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Abstract: In source localization problems, the relative geometry between sensors and source will
influence the localization performance. The optimum configuration of sensors depends on the
measurements used for the source location estimation, how these measurements are affected by noise,
the positions of the source, and the criteria used to evaluate the localization performance. This paper
addresses the problem of optimum sensor placement in a plane for the localization of an underwater
vehicle moving in 3D. We consider sets of sensors that measure the distance to the vehicle and model
the measurement noises with distance dependent covariances. We develop a genetic algorithm and
analyze both single and multi-objective problems. In the former, we consider as the evaluation metric
the arithmetic average along the vehicle trajectory of the maximum eigenvalue of the inverse of the
Fisher information matrix. In the latter, we estimate the Pareto front of pairs of common criteria
based on the Fisher information matrix and analyze the evolution of the sensor positioning for the
different criteria. To validate the algorithm, we initially compare results with a case with a known
optimal solution and constant measurement covariances, obtaining deviations from the optimal
less than 0.1%. Posterior, we present results for an underwater vehicle performing a lawn-mower
maneuver and a spiral descent maneuver. We also present results restricting the allowed positions
for the sensors.

Keywords: optimal sensor placement; genetic algorithm; underwater vehicle; Fisher information
matrix

1. Introduction

Localization is fundamental in the operation of autonomous underwater vehicles
(AUVs). These vehicles traditionally rely on inertial and/or acoustic-based relative local-
ization. The latter guarantees bounded error localization but the performances depend on
geometrical configurations of the entire system, which is composed of beacons placed on
the operation area and on the AUV itself. The usual systems are commonly classified as
long baseline (LBL), short baseline (SBL), and ultra-short baseline (USBL), according to
the distance between the hydrophones that receive the signals emitted by the AUV. The
requirements, such as localization performance, energy consumption, and size, and also the
types of measurements used in each system can be very different. LBL sensors are usually
hundreds to thousands of meters apart and are commonly placed on buoys on the water
surface or in structures mounted on the sea bottom. In an SBL system, the receivers are
usually mounted on a ship a few dozen meters apart, while USBL sensors, on the other
hand, are usually mounted in a smaller device, being only a few centimeters apart.

The most common measurements used include the time of arrival (ToA), time dif-
ference of arrival (TDoA), angle of arrival (AoA), and the received signal strength (RSS).
With bigger baselines, the usual approach is to use the ToA of the received signal at hy-
drophones, and with the propagation speed of sound, the range of the sensor to the target
can be obtained. Trilateration can be performed by supplying the range measurements to
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an elliptical positing algorithm to estimate the vehicle’s position. These systems require
synchronization between emitters and receivers or a technique that allows estimating the
time of the emitted signal. With smaller baselines, the receivers are more susceptible to
signal noises, and usually, the time difference of arrival between the receivers is used. These
systems are more easily deployed, however, synchronization offsets between receivers,
as well as the deviation in the estimation of the receivers’ positions, can highly degrade
the localization performance [1]. The angle of arrival systems uses the angles at which
the signal arrives at the sensors to estimate the target position using triangulation. On the
other hand, RSS systems rely on path loss propagation models and the measurement of the
power of the received signal to estimate the range between the sensor and target.

Regardless of the localization system, the geometry between sensors and target can
strongly affect the performance of the localization algorithm [2], whereas an inadequate
sensor placement can lead to large localization errors [3]. Therefore, the sensor placement
should be done to maximize the system performance at localizing the vehicle. This work
will address optimum sensor placement for improving the localization of underwater
vehicles. The remainder of this introduction will present a brief summary of the literature
on this topic focusing on some key aspects: measurements considered; measurement noise
models; evaluation criteria; optimization methods. After, we present a comparison table of
our work with some relevant work in the literature.

The literature has extensively analyzed the problem of optimal sensor placement for
source localization. Regarding the measurements between sensors and source, most works
have considered direct range [2–8], time of arrival [2,5,9], difference time of arrival [10–16],
angle of arrival [2,5,17], or received signal strength [18]. However, although in various
applications the measurement noises usually varies with distance, especially in underwater
scenarios [19], the most common assumption is to consider noise to be independent of
the distance and equal to all the sensors. Some exceptions include the work of Yang et
al. [16], which considers TDoA measurements and presents a complete model of the noise
depending on inter-distances, as well as a model of the synchronization offsets and the sensor
location errors. In [6,19], the measurements are ranges, and the noise is a Gaussian process
in which the variance depends on distance. In the work by Bo et al. [18], the measurements
are the RSS, and the noise is added by a factor that depends on the distance between the
emitter and receiver. The sound speed profile (SSP) on the water is considered, and the
sound velocity is modeled as a linear function of depth. Domingo-Perez et al. [20] consider
the range differences between the sensors as the measurements and the noise is considered
inversely proportional to the square of the distance between the emitter and receiver.

A common approach to evaluating the system’s performance is by analyzing the
Fisher information matrix (FIM) and the Cramer–Rao lower bound (CRLB). The FIM
captures the amount of information that measured data provides about an unknown
parameter, while the CRLB is the lower bound for the covariance matrix of any unbiased
estimator. Under known assumptions, the CRLB is the inverse of the FIM. In this regard,
it is possible to derive scalars from the FIM that can be used to evaluate the performance
of a particular solution. The most common criteria for optimality is the determinant of
the FIM [2–8,10–12,14,16–18], although the trace of the inverse of the FIM [9,15,17], the
eigenvalues of the inverse of the FIM or a combination of them are also found in the
literature [20]. In the optimal experimental design theory, the strategies that optimize based on
these three criteria are classified as D-optimality, A-optimality, and E-optimality, respectively.
Additionally, a geometric interpretation exists for each of these criteria. For example, the
D-optimum criterion minimizes the volume of the uncertainty ellipsoid, the A-optimum
criterion minimizes the average variance of the estimate, and the E-optimum criterion
minimizes the length of the most significant axis of the uncertainty ellipsoid. Recently, the
work by Sahu et al. [21] proposes a framework to combine the three above criteria under a
general approach for problems of optimal sensor placement for localizing stationary targets.

