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Abstract: A modified monopole patch antenna for microwave-based hemorrhagic or ischemic
stroke recognition is presented in this article. The designed antenna is fabricated on a cost-effective
FR-4 lossy material with a 0.02 loss tangent and 4.4 dielectric constant. Its overall dimensions are
0.32 λ × 0.28 λ × 0.007 λ, where λ is the lower bandwidth 1.3 GHz frequency wavelength. An inset
feeding approach is utilized to feed the antenna to reduce the input impedance (z = voltage/current).
A total bandwidth (below−10 dB) of 2.4 GHz (1.3–3.7 GHz) is achieved with an effective peak gain of
over 6 dBi and an efficiency of over 90%. A time-domain analysis confirms that the antenna produces
minimal signal distortion. Simulated and experimental findings share a lot of similarities. Brain tissue
is penetrated by the antenna to a satisfactory degree, while still exhibiting a safe specific absorption
rate (SAR). The maximum SAR value measured for the head model is constrained to be equal to or
below 0.1409 W/kg over the entire usable frequency band. Evaluation of theoretical and experimental
evidence indicates the intended antenna is appropriate for Microwave Imaging (MWI) applications.

Keywords: monopole patch antenna; microwave-based; stroke recognition; microwave imaging

1. Introduction

Stroke is a leading cause of permanent disability and death worldwide, accounting
for more than five million deaths, with another five million permanently disabled every
year [1,2]. The total European cost was estimated to be 64.1 billion EUR in 2010 [1]. Stroke
is commonly classified into two types: (1) hemorrhagic, accounting for 85% of all stroke
cases and (2) ischemic, accounting for 15%, each with its own set of treatment options [1,3].
Mismatched treatment has disastrous consequences, necessitating the detection of the
stroke type before treatment. The first 4.5 h after an ischemic stroke are considered “the
golden period” for receiving thrombolytic therapy, according to the American Stroke
Association and clinical thrombolysis guidelines [4]. However, if thrombolytic therapy
is administered to patients who have a hemorrhagic stroke, the outcome is disastrous.
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Currently, only 10% of patients with ischemic stroke have received thrombolytic therapy
during the “golden period” [5]. As a result, a portable, quick, and simple-to-use device is
required for pre-hospital stroke type diagnosis and acute-phase stroke monitoring.

Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and Positron
Emission Tomography (PET) are the most frequently used techniques for diagnosing
stroke [2,6–8]. While these imaging methods can produce highly precise images of the
human brain, they do have certain limitations. MRI is particularly contraindicated in
patients who have metal biomedical implants. CT is ionizing radiation. PET imaging is
performed by injecting radioactive materials into the patient’s body [8]. Additionally, each
of these methods is costly, time-consuming, and does not utilize portable devices [2,7].
According to the World Health Organization (WHO), about three-quarters of the world
population does not have access to reliable and affordable medical imaging systems [6].
Hence, there is a need for an alternative imaging technology that can provide reliable
identification of brain abnormalities, while being safe, rapid, economical, and portable.

Recently, Microwave Imaging (MWI) has emerged as a viable technique for brain
imaging [1,4–6]. MWI provides a safe, affordable, non-ionizing, portable, non-invasive, and
quick imaging method for the identification of brain illness. In comparison to conventional
imaging technologies, this novel technology produces high-quality images of the brain and
can be utilized for continuous brain monitoring. MWI is a viable option for brain imaging
in poor countries and rural locations because of its cost-effectiveness and reasonable image
quality. Numerous MWI devices and prototypes have been proposed recently. Among
these, the Strokefinder, created by Medfield Diagnostics, and the EMTensor BrainScanner
are two prominent examples (both of which are now being tested on humans) [2,4,9].

Generally, the antenna array is one of the main hardware components of an electromag-
netic imaging system, and thus the system’s success is heavily reliant on the performance
of the antenna arrays [10]. However, quantifying the requirements of transmitting and
receiving antennas for biomedical applications of electromagnetic imaging is dependent
on the type of imaging algorithm, as well as the receiving system’s target dynamic range
and sensitivity [10]. The radar-based algorithm, for example, detects and locates a target
within the imaged domain based on the time delay between transmitted and received
signals [11]. As a result, this method necessitates the use of wideband antennas to obtain
a high-resolution image [12]. Various designs of broadband slot antennas have been pro-
posed in recent years to address the narrow impedance and frequency operating bandwidth
issues [13–15]. Depending on the application, the frequency band used with this technique
ranges from 0.3 to 11 GHz [10]. For example, the method uses 1 to 11 GHz frequencies to
image the breast [11,12], whereas 1 to 4 GHz frequency bands are used to reconstruct the
image of the human head [16,17]. Additionally, multiband operating frequencies could
reach 16 GHz for an internet of things in smart healthcare applications [18]. On the other
hand, tomography-based algorithms typically use a single frequency to reconstruct the
dielectric properties of the imaged domain [19,20]; however, recent tomography algorithms
use multiple frequencies [21]. In this case, the imaging antenna for multiple-frequency
tomography should operate at multiple or wideband frequencies, allowing the optimal
frequencies to be selected during the image reconstruction process.

