing it to 110 layers with 1.7 million parameters. In addition, the model structure
continues to become increasingly complex, such as the Transformer [22] where the number
of parameters of the basic Transformer model is 67 million, and the big Transformer model
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could achieve 213 million. Both models have more computation complexity and require
more computation resources than the three layers multi-layer perception (MLP) model widely
used in classic ML tasks.

On the other hand, with an increasing number of edge and IoT devices being connected
to the Internet, high volumes of data are being generated and transmitted to the cloud
server to train a model. However, the simultaneous and high-frequency transmission of a
large amount of data can cause network overload and leak user privacy. Furthermore, data
regulations (such as the GDPR) make it hard to access cloud services providers or collect
data from terminal devices (e.g., mobiles, sensors). In 2016, the authors in [7] proposed
FL, which is a solid solution to the above problems. It lets clients train a central model
by feeding their own data collaboratively. Compared with traditional ML model training,
sharing raw personal data in FL is strictly prohibited, and only model parameters are trans-
mitted between the server and clients. While protecting user privacy and network traffic,
the training model of FL could learn the representation of every client’s local dataset to
improve model performance. However, similar to the classic distributed system, hardware
heterogeneity in cross-device FL can also bring many challenges such as how to generate a
model that can be trained efficiently and perform well on heterogeneous hardware.

In centralized deep learning, the developer usually manually designs a model structure
for the target task based on their knowledge or experience, such as ResNet [21] in the
image classification task, and Transformer [22] and Bert [23] in machine translation task.
Manual design of model structures not only increases the labour and time costs of model
design and testing, but also makes it difficult for machine learning engineers to design
models with good performance in a short period of time. As a consequence, numerous
different NN connections choices have to be tried [24]. To avoid this, in recent years, some
studies have started to use neural architecture search (NAS) instead of manually generated
network models. NAS aims to find good architectures, and NAS methods outperform
manually designed architectures on some tasks such as object detection [25,26] or semantic
segmentation [27–29]. After the NAS first-time proposed in [24], most of studies focused
on searching for a model structure with the highest accuracy [30]. As the accuracy of model
architecture has improved and becomes state-of-art, some works have started to consider
how to strike a balance between performance and efficiency [29,31]. However, due to user
data privacy security and network traffic pressure, centralized ML in cloud is shifting to
on-device learning and inference on target devices. Thus, some studies involve searching
of a model architecture by considering target hardware [15,32–34] or design a specific NAS
for target hardware such as [31,35] employ NAS for microcontrollers (MCU). Unlike unified
model training, on-device learning may lead the model to underperform in some tasks due
to lack of data diversity.

To tackle this problem, FedAvg as vanilla federated learning paradigm proposed
in [7] allows thousands of clients to train a central model. As a distributed learning
system, selecting a model structure is very difficult. It should consider model training
efficiency in local devices, whole distributed system utility, and model performance in
heterogeneous hardware. Existing NAS methods can only search for the model with
best performance [25–29,31,35] or list all model structures and give pre-measure met-
rics [15,16,34], but lack a model selection method for distributed and federated machine
learning systems. However, there are some works on model selection methods that have
been attempted. In [36], authors proposed an inference model selection scheme which
considers the desired accuracy and inference time for a single target embedded deep learn-
ing platform (e.g., Jetson Tx2). Authors in [37] aim to select a model from a large number
of available source models that can maximize the predictive performance in the target
domain of transfer learning, and they select a model by sorting source models according
to their mean silhouette coefficient (MSC) score which is calculated by using cosine distance
metric. Although these methods can select the optimal model, they lack consideration of
model training efficiency, model performance and heterogeneous hardware for FL system.
Moreover, in a real federation learning system, rapid model adaptation and model selection
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are equally important, FL developers are likely to select and redeploy the selected model
multiple times to get the model they expect. This iterative process can be time-consuming
and hence, designing a model adaptation orchestration system at scale to support rapid
model selection is necessary. Although there have been various platforms supporting
deployment and development of FL such as Flower [38], FATE [39], FedML [40], these
platforms failed to consider heterogeneous hardware and model selection in real-world
distributed systems. To the best of our knowledge, runtime model selection and adaptation
system have not been performed in FL applications.