Although less common, it is possible to find optimization criteria that are not FIM
based. One example is the work done by Neering et al. [13], which approaches the problem
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with a procedure that aims to minimize the condition number of an analytic linear least-
squares (LLS) estimator and an iterative, linearized model (LM) estimator. Another example
is the work by Levanon [22], which uses the geometric dilution of precision (GDOP) as
the optimization criteria. GDOP is a metric initially developed for selecting optimal 3D
geometry of satellites in global positioning systems (GPS) and is a metric that describes the
effect of geometry on the relationship between the measurement and position error [23].
Usually, the lower the GDOP, the better the geometric configuration [24]. Du et al. [25]
uses the area of the ellipse of uncertainty of an iterative estimation filter to optimize the
formation of AUVs.

Usually, the problem of optimal sensor placement is solved considering a single
optimization criterion. However, the work done by Domingo-Perez [20] considers a multi-
objective optimization problem, where the objective is to find the optimum solution con-
sidering combinations of the three criteria mentioned above, in pairs, as well as the ratio
between the eigenvalues of the inverse of the FIM and the uncertainty in a predefined direc-
tion. As the objectives can conflict, the final solution requires a trade-off between objectives.
In this sense, the author finds the Pareto front for these criteria pairs, which represents
the set of solutions whose objectives cannot be improved without deteriorating at least
one of the others. Multi-objective optimization is also used in the context of multi-object
tracking, for example in [26], where the authors estimated the Pareto front considering
the determinant of the FIM as a metric. With this approach, the authors could analyze
the trade-offs in localization performance of the different targets using different sensor
placements. Additionally, in the context of multi-target tracking, the authors of [27] propose
a different approach that uses shared sensors and combines analytical solutions with a
numerical algorithm to optimize the positioning of sensors according to the A-optimality
criterion.

The problem of sensor placement for localization has been assigned as NP-hard,
making it computationally intractable to evaluate all possible configurations [23,28,29].
Concerning the solution method, in the context of localization systems for underwater vehi-
cles, the most common approach is to derive optimal conditions for specific cases and find
solutions that meet these conditions. In this sense, the work done by Bishop et al. [2,4,10]
and Moreno-Salinas [3,8,30] are relevant. In the former, the authors present results for
bearing, range, and ToA and TDoA measurements in two-dimensional problems. In the
latter, the authors find solutions considering bearing and range measurements in two and
three-dimensional scenarios. For range measurements in 3D, solutions are also found by re-
stricting the sensors to rely on a plane and optimizing for a region of uncertainty instead of
the common approach of considering a known target position. Another work that became a
recurrent reference is the one of Martinez and Bullo [7], where they proposed a positioning
algorithm for moving sensors that maintain an optimal geometry while tracking a target.
In our previous work [31], four autonomous surface vehicles in formation were employed
to track an underwater unsynchronized target from ToA measurements. The geometric
configuration of the formation was based on the D-optimality criterion.

With the increasing complexity of the problem, mathematical derivations of optimal
solutions became harder. In some contexts outside the scope of marine applications, the
sensor placement problem for localization is known as the node location problem (NLP),
and it is commonly addressed for local positioning systems (LPS) that do not rely on
GPS information. In these contexts, metaheuristics methods are more commonly applied.
Ferrero-Guillén et al. [29] presents an analysis of GAs selection and crossover techniques
for node location problems using the square root of the trace of the inverse FIM as a fitness
function. The authors compared tournaments 2 and 3 (T2, T3) and roulette (R) and ranked
roulette (RR) selection techniques and single, two, and three points (1P, 2P, and 3P) along
with uniform crossover techniques. The authors obtained the best results for a combination
of T2 with 1P crossover. However, the authors implemented and concluded that a hybrid
technique, named hybrid GA, with two stages, first with T3 and 3P crossover followed
by a refined search with T2 and 1P, could surpass any individual combination. In [32],
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Díez-González et al. proposed a GA considering two scenarios with different constraints
for the position of the target. The authors used five sensors, TDoA measurements with the
root of the inverse FIM as a fitness function, along with a T3 selection and 1P crossover
strategies. They observed that independently of the initial random population, each of the
five sensors converged to a specific region of the grid map, which was posteriorly used for
grid refinement. In a posterior work, Díez-Gonzalez et al. [28] proposed a combination of a
hybrid GA with a memetic algorithm that increased the accuracy by 14.2% with regards
to the previous works. More recently, in [33], the authors further extended their work to
consider failure conditions of the sensors and estimate the positioning that guarantees the
convergence of their localization algorithm.

1.1. Novelty

To highlight the novelty of our work, we present in Table 1 the differences between
our work and some of the relevant literature. We focus on works that had the most similar
optimization objectives to ours to emphasize the differences in similar works. Therefore,
we only present works in which the objective was to optimize a metric based on the FIM.
Moreover, we classified the literature according to the following parameters:

1. Optimization method

(a) Analytical (Analy)
(b) Heuristics and Meta-heuristics (HM)

2. Optimization criteria

(a) Determinant of the Fisher information matrix (D)
(b) Trace of the inverse of the Fisher information matrix (A)
(c) Eigenvalue of the inverse of the Fisher information matrix (E)
(d) Multi-objective (Multi)

3. Measurement noise considerations

(a) Parameter independent (PI)
(b) Parameter dependent (PD)

4. Measurements

(a) Range (R)
(b) Range difference (RD)
(c) Time of arrival (ToA)
(d) Difference time of arrival (TDoA)
(e) Angle of arrival (AoA)

Table 1. Differences between our work and some of the relevant literature. The checkmarks represent
the points covered by a particular paper.