Several designs of ultra-wideband (UWB) antennas have been proposed to address
the optimal settings for head microwave imaging systems. A compact 3D UWB antenna
has been fabricated with operational frequencies from 1.1 to 2.2 GHz, with a 67% fractional
bandwidth [22]. A recent study proposed a wide-frequency-range antenna with a 1.82 GHz
operational bandwidth and peak gain of 5 dBi [23]. Another study proposed an UWB
antenna with a frequency bandwidth of 2.37 GHz, peak gain of 5.95 GHz, and fidelity factor
over 90% [24].

This study modeled and fabricated an UWB antenna suitable for brain stroke mi-
crowave imaging. This microstrip antenna, including a slotted ground, exhibited promising
simulation and measurement results. The proposed antenna (i) is fabricated using cost-
effective FR-4 lossy material with a 0.02 loss tangent and 4.4 dielectric constant. (ii) Its
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overall dimensions are 0.32 λ × 0.28 λ × 0.007 λ, where λ is the lower bandwidth 1.3 GHz
frequency wavelength. (iii) The acquired bandwidth spans 1.3 to 3.7 GHz, which is rela-
tively wider than the reported antennas in the literature [10,22,24–31]. (iv) In comparison
with reported ranges in previously published work [22,24,27,30,31], the proposed antenna
offeres an effective peak gain of over 6.15 dBi and an efficiency of over 90%. Additionally,
(v) the maximum measured SAR value for the head model is constrained to be equal to or
below 0.1409 W/kg over the entire usable frequency band, which is less than the values
reported in the literature [24,25,28,31]. Along with the ease of its antenna design and use of
affordable materials, it can readily be utilized for head microwave imaging.

2. Materials and Methods
2.1. Initial Antenna Design

The antenna is constructed on an FR-4 epoxy dielectric substrate with a thickness
of 1.5 mm, dielectric constant of 4.3, and a loss tangent of 0.02. A 50 Ω microstrip line
supplies power to the antenna. The following formulas were used to determine the initial
patch width W and patch length L, which were 30 and 25 mm, respectively. The resonance
frequency was set to 2.5 GHz. Equations used to determine the initial dimensions of the
antenna radiator’s width W and length L were:

W =
c

2 fr

√
2

εr + 1
(1)

εre f f =
εr + 1

2
+

εr − 1
2

[
1 + 12

h
W

]− 1
2

(2)

L =
c

2 fr
√

εre f f
(3)

where W refers to the patch width, c refers to vacuum light speed, fr is the resonant
frequency, εr is the relative dielectric permittivity, εre f f is the effective permittivity of the
substrate, h is the substrate height, and L is the patch length.

It is important to consider the transmission line width (W f ) when calculating radiation
intensity because it directly impacts the signal’s bandwidth. By plugging in values for
the desired impedance (zo), thickness of copper (t), dielectric thickness (h), and relative
dielectric constant (∈r), the fundamental Equation (4) can be used to calculate the width
microstrip line.

W f =
7.48× h

e(
zo×
√
∈r×1.41
87 )

− 1.25× t (4)

In accordance with the fundamental equation, the width of the transmission line was
calculated to be 2.7 mm when the impedance is 50 ohms, copper thickness is 0.035 mm,
dielectric thickness is 1.5 mm, and dielectric constant is 4.4.

By using the basic monopole Equations (1)–(3), the antenna’s initial dimensions were
derived at the beginning of the design. Afterward, we analyzed the various parameters
through a parametric sweep operation and developed the proposed ground and patch
shapes using the try-and-error method.