3. Motivation

Consider a system of a real-world large-scale FL application shown in Figure 2. Edge-
IoT client devices with various hardware architectures simultaneously perform local predic-
tion tasks which contribute to a central ML model training in a cross-device FL framework.
In a networked, distributed and cross-device machine learning system, the primary chal-
lenge is model design or model selection as many factors, such as local and global training
efficiency, network pressure and model performance need to be considered in heteroge-
neous hardware architectures. As regards efficiency-sensitive model training tasks, such as
recommendation systems, the cold-start phase requires the model training to achieve high
accuracy within certain time constraint when a new user or item joins the network. More-
over, some performance-sensitive model training tasks, such as CCTV anomaly detection
system, real-time temperature monitoring and alert system, require the model training to
perform high accuracy along with low inference latency. These factors raise challenges in
manual model design or model selection. Although there exists research that focuses on
model selection method [36,37], they fail to consider federated and distributed machine
learning framework. Model structure selection automation is crucial in balancing model
training efficiency and performance.

Client Cluster NClient Cluster 2Client Cluster 1
Client DevicesClient DevicesClient Devices

Central Server

Device Local Model

Local prediction

Server update
Local update

Device Local Model Device Local Model

Figure 2. Illustration of the motivations. The client clusters represent companies where each cluster
contains many heterogeneous devices as Federated Learning clients. The local model of a device
participates in FL training and task inference simultaneously.
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However, the generated model may not meet the FL developer’s expectations. There-
fore, a better way is to allow users define the satisfying proportion of model performance
and training efficiency. Additionally, several existing NAS studies [15,32–34] provide
model structure search space with pre-measured metrics and inference latency in various
platforms (e.g., Raspberry Pi, Edge GPU device, and TPU). Nonetheless, no existing studies
focus on searching for a ML model based on the developer’s preference to balance training
efficiency and model performance in federated learning. A system that provides model
selection and multi-platform adaptation service, and simplifies the deployment of FL tasks
in real devices is a fundamental requirement.

4. Proposed System

This section presents the proposed FedMSA system, large-scale FL, as well as the
model selection algorithms.

4.1. System Architecture

In response to the previously mentioned challenges, we developed FedMSA, a cross-
platform model selection and adaptation system for federated learning applications. We
present the overview and architecture of FedMSA in Figure 3, which consists of three main
components: Orchestration Infrastructure, Federated Learning and Visualization. FedMSA
meets aforementioned requirements, providing flexibility and reliability for FL developers
in personalized FL tasks deployment with automatic model selection and adaptation for a
specific client’s hardware platform.

Result

Orchestration Infrastructure
n...

Federated Learning
n...

Controller

Aggregator

Visualization

Task Handler

API

Model
Selector

Message
Queue

Executor 1

Agent 1

Model Monitor

Github
ML

Developer

Message
QueueAgent Manager

Trigger

Push

Task
Handler

Platform Detector

n... Client 1 Model
Monitor

Cross-platform Builder

Upload Data Upload Data

Client Manager

Platform 
Detector

Instruction

Wandb Influxdb

Deploy Deploy

Figure 3. System Architecture.

Orchestration Infrastructure. Automatic, rapid and agile deployment of FL task is
the key to achieving effective model adaptation for a distributed system across different
devices with heterogeneous hardware architecture, especially for a large-scale networked
ML system. Therefore, we designed an orchestrator as the infrastructure of FedMSA,
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which supports all aforementioned functionalities from source code auto-building to auto-
deployment. It consists of two main components: controller and agents running at the
cloud tier and edge tier of edge-cloud computing environment respectively. Meanwhile,
all messages transferring between components are handled by a message queue service,
and all agents are organized by the agent manager. The training task starts after a machine
learning developer pushes the latest code to Github and triggers the task handler to process
the task code by calling a cross-platform builder to build FL task code into the microservices
base on the hardware architecture information (e.g., x86_64, aarch64 and armv7l) of every
agent host which is reported by platform detector.