Ref Method Criteria Noise Measurement
Analy HM D A E Multi PD PI R RD ToA TDoA AoA

Our work X X X X X

[26] X X X X X

[20] X X X X X X X

[2] X X X X X X

[6] X X X X

[7] X X X X X

[16] X X

[9] X X X X
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Our work applies a genetic algorithm (GA) to address the optimization of sensor loca-
tions to localize an underwater vehicle by minimizing the average maximum eigenvalue of
the inverse of the FIM along the vehicle’s trajectory. From Table 1 it is possible to observe
that the majority of the literature disregards the E-optimality criterion in sensor optimiza-
tion problems, probably due to the difficulty in deriving a closed expression for the compu-
tation of the eigenvalues of the inverse of the FIM. The work of Domingo-Pérez et al. [20] is,
as ours, one of the few that considers this criterion for the evaluation of sensor placement.
However, we differ from [20] as we consider a different measurement technology and
present results for a set of scenarios typical in autonomous underwater vehicle operations.
Moreover, our proposed genetic algorithm is modified to contain a crossover technique that
propagates characteristics of the population-specific problem of sensor placement, which
to the best of the author’s knowledge has never been done before.

Results are initially compared with known optimal solutions and posteriorly presented
for a lawn-mower and spiral descent maneuver considering configurations from four to
eight sensors in a plane. In the lawn-mower case, we also present results restricting the
search space to half of the initial plane. Although the method present can be used for
practically any trajectory of the vehicle, we chose these two maneuvers to perform the
simulations, as they are among the most traditional for autonomous underwater vehicles.
The lawn-mower is usually used in mapping operations [34,35], while the spiral descent
is typical of AUVs with flat wings for descending in the water column [36] or to cover an
area during the descent [37].

1.2. Major Contributions

In the present work, the problem of optimum sensor placement is addressed in the
scope of target localization with range-only measurements. By applying a genetic algorithm
(GA), one of this paper’s contributions relies on presenting a method that can be used as a
planning tool for missions that require localizing underwater vehicles considering more
realistic and complex scenarios. For example, one can use the presented algorithm before-
hand to find the sensor placement that maximizes the information about the target during
a mission. The proposed GA can avoid the need for specific scenarios, and solutions can be
found for many cases. Unfortunately, this type of strategy has been chiefly disregarded in
the marine applications literature. Additionally, the results for a relatively complex scenario
employing a range-dependent model of measurement noise and metrics considering the
entire planned trajectory are presented and discussed. To the best of our knowledge, this
paper is the first approach to be presented for finding the optimal solutions combining
these two features for underwater localization. Additionally, the power of the GA is further
exploited by considering also a multi-objective problem, considering two pairs of criteria:
the average maximum eigenvalue of the inverse of FIM and the average determinant of
FIM, and the average maximum eigenvalue and the average trace of the inverse of FIM.
The Pareto fronts are presented for these pairs of criteria for the lawn-mower maneuver
and four sensors in a plane.

The remainder of this paper is organized as follows: Section 2 formalizes the problem
description and details the evaluation metrics used. Following, Section 3 describes the devel-
oped GA. In Section 4, we present the simulations and discuss the results. Finally, the last
section presents the conclusions.

2. Measurement Model and Problem Description

We consider the problem of sensor placement in R3 for target localization in R3. Let
q =

[
qx qy qz

]T ∈ R3 denote each position of a target in a grid of points. Let pi ∈ R3,
i ∈ {1, 2, 3 . . . , n} denote the positions of n sensors on the same grid of points. The sensors
will be restricted to lie on plane, constraining its coordinates to pi =

[
pxi pyi 0

]T . Now,
let us consider the measurements of each sensor and the actual distance between sensor
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and target corrupted by some additive noise. Then, the measurement between the ith
sensor and the target is given by

zi = |q− pi|+ ωi = ri + ωi , (1)

where the operator | · | denotes the Euclidean norm, ri is the distance between the ith sensor
and the target, and ωi is the additive measurement noise.

The distance measurements will be affected by effects such as multi-path, the variabil-
ity of the speed of sound in the water column, and the degradation of the signal-to-noise
ratio (SNR), among others. It is reasonable to infer that the quality of the measurements
will decay with the increase in distance between the sensors and the target. Therefore, we
modeled the measurement noise ωi as a Gaussian process in which the variance depends
on the distance. The same model was used by [6,19,38] and is mathematically stated as:

ωi = (1 + ηri)ω0 , (2)

where ω0 is the uncorrelated white Gaussian noise, i.e., ω0 ∼ N (µ0, σ2
0 ) , η is a scalar, and

ω0ηri models the distance-dependent term. The expected value and the variance of each
measurement are then given by

E(zi) = ri + µ0(1 + ηri) , (3)

Var(zi) = σ2
0 (1 + ηri)

2 . (4)

Note that the expected values of the measurements are the true value of the distances
ri added by a bias term µ0(1+ ηri) that depends on the true distance and the mean value of
ω0. If the additive noise has zero mean, the measurements are unbiased. For generalization,
the derivations in the following sections make no assumptions on the mean value of the
additive noise term. However it is important to state that it is assumed the existence of
unbiased estimators able to estimate the target’s positions with measurements as presented
above. This may be unfeasible with biased measurements and the derivation of such
estimators is beyond the scope of this work. Nevertheless, the results presented considered
the term µ0 as zero.

We want to select the best sensors locations pi in a plane, with respect to some well-
defined criteria:

1. the range measurement model of each sensor;
2. a 3D grid of points;
3. the positions q that define the trajectory of a target in the 3D grid of points.

2.1. Evaluation Criteria

The CRLB is the minimum variance that unbiased estimators can achieve. It is the
optimal mean square error for any unbiased estimator [39]. It does not say anything about the
existence of such unbiased estimators, but it gives us a metric for performance comparison.
For unbiased estimators, the CRLB is given by the reciprocal of the Fisher information or
the inverse of the FIM for vector cases.