2.2. Parametric Study

Figure 1 illustrates the process of various modifications of the initial design and the
final configuration of the proposed antenna (a–e). The impact of the patch and ground
plane on antenna performance was evaluated step by step by fitting various types of
modifications. Referring to Figure 1a, the main purpose that a good impedance matching
was not achieved when using an edge-fed patch is that, at the edge of the patch, the input
impedance is approximately 200 ohms, while the source impedance is 50 ohms. One can use
a quarter wavelength transformer (QWT) to transform the 200 ohms to 50 ohms; however,
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the use of a QWT limits the bandwidth of the antenna response and increases the size of
the antenna. The device with the same full patch and partial ground (Figure 1b) revealed a
fundamental resonance mode at around 2.6 GHz, reaching more than –14 dB with a range
of operation of 1.1 GHz (2.2 to 3.3 GHz). Since the antenna with slotted ground produced
an active operating band, we chose the slotted ground plane for further modification, as
shown in Figure 1c. As a result, this configuration extended the operational area band
from 1.2 to 3 GHz, with a resonance frequency of 1.8 GHz. The notch in the slotted ground
parallel to the feed line of the patch was the fourth modification, as displayed in Figure 1d.
This geometry increased the antenna bandwidth to 1.2–3.1 GHz with multiple resonance
frequencies. The final modification stage was changing the patch dimensions, as illustrated
in Figure 1e, resulting in enlarging the antenna bandwidth to 1.3–3.7 GHz, as shown in
Figure 2. The combination of using inset-fed patch along with the slot in the ground
allowed for better matching, wider bandwidth, and a relatively smaller size than if we had
to use a QWT. The human head is composed of complex materials with various electrical
properties (e.g., primitivity and conductivity). Such constitutive parameters are dispersive,
with frequency-dependent responses. Therefore, in this paper, an antenna with multiple
resonance frequencies is needed. Such a multi-resonance response allows for enhanced
imaging results when processing the collected data.

2.3. The Proposed Antenna Design

Various modifications (Figure 1) were made to achieve the best antenna design suitable
for medical imaging. The final patch dimensions of the proposed design were 20 mm for
the width (W) and 25 mm for the length (L). The proposed antenna’s geometric layout is
depicted in Figure 3, featuring a simpler inset-fed patch and a slotted ground plane with
a modest parallel notch for the feed line. The antenna’s overall dimensions are roughly
70× 60× 1.5 mm3. The feedline has a width of 2.72 mm and a height of 19.5 mm. Fine-tuned
design settings were made using COMSOL Multiphysics finite element software (COMSOL
5.6 AB, Stockholm, Sweden) to achieve optimal bandwidth, gain, and performance. Table 1
contains all the design-optimized parameters of the proposed antenna.

Sensors 2022, 22, 7235 4 of 19 
 

 

plane on antenna performance was evaluated step by step by fitting various types of mod-
ifications. Referring to Figure 1a, the main purpose that a good impedance matching was 
not achieved when using an edge-fed patch is that, at the edge of the patch, the input 
impedance is approximately 200 ohms, while the source impedance is 50 ohms. One can 
use a quarter wavelength transformer (QWT) to transform the 200 ohms to 50 ohms; how-
ever, the use of a QWT limits the bandwidth of the antenna response and increases the 
size of the antenna. The device with the same full patch and partial ground (Figure 1b) 
revealed a fundamental resonance mode at around 2.6 GHz, reaching more than –14 dB 
with a range of operation of 1.1 GHz (2.2 to 3.3 GHz). Since the antenna with slotted 
ground produced an active operating band, we chose the slotted ground plane for further 
modification, as shown in Figure 1c. As a result, this configuration extended the opera-
tional area band from 1.2 to 3 GHz, with a resonance frequency of 1.8 GHz. The notch in 
the slotted ground parallel to the feed line of the patch was the fourth modification, as 
displayed in Figure 1d. This geometry increased the antenna bandwidth to 1.2–3.1 GHz 
with multiple resonance frequencies. The final modification stage was changing the patch 
dimensions, as illustrated in Figure 1e, resulting in enlarging the antenna bandwidth to 
1.3–3.7 GHz, as shown in Figure 2. The combination of using inset-fed patch along with 
the slot in the ground allowed for better matching, wider bandwidth, and a relatively 
smaller size than if we had to use a QWT. The human head is composed of complex ma-
terials with various electrical properties (e.g., primitivity and conductivity). Such consti-
tutive parameters are dispersive, with frequency-dependent responses. Therefore, in this 
paper, an antenna with multiple resonance frequencies is needed. Such a multi-resonance 
response allows for enhanced imaging results when processing the collected data.  

 
Figure 1. Several modifications of antenna patch and ground: (a) ordinary patch with full ground, 
(b) ordinary patch with partial ground, (c) ordinary patch with slotted ground, (d) ordinary patch 
with slotted ground and a notch parallel to the feed, (e) proposed final design structure. 

Figure 1. Several modifications of antenna patch and ground: (a) ordinary patch with full ground,
(b) ordinary patch with partial ground, (c) ordinary patch with slotted ground, (d) ordinary patch
with slotted ground and a notch parallel to the feed, (e) proposed final design structure.



Sensors 2022, 22, 7235 5 of 18Sensors 2022, 22, 7235 5 of 19 
 

 

 
Figure 2. Reflection coefficient of the various proposed antenna design modifications shown in Fig-
ure 1. 