Federated Learning. An FL system (e.g., FedAvg [7]) usually consists of thousands of
participating heterogeneous devices. The scalability requirement of FL deployment necessi-
tates a model selector to generate model structure automatically based on the developer’s
expectation. Accordingly, we design a Neural Architecture Search (NAS) based model
selection algorithm that traded-off model training efficiency and model performance on
the heterogeneous hardware, which we discuss in detail in Section 4.2. Further, aggregator
and executors are deployed by orchestration infrastructure while message queue handles
communication between them where each executor deploys one/multiple clients based
on the number of computation units (e.g., CPU, GPU) in the target device. A global client
manager manages all clients in the aggregator including client registration, join or quit
training requests, and client selection algorithm management.

Furthermore, we provide two ways for fast model adaptation: 1. developers can
send an instruction to switch the current training model by the public API whereby the
aggregator and all clients will stop current training tasks and load new model to execute
by received commands. 2. developers can modify a parameter in the configuration file
to calculate new scores for all model candidates and once the latest codes are pushed,
the orchestration infrastructure will redeploy all components automatically.

Visualization. All model training information, model performance are uploaded to
visualization tools in real-time by model monitor of Federated Learning of FedMSA. Our
system supports online monitoring tool Wandb (https://wandb.ai/site accessed on 18
August 2022) and local visualization tool Influxdb (https://www.influxdata.com/ accessed
on 18 August 2022).

4.2. Model Selection Algorithm

As mentioned in Section 1, all model structures x that our algorithm uses are from the
search space of NAS-201-Bench X (the ith model structure is x(i) ∈ X), essential metrics
of every model are from NAS-201-Bench, and metrics about model inference latency
in different hardware are from HW-NAS-Bench. We propose a method in Algorithm 1
to collect and organize the metrics from both NAS benchmark studies. The platform
detector component in the FL to collects platform information P and bandwidth B from
all clients C Figure 3. In particular, our system allows FL developers to pre-filter out
the model with unexpected accuracy according to given set model accuracy expectation
parameter α ∈ [0, 100] in the configuration file while abnormal model structures are filtered
out by system. Besides, to ensure that the impact of each metric on the final score calculation
is similar, we adopt the data Min-max normalization [41] that reorganizes the distribution
space of all metrics belonging to the values between 0 and 1, and is shown as:

f (metrics) =
xi,j − xmin

j

xmax
j − xmin

j
(1)

In the Equation (1), j is the index of attribute of models (e.g,. size of model, estimated
accuracy of model), i is the index of a model, xi,j represents the exact value of attribute
j of the model i, and xmin

j and xmax
j is the minimum and maximum value of attribute

j respectively.

https://wandb.ai/site
https://www.influxdata.com/
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Algorithm 1: Pseudocode for model metrics collection
Input :Client information c, Model accuracy threshold α
Output :A set of normalized model metrics Mn

1 function MODEL_METRICS_COLLECTION(c)
2 P, B← Platform Detector ; // Collect platform information P and Device

Network Bandwidth B from all clients
3 for i in range(N) do
4 m append HWlat ←HW-NAS-Bench(i) ; // A row of metrics m
5 m append Tacc, Acceval , Losseval , Fmodel , Nparams ← NAS-Bench-201(i)
6 m append Etrain which is calculated by Equation (4)
7 m append U which is calculated by Equation (5)
8 Mc append data_clean(m,α) ; // Filter out abnormal model structure and

the model accuracy less than α

9 Mn ← normalization(Mc) base on Equation (1)
10 Save Mn as a model metrics file
11 return Mn

In the system design view, we consider the running memory requirements of NAS-201-
Bench to be around 25G. Accordingly, in the Algorithm 1, we use one-time data collecting
or pre-collecting and loading from NAS-201-Bench in the future method to save Mn as a
model metrics file. This approach not only dramatically reduces the spatial complexity of
our system, but also enables our system to support more devices.