Let q ∈ R3 be the target position, q̂ an estimate of q obtained by the measurement
vector z, and L(z|q) the likelihood function for z. Then, the variances of the coordinate
estimates are bounded by

Var(q̂k) ≥
[

J(q)−1
]

kk
, (5)

where J(q) is the 3× 3 FIM, defined by:

[
J(q)−1

]
kj
= −E

[
∂2 ln L(z|q)

∂qk∂qj

]
, (6)
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and k ∈ {1, 2, 3} and j ∈ {1, 2, 3} are the indexes representing the Cartesian coordinates of
the target and positions of the FIM.

Now, let us consider n sensors under the assumption of additive Gaussian measure-
ment noise,

z ∼ N (µ(q), Σ(q)) . (7)

where µ(q) ∈ Rn is the mean vector and Σ(q) ∈ Rn×n is the covariance matrix. The likeli-
hood function of z is:

L(z|q) = 1

(2π)
1
n |Σ(q)| 12

exp
[
−1

2
(z− µ(q))TΣ−1(q)(z− µ(q))

]
. (8)

A general expression for the FIM can be derived for the Gaussian case with the mean
and covariance depending on the parameter to be estimated. For a complete derivation
of the expression, the reader can refer to [40]. Following this expression, the FIM can be
computed as

Jkj =
∂µT(q)

∂qk
Σ−1(q)

∂µ(q)
∂qj

+
1
2

tr

(
Σ−1(q)

∂Σ(q)
∂qk

Σ−1(q)
∂Σ(q)

∂qj

)
. (9)

From Equations (3) and (4), the mean and covariance of the measurement vector are
given as:

µ(q) = [r1 + (1 + ηr1)µ0, . . . , rn + (1 + ηrn)µ0]
T (10)

Σ(q) =

σ2
0 (1 + ηr1)

2 0 0

0
. . . 0

0 0 σ2
0 (1 + ηrn)2

 (11)

Following are the derivatives of the mean vector and the covariance matrix with
respect to the target positions:

∂µi(q)
∂qx

= (1 + µ0η)

(
qx − pxi

ri

)
(12)

∂µi(q)
∂qy

= (1 + µ0η)

( qy − pyi

ri

)
(13)

∂µi(q)
∂qz

= (1 + µ0η)

(
qz − pzi

ri

)
(14)

∂Σii(q)
∂qx

= 2ησ2
0 (1 + ηri)

(
qx − pxi

ri

)
(15)

∂Σii(q)
∂qy

= 2ησ2
0 (1 + ηri)

( qy − pyi

ri

)
(16)

∂Σii(q)
∂qz

= 2ησ2
0 (1 + ηri)

(
qz − pzi

ri

)
(17)

Substituting Equations (12) to (17) into Equation (9), the following expression for the
FIM is obtained:

J = Θ
n

∑
i=1

1
(1 + ηri)2 τiτ

T
i , (18)

where τ ∈ R3 is the vector defined as:
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τi =


qx−pxi

ri
qy−pyi

ri
qz−pzi

ri

 , (19)

and Θ is a constant term given by:

Θ = σ−2
0 (1 + ηµ0)

2 + 2η2 . (20)

By exploiting the potential of genetic algorithms over metrics based on the FIM,
solutions can be found considering both a single-objective and a multi-objective problem.
In the multi-objective case, we estimated the Pareto front and analyzed how the sensor
topology evolved along the solutions in the front.

2.2. Single-Objective Optimization

Common optimization objectives are to minimize the determinant, trace, or maximum
eigenvalue of the inverse of the FIM. When considering a single-point target, the first gives
a scaled measure of the volume of the uncertainty ellipsoid of the estimation, the second
the sum of the squared length of the axes of the uncertainty ellipsoid axis, and the last the
maximum length among all axes.

If minimizing based on the determinant (volume of the uncertainty ellipsoid) or
the trace (average of uncertainty ellipsoid axis), configurations of sensors that give very
low uncertainty in a particular direction, but very high in other are possible solutions.
To converge to configurations that have small uncertainties in all directions, we opted for
minimizing the maximum eigenvalues of the inverse of the FIM. Therefore, we are focusing
on minimizing the worst axis of uncertainty and avoiding solutions that could have high
uncertainties in a particular direction.

To consider cases in which the target performed a path, the metrics had to be aggre-
gated over all possible target positions. The choice of the aggregation function defines a
unique objective to be optimized [5]. Following the formulation presented in [5], consider
x1, x2, . . . , xn as n arbitrary positive numbers, then a generalized mean can be defined as:

Mr(x1, x2, . . . , xn) =

(
1
n

n

∑
j=1

xr
j

) 1
r

, (21)

where r controls the type of aggregation function. Common functions are the min, max,
geometric, harmonic, and arithmetic mean, corresponding to r = −∞, r = ∞, r = 0,
r = −1, and r = 1, respectively. For fixed x1, x2, . . . , xn, these functions are monotonically
increasing in r, and bounded such that

min(x1, x2, . . . , xn) ≤ Mr(x1, x2, . . . , xn)

≤ max(x1, x2, . . . , xn) for −∞ ≤ r ≤ ∞ (22)

In this work, the evaluation metric considered is the arithmetic average of the max-
imum eigenvalue of the inverse of the FIM along the vehicle path. The adoption of the
arithmetic average instead of any other type of average reflects the fact that we consider all
target positions to be equally important in the decision of sensor placement.
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2.3. Multi-Objective Optimization

In multi-objective optimization, one wants to minimize or maximize multiple objective
functions subject to a set of constraints. Let f be a vector function that maps m parameters,
or decision variables, to a tuple of n objectives. Formally, one wants to:

min / max y = f (x) = ( f1(x), f2(x), . . . , fn(x))
subject to x = (x1, x2, . . . , xm) ∈ X

y = (y1, y2, . . . , yn) ∈ Y

gj(x) ≤ 0, j = 1, 2, . . . , J

hk(x) = 0, k = 1, 2, . . . , K

where x is the decision vector, X is the parameter space, y is the objective vector, Y is the
objective space, and gj and hk are constraints.