2.3. The Proposed Antenna Design 
Various modifications (Figure 1) were made to achieve the best antenna design suit-

able for medical imaging. The final patch dimensions of the proposed design were 20 mm 
for the width (W) and 25 mm for the length (L). The proposed antenna’s geometric layout 
is depicted in Figure 3, featuring a simpler inset-fed patch and a slotted ground plane with 
a modest parallel notch for the feed line. The antenna’s overall dimensions are roughly 70 ×  60 ×  1.5 mmଷ. The feedline has a width of 2.72 mm and a height of 19.5 mm. Fine-
tuned design settings were made using COMSOL Multiphysics finite element software 
(COMSOL 5.6 AB, Stockholm, Sweden) to achieve optimal bandwidth, gain, and perfor-
mance. Table 1 contains all the design-optimized parameters of the proposed antenna. 

  
(a) (b) 

Figure 3. The geometric layout of the antenna: (a) front side, (b) back side. Parameter values for all 
dimensions are given in Table 1. 

Table 1. Values for all design-optimized parameters of the proposed antenna. 

Parameter Value (mm) Parameter Value (mm) 
A 70 AG 35 
B 60 BG 45 
L 25 N 7.5 

Figure 2. Reflection coefficient of the various proposed antenna design modifications shown in
Figure 1.

Sensors 2022, 22, 7235 5 of 19 
 

 

 
Figure 2. Reflection coefficient of the various proposed antenna design modifications shown in Fig-
ure 1. 

2.3. The Proposed Antenna Design 
Various modifications (Figure 1) were made to achieve the best antenna design suit-

able for medical imaging. The final patch dimensions of the proposed design were 20 mm 
for the width (W) and 25 mm for the length (L). The proposed antenna’s geometric layout 
is depicted in Figure 3, featuring a simpler inset-fed patch and a slotted ground plane with 
a modest parallel notch for the feed line. The antenna’s overall dimensions are roughly 70 ×  60 ×  1.5 mmଷ. The feedline has a width of 2.72 mm and a height of 19.5 mm. Fine-
tuned design settings were made using COMSOL Multiphysics finite element software 
(COMSOL 5.6 AB, Stockholm, Sweden) to achieve optimal bandwidth, gain, and perfor-
mance. Table 1 contains all the design-optimized parameters of the proposed antenna. 

  
(a) (b) 

Figure 3. The geometric layout of the antenna: (a) front side, (b) back side. Parameter values for all 
dimensions are given in Table 1. 

Table 1. Values for all design-optimized parameters of the proposed antenna. 

Parameter Value (mm) Parameter Value (mm) 
A 70 AG 35 
B 60 BG 45 
L 25 N 7.5 

Figure 3. The geometric layout of the antenna: (a) front side, (b) back side. Parameter values for all
dimensions are given in Table 1.

Table 1. Values for all design-optimized parameters of the proposed antenna.

Parameter Value (mm) Parameter Value (mm)

A 70 AG 35
B 60 BG 45
L 25 N 7.5
W 20 S1 15
Lf 19.5 S2 20
Wf 2.72 S3 7.2
Y0 3 S4 7.8
t1 0.5

3. Results and Discussion
3.1. Surface Current Analysis

Antenna surface currents are shown in Figure 4a,b at two significant frequencies,
1.8 GHz and 3.3 GHz, respectively. Based on Figure 4a, the antenna’s strongest conducting
regions are the feedline and its surroundings, the lateral edges of the ground plane, the
square-shaped patch, and a certain amount of current distributed over the top and bottom
sides of the slotted ground plane. When the frequency was increased, current conduction
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regions shifted significantly. According to Figure 4a, low resonance at 1.8 GHz is greatly
affected by the surface current at the upper feedline portion and the bottom lateral edges
of the ground plane. Due to rotational surface currents in the radiation element, the
rectangular slot on the ground plane here produces additional polarization. An improved
performance was therefore achieved, including improved bandwidth, improved radiation
pattern polarization, stable radiation pattern properties, and resonance at a lower frequency.
The circulating current along the bottom edge of the patch radiator, as well as the feedline
gap and the top corner of the slotted ground, is responsible for the upper resonance mode
at 3.3 GHz (Figure 4b). The higher-order flow of current left lower surface currents on the
radiating patch and the ground. Despite this, the antenna maintains its balanced periodic
movements over the patch and ground to accomplish frequency widening.
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(b) 3.3 GHz.