Our model score calculation algorithm mainly follows the Equation (2), and working
details shown in Algorithm 2. It aims to trade-off model training efficiency and model
performance base on a FL developer’s input parameter γ ∈ [0, 1] which indicates the extent
to which the developer is concerned about the efficiency of model training.

Score = f (ModelTrainingE f f iciency)× γ + f (ModelPer f ormance)× (1− γ) (2)

Algorithm 2: Pseudocode for score calculating
Input :Normalized model metrics set Mn
Output :A set of model metrics with scores Ms

1 function MODEL_SCORE_CALCULATE(Mn)
2 if Not exist model metrics file then
3 Mn ← Algorithm 1
4 else
5 Mn ← load model metrics file

6 for i in range(NAS-201-Bench search space) do
7 m← Mn[i]
8 Score← Calculate m by Equation (2)
9 Ms append Score

10 return Ms

Based on the model metrics Mn from Algorithm 1, we found that five factors can form
Equation (3) to calculate model training efficiency: training time to the model accuracy
Ttrain, FLOPs of the model Fmodel , numbers of parameters of the model Nparams, training
efficiency in accuracy increasing Etrain, and bandwidth utility of a device U. Since some
metrics are negatively correlated with model training efficiency, we set their value as
negative and upon averaging, we get:

f (ModelTrainingE f f iciency) = −(Ttrain + Fmodel + Nparams + Etrain)−U (3)
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where Etrain is calculated by Ttrain and expected final evaluation accuracy of the model
Acceval which is:

Etrain =
Ttrain

Acceval
(4)

and U calculated by the average of all bandwidth of client devices Bc, and the Sbit which
means the storage bit of the development platform. In this work, we use Pytorch (https://
pytorch.org/ accessed on 18 August 2022) as our development platform, so this parameter
is equal to 32 bit.

U =
∑C

c=1 Bc

Nparams ∗ Sbit
(5)

We can then summarize the equation for the model training efficiency calculation as:

f (ModelTrainingE f f iciency) = −(Ttrain + Fmodel + Nparams) +
Ttrain
acceval

+
∑C

c=1 Bc

Nparams ∗ Sbit
(6)

In order to let every metric have the same impact for score calculating, we set the
calculation of Etrain and U before the data normalization process as shown in Algorithm 1.

As for the model performance calculating, we mainly focus on the impact of model
evaluation accuracy and loss and the model inference latency in every FL client device,
which is negatively correlated with model performance. It can be described as:

f (ModelPer f ormance) = acceval + losseval −
N

∑
n=1

Latn (7)

Overall, the model score calculation equation can be summarized as Equation (8). We
calculate scores for all model structures and wrap them up into a set Ms for further model
selection decision.

g(Score) = −(Ttrain +−Fmodel +−Nparams) +
Ttrain
acceval

+
∑C

c=1 Bc

Nparams ∗ Sbit︸ ︷︷ ︸
ModelTrainingE f f iciency

×γ + acceval + losseval −
N

∑
n=1

Latn︸ ︷︷ ︸
ModelPer f ormance

×(1− γ) (8)

After defining the necessary functions, we start primary federated learning training as
presented in Algorithm 3. The task starts from procedure D, and our system directly starts
training if FL developer has already assigned a specific model index idx in the configuration
file. If not, the system will select the model index with the highest score from the ranked
model metrics list Mr.