The objectives can conflict, meaning the final solution requires a trade-off between
objectives. According to Konak, Coit, and Smith [41], there are two general approaches
for multi-objective optimization. The first combines the multiple objectives into a single
function or treats all but one objective as a constraint. A proper selection of a utility
function to combine the multiple objectives can be very difficult, as scaling of the objectives
is needed and small perturbations on weights can lead to very different solutions. Treating
the objectives as constraints can be rather arbitrary, and therefore the optimum solution.

The second general method focuses on estimating the set of Pareto optimum solutions.
The Pareto set, also commonly referred to as the Pareto front or Pareto frontier, consists of
solutions in which it is impossible to improve one objective without deteriorating at least
one of the others. These are called non-dominated solutions. Following [42], let us assume,
without loss of generalization, a maximization problem. Formally, a point x0 ∈ X is said to
be Pareto optimal with respect to an objective vector if there does not exist x ∈ X in which
the following are true:

∀ k ∈ {1, 2, . . . , n} : fk(x) ≥ fk(x0)

and
∃ l ∈ {1, 2, . . . , n} : fl(x) > fl(x0)

In this case, we say that the point x0 dominates all other points x ∈ X.
Two pairs of criteria were considered when estimating the Pareto front. The first

considered minimizing the maximum eigenvalue and the trace of the inverse of the FIM,
while the second minimizing the maximum eigenvalue and the determinant of the FIM.

3. Genetic Algorithm for Sensor Placement

Genetic algorithms are inspired by evolutionary theory, where species that do not
adapt to the environment are faced with extinction by natural selection. The individuals
that better fit the conditions survive and have greater opportunities to generate offspring
and pass their genes. With the passing generations, the individuals carrying the correct
combination of genes will be dominant. It is also possible that random changes may occur
in some individual genes. These mutations can generate additional advantages to survival.
Unsuccessful changes are eliminated by natural selection.

We present the general workflow of the implemented GA in Figure 1.

Figure 1. Genetic algorithm diagram.
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The first step is the generation of an initial random population of size s. Each individual
of the population is a possible solution to the problem and consists of the Cartesian
coordinates of each of the sensors. Figure 2 presents a representation of a population.

Figure 2. Representation of a population.

Next, we evaluate the entire population according to the appropriate fitness function
and sort the individuals from best to worst. We use the sorted population to substitute
the less fitted individuals with new ones at the end of each iteration. The genetic algo-
rithm is applied to both single and multi-objective problems, where the major difference
relies on the evaluation function. In the single-objective case, we want to minimize the
arithmetic mean of the maximum eigenvalue of the inverse of the FIM along the vehicle
trajectory. However, in the multi-objective case, when estimating the Pareto front for
pairs of optimization criteria, it is unreasonable to sort the population considering just
one of the criteria. Therefore, in this work, we use the fast nondominated sorting with a
crowd comparison approach as defined in the NSGA-II algorithm [43]. First, we create
the nondomination rank, where first are all solutions that are not dominated by any other
solutions. In our case of two optimization criteria, for a solution to be non-dominated by
any other means that does not exist any solution that is better than the first considering both
the criteria. For example, if solution A is better than solution B considering both criteria
(minimum/maximum eigenvalue of the inverse of the FIM and the maximum determinant
of the FIM, for example), then solution A dominates solution B, and solution B could not be
attributed a first position in the nondomination rank. However, if solution C is better than
solution A in one parameter but worst in the other, and there is no other solution that is
better than these when considering both parameters, then solution A and C would both
receive the first position in the nondomination rank. The solution with the first positions
in the nondomination rank are the solutions of the first front. The subsequent positions
in the nondomination rank are constructed excluding the solutions on a better rank and
following the same procedure used to construct the previous rank positions. This non-
domination rank is the first criterion for sorting. To guarantee a good spread of solutions,
crowd distance is used as a second sorting criterion. To calculate the crowd distance, the
solutions are sorted in ascending order for each optimization criterion. Afterward, the
best and worst solutions for each objective function are attributed an infinity distance. The
remaining intermediate solutions are attributed a distance equal to the absolute normalized
difference in the function values of two adjacent solutions. Afterward, for solutions in the
same nondomination rank, we prioritize the one with a bigger crowd distance.

Following, the selection phase selects the individuals who generate offspring in the
crossover phase. We randomly select αP% members of the population as contestants in
a tournament, where 0 < αp ≤ 100 is a predefined parameter. All contestants generate
offspring. However, we evaluate them, and the crossover is made by taking the most fitted
ones two by two. That means that the most fitted contestants will generate offspring with
one another. Two offspring are generated for each pair of parents. One characteristic of each
parent is selected to propagate to the offspring. To preserve information about the spread of
sensors around the target, these characteristics are the distance and direction of each sensor
from the center of the plane where the sensors are positioned. As we can always translate
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our map to the center of the path of the AUV around the center of the plane, the range
and direction could give a good perspective of the distribution of the sensors around the
vehicle’s path. Therefore, for the first child, we maintain the direction of the first parent for
each sensor, but use the distances of the second parent. For the second child, we maintain
the distances of the first parent, but use the directions of the second parent.

After the generation of offspring, the mutate phase randomly selects αM% of individ-
uals in the solution to have a mutation. The mutation is made by randomly choosing a
sensor for each selected individual and by moving these sensors fifty units in a random di-
rection. This phase will increase the diversity, avoiding the convergence to a homogeneous
population that potentially makes it harder for the next generations to improve fitness.
Finally, the last phase is reintegration, where we reinsert the offspring generated in the
crossover and the mutated individuals in the solution. Finally, we reinsert by substituting
the less fitted individuals in the solution with the new ones. The algorithm stops after a
predefined number of iterations and the individual with the best performance is selected as
the final solution.

4. Simulations and Results

This section initially presents the simulation settings common to all cases and after
presents each case’s results.