3.2. Antenna Fabrication and Frequency Domain Measurements

To evaluate and assess the outputs of the antenna structure, three of the most popular
simulation platforms were used: HFSS (ANSYS, Canonsburg, PA, USA), CST Microwave
Studio (Dassault Systemes, Vélizy-Villacoublay, France), and COMSOL Multiphysics. Fab-
rication of the design structure was performed, and experimental measurements of the
S-parameter (−10 dB impedance bandwidth) were obtained. Figure 5a illustrates the front
and back views of the prototype and Figure 5b shows the impedance measurement setup.
The anechoic chamber shown in Figure 5c was used to conduct in-depth measurements of
the antenna gain, radiation efficiency, and radiation pattern. The value of the S-parameters
of the prototype was measured using a PNA network analyzer (Keysight Technologies,
Santa Rosa, CA, USA: model N5227A 10 MHz–67 GHz), with measurements included in
Figure 5c. Graphs of the simulated and measured data were also plotted using OriginPro
(OriginLab, Northampton, MA, USA). With a maximum impedance of −10 dB, the mea-
surement of the proposed antenna has a bandwidth of 2.45 GHz (1.45 GHz–3.9 GHz) and
reach a reflection coefficient over −20 dB. Simulation and measurements both revealed
two prominent resonance frequencies at around 1.8 GHz and 3.3 GHz. The measurements
and simulations (including the HFSS, CST, and COMSOL Multiphysics results) were well
in agreement (Figure 5d). In the simulation, the ideal properties of the material were
considered, making the simulated results slightly different from the measurements. Cable
and connection losses, as well as VNA calibration issues, may all have an impact on the
experimental measurements. The combination of these factors is expected to lead to a slight
mismatch between the results, but this is tolerable, since imaging is independent of the
resonance frequency of a signal.
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Some other frequency domain performance parameters, such as gain (dBi), efficiency,
as well as 2D and 3D radiation patterns, were also simulated and analyzed. Despite
the simulators using two different numerical integration methods (CST: finite integration
technique, HFSS: finite element method, COMSOL Multiphysics: finite element method),
they produced almost similar outcomes, ensuring antenna effectiveness for our application.
The simulated findings were then matched with the measured results, and the figure
demonstrates that the simulated outputs are nearly identical to the measured outputs, even
though certain inconsequential variations occur as a consequence of other undesirable losses
during manufacture. As shown in Figure 6a, antenna gain was simulated as a function of
frequency. The simulated gain is relatively similar. There is a peak gain of around 6 dBi
and an average gain of around 4.3 dBi in the range of 1.3–3.7 GHz, and the experimental
peak gain of the manufactured antenna was measured to be almost 6 dBi at 3.7 GHz, which
is adequate for microwave imaging, since the distance between the radiating element
(antenna) and the target object (hemorrhagic tissue) is quite low. The proposed antenna,
therefore, offers a relatively lightweight structure and a high gain. Performance tests of the
various antenna designs in Table 2 demonstrate that the proposed design has the widest
bandwidth in comparison to the other tested designs, achieves a high gain, and may be
employed for increased penetration in head imaging. Large electromagnetic penetration
waves are necessary for accurate medical diagnostics, since they enable the antennas
to locate and detect deep abnormalities inside the cranium. It should be emphasized
that, because head tissues are lossy and greatly attenuate electromagnetic signals, the
penetration of EM waves inside the head is poor [10]. Furthermore, it has been shown that
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electromagnetic penetration decreases with distance or higher frequencies [32]. Moreover,
it has been demonstrated that SAR is reduced with distance [32]. As a result, the antenna’s
lower frequency band (1–2.5 GHz) can be used to identify deep targets inside the brain,
while its higher band can detect anomalies inside the tissues of the head at closer ranges to
the antenna. As a result, it is preferable to retain a high wave penetration, while keeping
the maximum SAR within the allowed level (0.1409 W/kg) in our study. As can be seen
in Figure 6b, the radiation efficiency of the proposed antenna is more than 90% when
calculated using both the finite integration technique (FIT) and finite element method
(FEM) approaches, and this efficiency is shown to be constant over the antenna’s usable
frequency range. Practically, the efficiency of a good antenna is anywhere between 50
and 60% [33], whereas the simulated efficiency of this well-designed antenna is over
90%, and experimental radiation efficiency was measured to be as high as 85%. When
comparing experimental and simulated results for efficiency and gain, there are only small
discrepancies. This small variation between the two results may be attributed mostly
to production defects. Another reason why the findings obtained via simulation are
not the same as those obtained through measurement is, since the simulation takes into
consideration the ideal properties of the material, whenever the copper elements that are
layered over the FR-4 substrate display a certain amount of resistive behavior, which causes
losses and results in a difference between the simulated and measured findings.
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Table 2. Frequency range, bandwidth, and maximum gain for all the various tested antenna de-
sign modifications.