During model training, the public API allows the developer to decide whether the
current training needs to be terminated and the model adapted from the results of the
monitoring data visualization tool shown in Figure 3 by sending instructions at any time.
In this way, the cost of task redeployment can be significantly reduced and the developer
can re-score all model structures by modifying the γ in the configuration file.

https://pytorch.org/
https://pytorch.org/
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Algorithm 3: Algorithm of FedMSA system
Server input : training efficiency concern rate γ, global step-size αg, global communication

round R, and local updating iterations I, NAS-Bench-201 search space N, FL
developer assigned model index idx

1 We start with Procedure D.
2 Then initializing clients with Procedure A.
3 For r = 1→ R rounds, we run Procedure B and Procedure C iteratively .
4 procedure A CLIENT_INIT(c, index)
5 fc ← NAS-201-Bench(index) ; // load model from NAS-201-Bench base on index

6 procedure B CLIENT_UPDATE(c)
7 fc ← f ; // Receive updated model from SERVER_EXECUTE
8 for l = 1→ I do
9 fc ← fc − sgd ; // Local model update

10 send fc − f to SERVER_EXECUTE

11 procedure C SERVER_EXECUTE(index)
12 for i← 0 to R do
13 f ← NAS-201-Bench(index) ; // Load global model
14 Broadcast f to all clients ;
15 Receive local models’ updates { fc− f }C

c=1 from CLIENT_UPDATE
16 f ← f -ΣC

c=1( fc− f ) ; // FL aggregation broadcast f to CLIENT_UPDATE

17 procedure D main()
18 if Developer pre-assigned idx then
19 Run Procedure C with input idx
20 else
21 Ms ← Algorithm 2
22 Mr ← sort(Ms)
23 i← 0
24 index ← Mr.index[i] ; // Get the model index from highest score
25 Run Procedure C with input index
26 while end FL training do
27 if request ← User’s instruction ; // System get user’s instruction from

API
28 then
29 if Users’ assigned model index in request then
30 index ← request
31 else
32 i+ = 1 index ← Mr.index[i] ; // Switch to next model in Mr

33 Broadcast message to aggregator and all clients to stop current training,
starting a new training with model index.

5. Evaluation

In this section, we present the results of the experiments performed with proposed
FedMSA system. We also discuss the technical details of the experimental testbed.

5.1. Experiment

We deploy all our system components, including the MS algorithm on real-world
testbeds, as shown in Figure 4. In FedDAS, the cloud server is deployed on an Ubuntu
server with 20 core (Intel(R) Xeon(R) Silver 4114 CPU @ 2.20 GHz), Gigabit Ethernet
and 64 GB memory. The edge devices consist of five Jetson-Nanos (https://developer.
nvidia.com/embedded/jetson-nano-developer-kit accessed on 18 August 2022) with 4GB
RAM, 128-core Maxwell GPU, Gigabit Ethernet and ARM Cortex-A57 CPU each, and two
Respberry Pi 4 models with 4GB RAM, Gigabit Ethernet and 1.5 GHz 64-bit quad-core
ARM Cortex-A72 CPU. The networking devices consist of a switcher with Gigabit Ethernet
and a router with 10 Gigabit Ethernet.

https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
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Figure 4. Experiment Devices.

For the proof-of-concept, all of our experiments have been conducted on a widely
adopted benchmark Cifar10 [42] in vanilla federated learning FedAvg [7] and we trained
the experimental models for 140 communication rounds with 1 local epoch in total.

We present the comparison of our solution with three well-known neural network
models in Table 1: (i) a manually designed, widely used and influential model ResNet [21].
In order to let the size of the model close to the model searched from our system, we used
ResNet20 (20 layers ResNet); (ii) two models searched from NAS-201-Bench sorted by a
single indicator. They were searched by maximising evaluation accuracy and minimising
total training time to accuracy. Three models searched by our FedMSA system were defined
by γ = 0.1, 0.2, 0.8.

In addition, we let FedMSA filter out the model with less than 70% accuracy by setting
α = 70 in the configuration file. On the other hand, all models’ latency measurement
experiments are in batches to easily distinguish the gaps in the different experiments’
results. The forward and backward propagation latency is measured base on batch size of
the training set (64), and inference latency is measured by batch size of the test set (32).

To evaluate our model selection algorithm, we select a related study that is also trying
to get the best model without training. Similar to FedMSA, NASWOT was proposed in [43],
which is also based on the NAS-201-Bench search space. However, they did not consider
training efficiency in the cross-device federated learning setting.