4.1. Simulation Setup

In all cases, the sensors were restricted to a plane in the Z = 0 coordinate. Therefore,
the search was performed in a 2D grid of points of size 3000× 3000. It is assumed that
the step on the grid is of 1 m. The size of the grid combined with the step size of 1 m
makes the search space compatible with most real underwater vehicles’ operational area.
Moreover, 1 m is compatible with the accuracy of global navigation satellite systems, which
are traditionally used to estimate the position of the sensors at the water surface. In all
simulations, the measurement noise parameters were µ0 = 0 m , σ2

0 = 0.5 m2, and
η = 0.01 m m−1.

For the GA, we chose an αp = 20% for the tournament between individuals and
αM = 20% for the mutation. The simulations were made for a population of 500 individuals
during 2000 iterations. The parameters of the GA were chosen based on preliminary
simulations where the chosen parameters presented the best results while maintaining
relatively low computational times. All simulations used four cores of an Intel i7-8550U
1.8 GHz CPU. In all simulated cases, we present the computational time; however, the focus
of this work is not on the computational burden of the algorithm but on the analysis of the
sensor configurations found. Nevertheless, we present them to the interested reader.

4.2. Comparison with Known Optimal Solution

Simulations for a case with a known optimal solution were made to validate the
algorithm’s performance. The scenario is a point target with the sensors restricted to lie on
a plane and measurement noise independent of range and equal to all sensors. Thus, in
this case, η was set to zero. This case was evaluated in [3] and has a known optimum FIM
given by

J =
1
σ2

 n
3 0 0
0 n

3 0
0 0 n

3

 , (23)

where n is the number of sensors and σ is the constant and equal to all sensors’ measurement
noise. Therefore, all three eigenvalues of the inverse of the FIM are equal to 3σ2

n .
The cases with four, five, six, seven, and eight sensors were simulated ten times each.

Table 2 presents the mean results for 10 simulations in each case.
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Table 2. Deviation from optimal solution and computational time.

# Sensors Mean Deviation from Optimal (%) Mean Computational Time (s)

4 0.073 7.43
5 0.056 8.11
6 0.071 8.67
7 0.039 9.28
8 0.045 9.28

For this case, optimal solutions are found by positioning the sensors equally distributed
in a circle with the target projection at the center of the circle. The optimum radius of the
circle is given by zt

√
2, where zt is the target depth. We simulated the target at a depth of

500 m, giving an optimum radius of approximately 707 m. Although the algorithm did not
find any optimal solution, all results presented deviations less than 0.1% from the optimal.
The discretization of the grid also partially contributed to deviations from the optimal.

4.3. Sensors in a Plane with Lawn-Mower

In this set of simulations, the vehicle performed the lawn-mower maneuver at a
constant depth, at Z = 900, and the total area covered by the vehicle was 400,000 m2.
Simulations were performed for configurations of four, five, six, seven, and eight sensors.
We use the case with four sensors to present an in-depth analysis and present the results of
the remaining cases in the form of tables.

Figure 3 presents the value of the maximum axis of uncertainty (the square root of the
maximum eigenvalue) along the vehicle trajectory for the best found configuration of four
sensors. Table 3 presents the respective sensor positions. The sensor positions for the cases
with five, six, seven, and eight sensors are presented in Appendix A.1.
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Figure 3. Maximum axis of uncertainty along vehicle trajectory for lawn-mower maneuver and four
sensors. Red dots represent the sensors, and the green gradient line represents the maximum axis of
uncertainty along the vehicle trajectory.

Table 3. Solution with 4 sensors for the lawn-mower maneuver.

Sensor X Position Y Position Z Position

1 712 2126 0
2 827 746 0
3 2283 871 0
4 2168 2253 0
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From Figure 3 we observe that the worst uncertainty is at the beginning and the
end of the trajectory. To enable a better understanding of the values of the worst axis of
uncertainty, we computed the standard deviation, σc, of the range measurements of each
sensor to the center of the target plane (coordinates x = 1500, y = 1500, z = 900), according
to Equation (2). These parameters are presented in Table 4.

Table 4. Distance and measurements standard deviation to the center of the place for the solution
with 4 sensors and the lawn-mower maneuver.

Sensor Distance to Center (m) σc (m)

1 1350 10.25
2 1353 10.28
3 1348 10.24
4 1350 10.25

mean 1350 10.25

In all cases, the sensors were approximately at an equal distance from the center of
the target plane and approximately equally distributed around the center of the plane.
Therefore, we only present the mean distance to the center and the mean standard deviation
for the range measurements for the remaining cases.

Table 5 presents the worst axis of uncertainty along the entire vehicle trajectory, the
mean standard deviation σc for the range measurement to the center of the target plane,
and the computational times in seconds.

Table 5. Results for lawn-mower trajectory.

# Sensors Worst Axis of Uncertainty (m) σc (m) Computational Time (s)

4 8.15 10.25 1521
5 7.08 10.30 1698
6 6.22 10.27 1804
7 5.76 10.25 1859
8 5.32 10.26 1977

Due to how the Fisher information matrix is constructed, increasing the number
of sensors should always increase the information, or decrease the uncertainty of the
estimation. Therefore it is expected that the worst axis of uncertainty decreases with the
increase in the number of sensors, which was observed in all the simulated cases.

4.4. Sensors Restricted to Half of the Plane with Lawn-Mower

In this set of simulations, we restrained the sensors positioning to half of the original
plane. Figure 4 presents the maximum axis of uncertainty along the vehicle trajectory for
the four sensors case. Table 6 presents the respective sensor positions. The sensor positions
for the cases with five, six, seven, and eight sensors are presented in Appendix A.2.

Table 6. Solution with 4 sensors restricted to half plane for the lawn-mower maneuver.

Sensor X Position Y Position Z Position

1 1989 1500 0
2 2030 2689 0
3 966 2693 0
4 996 1500 0
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Figure 4. Maximum axis of uncertainty along vehicle trajectory for the lawn-mower maneuver and
four sensors. Red dots represent the sensors, and the green gradient line represents the maximum
axis of uncertainty along the vehicle trajectory.