Modification Operational Frequency
(GHz)

Bandwidth
(GHz)

Maximum Gain
(dBi)

Full patch with full ground No band No band N/A
Full patch with partial ground 2.2–3.3 1.1 3.3101
Full patch with slotted ground 1.2–3 1.8 5.4508

Full patch with full ground and notch 1.2–3.1 1.9 5.118
Proposed design 1.3–3.7 2.4 6.15

In Figure 7a,b, co-polarization and cross-polarization patterns are presented at a
lower resonance frequency of 1.8 GHz and a higher resonance frequency of 3.3 GHz for
XY and YZ planes (phi = 0 and 90◦, respectively). According to the 2D pattern both
measured and simulated, co-polarization radiation is considerably greater than that of
cross-polarization. Despite its numerous side lobes, the antenna exhibits omnidirectional
behavior. Figure 7 shows that, throughout its operating frequency range, the proposed
antenna displays both an omnidirectional radiation pattern at phi = 90 and bidirectional
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characteristics at phi = 0◦. It is also noticeable that cross-polarization is lower than −20 dB.
To verify the stability and shape consistency of the radiation pattern, the radiation pattern
was measured experimentally at several frequency points over the functional range, and
the results were compared with the simulated results. As can be seen in Figure 7, the
measured and simulated results correlate quite well, and the antenna displays a consistent
omnidirectional radiation pattern over the operational frequency range. The 3D radiation
pattern at 2.4 GHz is shown in Figure 7c to verify that the intended antenna provides
omnidirectional characteristics. The result clearly demonstrates that the antenna can
produce excellent omnidirectional characteristics.

Figure 7. Measured and simulated 2D radiation pattern, including co-polarization and cross-
polarization for phi = 0 and phi = 90: (a) at 1.8 GHz, (b) at 3.3 GHz, and (c) 3D radiation pattern.

3.3. Time-Domain Analysis

The antenna was evaluated in three different ways to determine its input/output
signal properties and signal distortion, including face-to-face and side-to-side (both on the
X and Y axes) input/output combinations, as seen in Figure 8a–c. It is imperative to deter-
mine whether an antenna performs effectively under MWI by analyzing its time-domain
characteristics, including transmit–receive signal properties. In all three approaches, we
considered a separation distance of 250 mm between transmitting and receiving antennas.
However, the external media caused a distortion between the pulses sent and received. The
receiver would be expected to detect the pulses transmitted by the transmitter. Assessing
signal distortion, therefore, requires time-domain observations. As seen in Figure 8a,b, the
signals received in the face-to-face and side-to-side (X-axis) cases were similar to the signals
transmitted, in contrast to the side-to-side (Y-axis) radiation case. As a result, the use of
face-to-face or side-to-side (X-axis) configurations for MWI zones is strongly encouraged.
The group delay time parameter can also be used to characterize the ability of the antenna
to maintain a stable pulse phase during transmission. The group delay (GD) of three
different antenna combinations is shown in Figure 8d. As can be seen in the figure, the
group delay variations for these three combinations were limited to 2 ns in the functional
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range at a 250 mm distance, where a maximum of 3.8 ns allowed for group delay variations
in MWI [34].
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Figure 8. Normalized input/output signal magnitude for three different combinations: (a) Face-to-
face, (b) Side-to-side [x-axis], and (c) Side-to-side [y-axis]. (d) shows the group delay of three different
antenna combinations.

3.4. The Proposed Antenna for Head Imaging

The head model used in this study is identical to the Specific Anthropomorphic Man-
nequin (SAM) head phantom specified in the IEEE 1528 standards for head-mounted
mobile phone SAR testing [35], as shown in Figure 9a,b. A perfectly matched layer (PML)
spherical air domain was created around the antenna and head phantom to prevent unde-
sired reflection, which absorbs all outgoing waves and serves as an anechoic chamber to
simulate testing in an infinitely wide-open environment.

Over the operating frequency range, the vector Helmholtz equation was used to
calculate the EM wave interactions:

∇× 1
µr
∇× E− k2

oεrE = 0 (5)

where E is the electric field, µr denotes the relative permeability, k0 denotes the free-space
wave vector, and εr denotes the permittivity. When a human body is subjected to a radio
frequency (RF) electromagnetic field, the SAR is the amount of energy absorbed per unit
mass. The SAR is an important consideration for microwave devices to ensure operational
safety when exposed to the human body [32]. Tissue absorption power is described as
W/kg, which measures the power absorbed per mass of tissue. The SAR is normally
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calculated by averaging over the entire body or a small sample size (typically 1 g or 10 g of
tissue). The SAR for electromagnetic energy can be determined from [32]:

SAR = σ

∣∣E2
∣∣

ρ
(6)

where σ denotes the electric conductivity of the tissue, |E| is the electric field magnitude,
and ρ is the tissue density. The head phantom system setup with the proposed antenna
design is shown in Figure 9. The phantom consists of the head with and without stroke.
The head has an average permittivity of 45.8 and an average conductivity of 0.76 S/m [36].
The appropriate permittivity and conductivity values for a 20 mm radius sphere were
employed to represent the stroke [7,37]. The electrical properties of hemorrhagic and
ischemic strokes are distinct from one another; the permittivity and conductivity for
hemorrhagic stroke are 61.065 and 1.583 S/m, respectively, and 30 and 0.5 S/m for ischemic
stroke, respectively [38]. In this simulation, a single antenna was placed 40 mm from the
stroke’s center. An iterative method, the general minimal residual method (GMRES), with
an automatic Newton method, was utilized for the 3D models, which was the standard
setting for the COMSOL finite element solver employed. As shown in Figure 9b, the 3D
head model was meshed using a combination of tetrahedral and prism elements. The
absolute and relative tolerances in the stationary solver were set to 0.01; additionally,
second-order elements were employed because they showed better convergence results
in comparison with first-order elements, as reported in earlier studies [39,40]. The total
number of elements of the head model, including PML and far-field domains, was 912,476,
which corresponds to 5,848,762 degrees of freedom. All simulations were conducted on
an HP OMEN 30L workstation, which has a CoreTM 10700 CPU, with an internal clock
frequency of 3.8 GHz and 64 GB of memory.
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The reflection coefficient (S11) in free space, with a normal head, and with a head that
includes either hemorrhagic or ischemic stroke, is shown in Figure 10. The Figure clearly
shows that, compared to the free-space case, the reflection coefficient and the bandwidth
were reduced due to the lossy and heavy dielectric properties of normal and abnormal
head tissues. Moreover, results show a difference between the normal head and between
the two types of strokes over the operating frequency range, reaching more than 0.4 dB
at 1.2 GHz. Though the difference is less pronounced, consistent with other published
studies [22–25], this finding reveals the capability of microwave imaging in differentiating
between the normal and abnormal heads, and we assume that this difference will be more
obvious when using more antennas and multiple head layers.
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Figure 10. (a) Reflection coefficient (S11) of the normal head, head with ischemic stroke, head with
hemorrhagic stroke, and free-space model. (b) Zoom of sub-figure (a) showing the differences in
S11 at 1.2 GHz. (c) Difference in S11 between hemorrhagic stroke and normal head (red line), and
ischemic stroke and normal head (blue line).

Figure 11 shows the antenna’s simulated gain in both free-space and head phantom
setups. It shows that the gain is greater in the presence of a head phantom than in free space.
According to the results, head phantom simulations yield a higher gain (>6 dBi at 3.7 GHz).
Furthermore, in both free-space and head phantom simulations, the antenna demonstrates
a strong gain across the bandwidth proportional to the increase in the simulated frequency.

The SAR distribution simulated using COMSOL Multiphysics for the normal head,
head with hemorrhagic stroke, and head with ischemic stroke over the entire operating
frequency range is shown in Figure 12a. The region of interest (ROI) of the measured SAR
values is located at the region of the stroke. This figure clearly illustrates that there was a
significant difference between the two types of strokes, with the model with hemorrhagic
stroke yielding the highest amount of SAR, followed by the normal head, and finally the
head with ischemic stroke. This finding supports the ability of microwave imaging to be an
effective approach for detecting brain stroke. The highest SAR value was associated with
hemorrhagic stroke and was 0.06 W/kg (1 g) at 1.3 GHz, which is almost double the SAR
value of the head with ischemic stroke (0.03 W/kg). These SAR values were measured at
the region of the stoke inside the head model. Furthermore, in all three cases, the maximum
SAR value of the whole head model was 0.1409 W/kg, which is less than the magnitude
of the IEEE public radiation exposure limit of 1.6 W/kg [23,35]. It is also less than values
published in the literature, namely, 0.608 W/kg in [19], below 0.8 W/kg at 20 mm distance
in [41], and below 0.5 W/kg for wearable antenna systems for medical diagnostics reported
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in [42]. Many studies have demonstrated that the SAR decreases with depth [25,42], hence,
the low SAR value of this proposed antenna design enables the increase in input power to
achieve more field penetration inside the head if desired, while assuring that the SAR is
within the safe limit.
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Figures 12b, 13 and 14 depict the simulated electric field distribution for a normal head,
a head with hemorrhagic stroke, and a head with ischemic stroke. As seen in Figure 12b, the
distinction between the three cases was more prominent, especially with an ischemic stroke,
in which the difference reached 2 V/m, which is larger than that reported in a previous
study (0.63 V/m) [7]. In addition to the aforementioned, this finding supports the use of
microwave imaging as a highly effective method for stroke identification. In contrast to
the SAR figure, the head with an ischemic stroke exhibited the largest electric field values
along the whole frequency operating range, nearly 1.25 times the value produced by a head
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with hemorrhagic stroke. The electric field within the head phantom was presented in
Figure 13 for all three cases; head slices show that a head with ischemic stroke exhibited the
maximum electric field at 1.2 GHz, whereas the normal head and head with hemorrhagic
stroke had comparable values at 2.74 GHz. The difference between the three cases is
clearly seen in Figure 14, where there is a pronounced variation in electric field distribution
between the normal head and both stroke types at the three operating frequencies.
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Figure 14. The electric field difference inside the SAM head phantom at 1.2, 2.74, and 3.2 GHz.
(a) Electric field difference between the head with ischemic stroke and the normal model. (b) Electric
field difference between the head with hemorrhagic stroke and the normal model.