5.2. Results

We present a comprehensive investigation of the proposed FedMSA method on Cifar10
benchmark. We divided the experiment into three control groups, and the experimental
results of our MS algorithm are reported in Table 1 from one Jetson nano and one Raspberry
Pi 4.

In the first group, we use the selected model structure with a higher model per-
formance by setting γ = 0.1 for FedMSA, a model structure searched by NASWOTand
NAS (Max Acc) is the model structure with the highest accuracy directly searched in the
NAS-201-Bench search space. As we can clearly see that although the global test accuracy
of NAS (Max Acc) is 1.3% more than FedMSAγ = 0.1, it got two times more in FLOPs of
the model, training time per round and all model latency metrics in client devices than
FedMSA (γ = 0.1). Particularly noteworthy are some metrics with large base values, such
as training time per round and model performance in latency where more than twice
those metrics can be catastrophic for the tasks sensitive to training efficiency or inference
delay. Besides, the model searched by NASWOT performs similar to NAS (Max Acc)
in training efficiency, and model latencies matrix. But, the accuracy of the model was
reduced 6.42% performance.
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Table 1. Result Summary Total Communication Round 140.

Model
Numbers of
Parameters

(M)
FLOPs (M) Training Time

(m)/Round

Forward
Propagation
Latency (ms)

Back
Propagation
Latency (ms)

Model
Inference

Latency (ms)

Global Test
Accuracy

Global Test
Loss

NAS(Max
Acc) 0.86 (×2.5) 15.61 (×2.6) 22.95 (×2.1)

2579.47 1

(×2.1)
135.42 2 (×1.9)

4889.23 1

(×2.4)
160.49 2 (×2.2)

2371.46 1 (×2)
105.91 2 (×1.7) 92.05% 0.247

NASWOT 0.46 (×1.35) 8.3 (×1.37) 20.78 (×1.92)
2681.47 1

(×2.16)
148.65 2 (×2)

3577.14 1

(×1.78)
163.89 2

(×2.30)

2438.59 1

(×2.07)
105.03 2

(×1.68)

85.63%
(−6.42%) 0.435 (+0.188)

FedMSA
(γ = 0.1) 0.34 6.06 10.8 1241.79 1

72.31 2
2004.17 1

71.35 2
1175.28 1

62.66 2
90.72%

(−1.3%) 0.278 (−)

RestNet20 0.27 (×2.7) 5.16 (×3.3) 7.16 (×1.2) 722.45 1

29.55 2
1560.13 1 (×2)

41.21 2
675.93 1

22.48 2 89.77% 0.308

FedMSA
(γ = 0.2) 0.1 1.56 5.73 754.07 1 (−)

59.35 2 (×2)
779.78 1

47.86 2 (×1.2)
695.81 1 (−)

48.84 2 (×2.2)
86.21%

(−3.5%) 0.424 (+0.116)

NAS (Min
Ttrain) 0.07 1 3.29 410.5 1 (−)

35.53 2 (−)
395.29 1 (−)

21.78 2
393.10 1 (−)
31.20 2 (−) 74.9% (−4.2%) 0.743 (+0.11)

FedMSA
(γ = 0.8) 0.07 1 3.29 409.03 1

35.04 2
388.13 1

22.50 2 (−)
389.31 1

30.82 2 79.10% 0.633

1 From Raspberry Pi 4; 2 From Jetson nano.

In the second group, we set γ = 0.2 for FedMSA to search a model structure and select
a model structure as 20 layers ResNet, which is widely used and has good performance.
FedMSA (γ = 0.2) has clear advantages in the number of parameters and FLOPs, which are
important for resource-constrain and network congestion devices. Although the metrics in
model forward propagation and inference latency of ResNet20 perform better on Jetson
nano, many tasks are not sensitive to this small gap due to the relatively small base value.
However, although the accuracy of ResNet is more than 3.5%, the model back propagation
latency of FedMSA (γ = 0.2) is twice as high as on a ResNet20, and the base value of it is
so large that it has a significant impact on the overall model training efficiency. Thus our
algorithm gets a smaller model and a faster training speed by sacrificing some accuracy.