Comparatively to the entire plane case, it is possible to see that all the sensors tended
to come closer to the vehicle trajectory in the x-direction. We observed a decrease in local-
ization performance compared to the unrestricted case. Additionally, there is a transition of
the worst axis of uncertainty to the bottom part of the trajectory, where sensors were not
allowed. Additionally, as a consequence of the restriction to half of the plane, there was a
shift in the uncertainty along the Y direction.

Table 7 presents the worst axis of uncertainty along the entire vehicle trajectory, the
mean standard deviation σc for the range measurement to the center of the target plane,
and the computational times in seconds for simulations with four, five, six, seven, and eight
sensors.

Table 7. Results for lawn-mower trajectory with sensors restricted to half of the plane.

# Sensors Worst Axis of Uncertainty (m) σc (m) Computational Time (s)

4 11.41 9.94 1740
5 10.02 10.55 1834
6 9.32 10.97 1746
7 8.52 10.53 1771
8 8.00 10.84 1929

4.5. Sensors in a Plane with Spiral Descent

In the spiral descent maneuver, the vehicle went from depth Z = 20 to Z = 900 in a cir-
cular motion with a radius equal to 100 m. Simulations were performed for configurations
of four, five, six, seven, and eight sensors.

Figure 5 presents the value of the maximum axis of uncertainty along the vehicle
trajectory for the best found configuration of four sensors. The first sub-figure presents the
positioning of the sensors in the X–Y plane or a view from the top. The second sub-figure
presents a view of the X–Z plane or a view from the side. Table 8 presents the respective
sensor positions. The sensor positions for the cases with five, six, seven, and eight sensors
are presented in Appendix A.3.
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Figure 5. Maximum axis of uncertainty along vehicle trajectory for the spiral descent maneuver and
four sensors. Red dots represent the sensors, and the green gradient line represents the maximum
axis of uncertainty along the vehicle trajectory.

Table 8. Solution with 4 sensors for the spiral descent maneuver.

Sensor X Position Y Position Z Position

1 1624 2181 0
2 1947 1075 0
3 1580 1547 0
4 958 1334 0

It is possible to observe a high value in the maximum axis of uncertainty, followed by
an oscillation in the uncertainty until about the depth of 200 m. After 200 m, the maximum
axis of uncertainty tended to increase with depth. Additionally, in all cases it was possible
to observe that at least one sensor was very close to the start point of the vehicle trajectory.

For the four-sensor case, the closest sensor to the initial point of the trajectory, at
Z = 20 m, is at a distance of 95 m of this point, giving a standard deviation of the range
measurement of 1.38 m. The most distant sensor to the end of the trajectory, at Z = 900 m,
is at 1135 m, giving a standard deviation on the range measurement of 8.73 m.

Table 9 presents the worst axis of uncertainty along the vehicle trajectory with the
respective computational times in seconds. The increased computational time compared to
the lawn-mower maneuver is due to the increased length of the path of the vehicle.

Table 9. Results for spiral descent trajectory.

# Sensors Worst Axis of Uncertainty (m) Computational Time (s)

4 9.33 2390
5 7.53 2309
6 6.70 2575
7 611 2652
8 5.64 2875

4.6. Pareto Front for Lawn-Mower Maneuver

In this section, we present the results for the multi-objective problem. The results allow
us to analyze how the sensor positioning evolves when considering pair of metrics based on
the FIM. We present the Pareto fronts for the lawn-mower maneuver with the four-sensor
case. Figure 6 presents the front when considering the average determinant and the average
maximum eigenvalue of the inverse of the FIM as pair of criteria. Figure 7 presents the
front when considering the average trace and the average maximum eigenvalue of the
inverse of the FIM as pair of criteria. In each figure, the sensor positioning is on the right
and the corresponding value of the front is on the left.
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Figure 6. Pareto front considering average maximum eigenvalue and determinant of inverse of FIM
with respective positioning of sensors.
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Figure 7. Pareto front considering average maximum eigenvalue and trace of inverse of FIM with
respective positioning of sensors for the lawn-mower path.

It is possible to observe that in both cases the average maximum eigenvalue criteria
tended to position the sensors closer to the vehicle trajectory compared to the other criteria.
As in the single-objective case, the sensors of practically all solutions on both fronts were
approximately the same distance from and equally distributed around the center of the
target plane.

5. Conclusions

In the present work, we proposed a GA for the problem of optimum sensor placement
for target localization with range-only measurements. Due to the nature of the algorithm, it
can be applied in a wide range of cases, avoiding the necessity of derivation of solutions
for specific scenarios, the typical approach in the marine applications literature. In this
sense, the present algorithm could serve as a planning tool for missions that require the
localization of underwater vehicles. We presented results for a single-objective problem,
considering the average maximum eigenvalue of the FIM along the vehicle trajectory as
the evaluation metric. Results were compared with a case with a known optimal solution,
and simulations were performed considering range-dependent noises for a lawn-mower
and a spiral descent maneuver. We also presented results for a multi-objective problem,
considering pairs of criteria based on the FIM.

Algorithms based on heuristics and metaheuristics are powerful tools for complex
optimization problems. However, the interpretation and the development of a method
to generalize the results of specific cases to any case is not a trivial task, and perhaps,
not possible. Nevertheless, more studies are necessary to better interpret the results of
complex problems, such as the presented in this work, and to combine these with known
analytical results for simpler cases to develop intuition and general methods for sensor
placement in complex scenarios. Moreover, in this work we presented the placement of
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static sensors considering two very traditional maneuvers of autonomous underwater
vehicles in separate scenarios. A future interesting study would be the consideration of
moving sensors and the development of motion strategies for the sensors, for position
reallocation between maneuvers while maintaining optimality.
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Appendix A. Tables of Sensor Positions

Appendix A.1. Lawn-Mower
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Figure A1. Maximum axis of uncertainty along vehicle trajectory for the lawn-mower maneuver and
five sensors. Red dots represent the sensors, and the green gradient line represents the maximum
axis of uncertainty along the vehicle trajectory.