3.5. Comparative Analysis

Compared to earlier studies, the designed antenna exhibits some important advan-
tages. The FR-4 substrate, a readily accessible and inexpensive material, was used in the
printing of our proposed design. The basic layer configuration design simplifies manufac-
turing and minimizes manufacturing failures related to soldering and welding. Several
existing antennas are compared in Table 3. In this analysis, antenna dimension, bandwidth,
fractional bandwidth (FBW), gain, efficiency, and the SAR are considered. It is possible
to consider the antenna as a candidate for microwave imaging, since it has improved
performance over existing antennas subject to bandwidth, stable gain and efficiency over
functional frequency ranges, compact size, as well as head phantom sensitivity.
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Table 3. Analyzing the proposed antenna against other novel designs.

Year Reference Dimension (λ3)
Bandwidth
(GHz)

Fractional
Bandwidth (%) Gain (dBi) Efficiency (%) Maximum

SAR (W/kg)

2019 [10] 0.083 × 0.09 × 0.018 1.00–2.00 66.6% N/R N/R N/R
2016 [22] 0.30 × 0.08 × 0.02 1.10–2.20 66.67% 4.60 >70 N/R
2018 [25] 0.33 × 0.23 × 0.015 1.16–1.94 50% N/R 83 0.500
2020 [29] 0.26 × 0.22 × 0.04 1.00–2.00 66.6% Avg. 3.00 N/R N/R
2021 [24] 0.277 × 0.238 × 0.006 1.19–3.56 100% 5.95 85 0.927
2020 [30] 0.253 × 0.19 × 0.010 1.9–3.6 61.81% 3.5 <90 N/R
2020 [28] 0.263 × 0.227 × 0.004 1.0–2.0 66.6% N/R N/R 0.45
2021 [27] 0.261 × 0.111 × 0.052 1.12–2.50 76.24% >4 >70 >0.05
2020 [26] 0.283 × 0.250 × 0.009 1.70–3.71 74.4% 5.6 90 0.0023
2021 [31] 0.49 × 0.49 × 0.02 2.20–2.80 24% 4.7 <90 0.24
2022 Proposed 0.32 × 0.28 × 0.007 1.3–3.7 94.34% 6.15 >90 0.1409

4. Conclusions

This study aimed to develop a planar monopole antenna to detect hemorrhagic and
ischemic strokes using microwaves. The design has several prominent features, including
a gain of about 6.15 dBi, radiation efficiency of over 90%, and a fractional bandwidth of
94.34%. Additionally, the acquired bandwidth spans 1.3 to 3.7 GHz, which is optimal,
since lower frequency ranges of electromagnetic radiation may permeate further within
cells with minimum attenuation. Experimental verification of the design was carried out
on prototype antennas on FR-4 substrates. Experimental and computed results for the
impedance bandwidth (S11) show a reasonable degree of consistency. The antenna exhibits
minimal signal distortion when also examined in the time domain. The behavior of the
antenna was validated when installed near live tissues for the detection and characterization
of hemorrhagic or ischemic stroke. The antenna’s viability is shown in simulations using a
realistic head model, where the SAR is found to be within acceptable limits (0.1409 W/kg).
In future work, we aim to utilize a set of antennas around the head. Additionally, instead
of using one head layer by averaging the electric properties, the next work will combine all
head tissue layers, as each layer has its own dielectric properties. These enable us to obtain
a more accurate and more in-depth investigation of using microwave imaging as a viable
tool for brain stroke diagnosis. Moreover, it provides a reliable platform to investigate
various issues related to the effectiveness of microwave imaging, such as a time-domain
study with the presence of various head tissues, the study of the received signals at different
antennas, and eligible image reconstruction methods.
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