In the final group, we get a model structure of the same model size as the model with
the smallest model size in the NAS-201-Bench search space by setting γ = 0.8 for FedMSA.
At the same time, these two models have a very intimate performance regarding model
forward and backward propagation latency and inference latency. It is worth noting that
the model structure selected by FedMSA (γ = 0.8) has additional 4.3% accuracy over the
model structure searched by NAS (Min Ttrain).

Training Time Complexity with Accuracy

The experimental result about training time complexity with accuracy is shown in
Figure 5. For a distributed machine learning system, the training time complexity of the
whole system decides the model training efficiency where a big training time complexity
is unacceptable. The model structure search by NAS (Max Acc) has the highest accuracy
in Figure 5a in 140 communication rounds, but the time spent on model training grows
significantly rapidly in Figure 5b, and ended up being more than twice as high as the model
structure searched by FedMSA (γ = 0.1). In the early stage of Figure 5c, the accuracy
achieved of NAS (Max Acc) is much less than others. Besides, the model structure searched
by FedMSA (γ = 0.1) can achieve similar accuracy with less training time growth rate,
and it can be observed that through the complete training time of FedMSA (γ = 0.1), it’s
accuracy has always been significantly better than the NAS (Max Acc) in Figure 5c.
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Figure 5. Experiments on Cifar10 under FedMSA system. (a) Validation accuracy of models, (b) Total
training time spend in every communication round of models, (c) Changes in model accuracy
over time.

Furthermore, although FedMSA (γ = 0.2) has less 3.5% accuracy than ResNet20 in
Figure 5a, it has lower training time growth rate and finishes training earlier than ResNet20
in Figure 5b,c. Furthermore, although the two models searched by FedMSA (γ = 0.8)
and NAS (Min Ttrain) have the same total training time and growth rate in Figure 5b,
the FedMSA (γ = 0.8) has better performance during the whole training period with
additional 4.2% accuracy than NAS(Min Ttrain) in Figure 5a,c.

6. Conclusions and Future Work

In this paper, we proposed FedMSA, a model selection and fast adaptation system
which reduces the complexity of FL system deployment by providing automation of
adaptation and deployment of training tasks as microservices in a FL life-cycle along with
an optimal model selection algorithm. The evaluation shows that the model structure
searched by the proposed MS algorithm consistently outperforms the model selected
directly by one factor and the widely used model structure of other studies. Meanwhile,
the results show that without a model selection algorithm, FL developers may end up
selecting a model with more training time complexity and less accuracy compared with
the model searched by a model selection algorithm from NAS search space under the
same conditions.

As for future work, since our current model selection algorithm relies on the metrics
of NAS-201-Bench, we will upgrade our algorithm to support more metrics of both models
and distributed systems and extensively adapt our algorithm to other NAS. On the other
hand, we will improve the system’s ability in finer tuning and adapting the result of model
selection to improve the match between the results and the developer’s expectation by
providing further configured parameters for developers or applying recommendation
machine learning model.
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Abbreviations
The following abbreviations are used in this manuscript:

Symbol Description
γ User training efficiency concern rate
Ttrain Total training time of the model to accuracy
Etrain Training efficiency of the model
Acceval Expected final evaluation accuracy of the model
Losseval Expected final evaluation loss of the model
Lat The model inference latency in the hardware
Fmodel The FLOPs of the model
U Bandwidth utility of a device
B Bandwidth of a device
Nparams Number of parameters of the model
P All clients platform architecture information
M All metrics of the model
Mc All cleaned metrics of the model
Mn All normalized metrics of the model
Ms All metrics of the model with score
Mr All ranked model base on the score
X A set of model structures
x A model structure
Sbit Storage bit of developing framework
C all clients of FL
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