Table A1. Solution with 5 sensors for the lawn-mower maneuver.

Sensor X Position Y Position

1 792 2232
2 2542 1247
3 1571 566
4 1983 2319
5 501 1056
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Figure A2. Maximum axis of uncertainty along vehicle trajectory for the lawn-mower maneuver and
six sensors. Red dots represent the sensors, and the green gradient line represents the maximum axis
of uncertainty along the vehicle trajectory.

Table A2. Solution with 6 sensors for the lawn-mower maneuver.

Sensor X Position Y Position

1 2220 808
2 2535 1833
3 441 1222
4 1240 643
5 1677 2373
6 728 2223

500 1000 1500 2000 2500

X (m)

500

1000

1500

2000

2500

Y
 (

m
)

5.3

5.4

5.5

5.6

5.7

Figure A3. Maximum axis of uncertainty along vehicle trajectory for the lawn-mower maneuver and
seven sensors. Red dots represent the sensors, and the green gradient line represents the maximum
axis of uncertainty along the vehicle trajectory.
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Table A3. Solution with 7 sensors for the lawn-mower maneuver.

Sensor X Position Y Position

1 2123 2252
2 2596 1447
3 525 2039
4 2028 712
5 1190 661
6 1310 2373
7 454 1119
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Figure A4. Maximum axis of uncertainty along vehicle trajectory for the lawn-mower maneuver and
eight sensors. Red dots represent the sensors, and the green gradient line represents the maximum
axis of uncertainty along the vehicle trajectory.

Table A4. Solution with 8 sensors for the lawn-mower maneuver.

Sensor X Position Y Position

1 448 1856
2 516 1008
3 2527 1057
4 1886 650
5 1165 648
6 1829 2321
7 1083 2312
8 2490 1928
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Appendix A.2. Lawn-Mower with Sensors in Half Plane
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Figure A5. Maximum axis of uncertainty along vehicle trajectory for the lawn-mower maneuver and
five sensors constrained to half of the plane. Red dots represent the sensors, and the green gradient
line represents the maximum axis of uncertainty along the vehicle trajectory.

Table A5. Solution with 5 sensors in half plane for the lawn-mower maneuver.

Sensor X Position Y Position

1 708 2589
2 2007 1500
3 1000 1500
4 2241 2640
5 1536 2884
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Figure A6. Maximum axis of uncertainty along vehicle trajectory for the lawn-mower maneuver and
six sensors constrained to half of the plane. Red dots represent the sensors, and the green gradient
line represents the maximum axis of uncertainty along the vehicle trajectory.
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Table A6. Solution with 6 sensors in half plane for the lawn-mower maneuver.

Sensor X Position Y Position

1 2002 1500
2 537 2453
3 1494 2942
4 2421 2509
5 1509 2936
6 1013 1500
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Figure A7. Maximum axis of uncertainty along vehicle trajectory for the lawn-mower maneuver and
seven sensors constrained to half of the plane. Red dots represent the sensors, and the green gradient
line represents the maximum axis of uncertainty along the vehicle trajectory.

Table A7. Solution with 7 sensors in half plane for the lawn-mower maneuver.

Sensor X Position Y Position

1 924 2732
2 2056 2739
3 2213 1500
4 1497 1500
5 768 1500
6 2082 2726
7 933 2739
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Figure A8. Maximum axis of uncertainty along vehicle trajectory for the lawn-mower maneuver and
eight sensors constrained to half of the plane. Red dots represent the sensors, and the green gradient
line represents the maximum axis of uncertainty along the vehicle trajectory.

Table A8. Solution with 8 sensors in half plane for the lawn-mower maneuver.

Sensor X Position Y Position

1 1012 2808
2 648 2532
3 1580 2925
4 1516 1500
5 796 1500
6 2226 1500
7 1959 2830
8 2314 2604

Appendix A.3. Spiral Descent

Table A9. Solution with 5 sensors for the spiral descent maneuver.

Sensor X Position Y Position

1 1689 885
2 2192 1698
3 998 1313
4 1582 1538
5 1300 2047
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Figure A9. Maximum axis of uncertainty along vehicle trajectory for the spiral descent maneuver
and five sensors. Red dots represent the sensors, and the green gradient line represents the maximum
axis of uncertainty along the vehicle trajectory.
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Figure A10. Maximum axis of uncertainty along vehicle trajectory for the spiral descent maneuver
and six sensors. Red dots represent the sensors, and the green gradient line represents the maximum
axis of uncertainty along the vehicle trajectory.

Table A10. Solution with 6 sensors for the spiral descent maneuver.

Sensor X Position Y Position

1 1405 921
2 1581 1537
3 1202 1992
4 2116 1232
5 959 1423
6 1917 2047
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Figure A11. Maximum axis of uncertainty along vehicle trajectory for the spiral descent maneuver
and seven sensors. Red dots represent the sensors, and the green gradient line represents the
maximum axis of uncertainty along the vehicle trajectory.

Table A11. Solution with 7 sensors for the spiral descent maneuver.

Sensor X Position Y Position

1 989 1297
2 1581 1535
3 1995 1045
4 2185 1704
5 1094 1819
6 1617 2110
7 1410 897
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Figure A12. Maximum axis of uncertainty along vehicle trajectory for the spiral descent maneuver
and eight sensors. Red dots represent the sensors, and the green gradient line represents the maximum
axis of uncertainty along the vehicle trajectory.
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Table A12. Solution with 8 sensors for the spiral descent maneuver.

Sensor X Position Y Position

1 1437 855
2 1024 1106
3 1579 1539
4 902 1530
5 1674 2106
6 1915 1025
7 1136 1945
8 2178 1600
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