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Abstract: To solve the problem regarding the lack of a lightweight and secure authentication and key
agreement protocol in the Constrained Application Protocol of the Internet of Things environment, we
explore the security flaws and applicability problems in the current related research. Then, we propose
a new lightweight authentication and key agreement protocol based on the CoAP framework. The
scheme adopts shared secret and elliptic curve public key technology, which ensures the anonymity of
the communicators and provides strong security and anti-attack capacity. In terms of security analysis,
the Dolev–Yao Adversary model and a security model checking analysis method based on CPN Tools
are improved, in order to verify the correctness and security of the proposed scheme. Compared with
other schemes, regarding communication overhead, computational cost, and security, the proposed
scheme provides a robust and comprehensive security guarantee, although it is not the lightest.
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1. Introduction

Constrained Application Protocol (CoAP) is a lightweight communication protocol
developed by the Internet Engineering Task Force (IETF) for the Restricted environment of
the Internet of Things (IoT) [1]. CoAP has gradually become the most popular protocol in
IoT applications, due to its ease of implementation, low power consumption, lightweight
communication, high mobility, good compatibility with Hyper Text Transfer Protocol
(HTTP), and sufficient technical space to enhance data security and integrity [2]. Motaharul
et al., have proposed a cloud-based IoT architecture and coordinated IoT using the CoAP
protocol [3]. Their evaluation experiment showed that the CoAP protocol was more suitable
than Message Queuing Telemetry Transport (MQTT) to realize communication between
sensors in the cloud computing environment. In addition, CoAP has been quickly adopted
and supported by many large companies. Researchers have introduced it in many fields,
from smart homes to industrial wireless sensor networks [4].

CoAP is a client server-based protocol, representing a lightweight implementation
of HTTP protocol based on the REST architecture (see Figure 1). In order to overcome
the disadvantages of HTTP for restricted environments, CoAP takes into account both the
optimization of datagram length and reliable communication. On one hand, CoAP provides
scalability by providing URIs, restful methods (e.g., GET, POST, PUT, and DELETE), and
header options that can be defined independently; on the other hand, it is based on the User
Datagram Protocol (UDP) protocol and allows IP multicasting. CoAP defines a transaction
processing mechanism with a re-transmission mechanism, in order to compensate for the
unreliability of UDP transport. Moreover, it provides a resource discovery mechanism with
resource description.

CoAP does not blindly compress the HTTP protocol. Considering the low processing
power and low power limitations of resource-constrained devices, CoAP re-designs some
HTTP functions, adapting them to the constrained environment. In addition, to adapt
the protocol to IoT Machine-to-Machine (M2M) applications, the CoAP protocol improves
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some mechanisms and adds some functions. These include piggybacking messages and
Observe patterns.

Figure 1. Network framework of CoAP.

As there is no reliable security system standard, the security of CoAP protocol has
always been an important topic. CoAP uses UDP as the transport layer protocol. In the
initial design of CoAP, the designer adopted Datagram Transport Layer Security (DTLS,
RFC 6347) as the security protocol [1]. However, DTLS was not initially designed for
resource-constrained IoT environments; for example, to perform a handshake, DTLS must
transmit messages up to six times, adding communication overhead and consuming more
power on the device.

Furthermore, attacks against UDP or DTLS can also affect CoAP. Attacks on DTLS
can be launched in a single session and require enhanced authentication mechanisms.
Man-in-the-middle (MitM) attacks are one of the most severe security problems in CoAP,
as cited in RFC 7252 [1]. These include sniffing, spoofing, denial of service (DoS), hijacking,
cross-protocol attacks, replay attacks, and so on. Various researchers have studied DTLS, in
order to determine how it protects CoAP communication messages.

In recent years, the IETF has been committed to the improvement and security protec-
tion of the CoAP protocol. To date, it has issued several RFC documents that complement
and improve CoAP. Specifically, RFC8613 [5] specifies a security protocol called Object
Security for Constrained RESTful Environments (OSCORE) for the environment with CoAP,
which is a method of application-layer protection for CoAP encoded using Concise Binary
Object Representation (CBOR, RFC8949) [6] and signed and encrypted using Object Signing
and Encryption (COSE, RFC8152) [7]. Compared with DTLS, OSCORE adopts lightweight
processing and effectively guarantees security. It also eliminates the problem of malicious
agents using DTLS [5], providing an effective security guarantee for CoAP.

However, the OSCORE protocol does not include a key agreement phase, which
assumes that the materials required for the session key have been exchanged between
the communicating parties before running. Therefore, excluding the inapplicable DTLS
protocol, the CoAP secure key agreement protocol remains an open problem. Many
researchers have proposed key agreement protocols for CoAP or similar IoT scenarios but,
to date, there are still usability or security problems in these protocols. The aforementioned
unique functions provided by CoAP, such as multicast and observe mode, all require
reliable and secure session guarantees. Therefore, designers should design secure session
key agreement protocols based on the unique properties of CoAP. In this paper, we describe
a key agreement protocol based on CoAP, then conduct relevant security model checking
and analysis based on CPN Tools.

The contributions of this paper include the following aspects:
We investigate the existing related solutions and their security and usability problems.
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• We propose an anonymous mutual authentication key agreement protocol, which can
satisfy the network architecture of CoAP and provide a robust security guarantee.

• We improve the Dolev–Yao Adversary model, and CPN Tools is used to describe and
analyze it thoroughly.

• We demonstrate a security protocol modeling and security verification method based
on CPN Tools.

• A comprehensive formal and non-formal analysis of the proposed protocol security is
carried out.

The remainder of this paper is organized as follows: In Section 2, the relevant literature
is reviewed. Our proposed protocol is described in Section 3. Section 4 formally verifies
the model of the proposed protocol with CPN Tools. Section 5 analyzes the security of the
protocol. The performance and security of the proposed protocol are compared with those
of existing protocols in Section 6. Finally, our conclusions, the existing problems, and future
work are discussed in Section 7.

2. Related Works

This section reviews related works and contains three parts: Secure Key Exchange
Schemes for CoAP and IoT, Applicability of Existing CoAP Secure Key Exchange Schemes,
and Formal Analysis Tools for Security Protocols.

2.1. Secure Key Exchange Schemes for CoAP and IoT

Initially, Villaverde et al. [8] proposed associating DTLS and CoAP to protect the secu-
rity of CoAP. In 2014, this program was recommended by ITEF in RFC7252 [1]. However,
as the new design of DTLS requires a header compression scheme, the end-to-end security
attributes provided by the original DTLS protocol may be compromised. Its handshake
scheme requires too much message fragmentation when adaptive, which means that the
number of re-transmissions and re-ordering of DTLS handshake messages is too high,
making it unsuitable for resource-constrained devices [9]. In addition, although CoAP
supports multicast connections, DTLS only protects unicast messages [10–13].

Arvind et al. [14] have introduced a series of attacks against CoAP and DTLS, such as
man-in-the-middle attacks, sniffing attacks, spoofing attacks, DoS attacks, hijacking attacks,
cross-protocol attacks, replay attacks, and so on. Their research showed that the security
of CoAP needs to be further improved in practice, and there should be more targeted
lightweight security schemes available to ensure the security of CoAP.

Figueroa et al. [15] have proposed a security protocol named LSPWSN. Web services
often cannot be easily used under limited resource scenarios, such as in sensor nodes.
LSPWSN aims to overcome this problem and provide secure web services with limited
resources. It follows a RESTful approach and encodes headers and payloads using binary
encoding. The authors simulated LSPWSN and CoAP on the Contiki Cooja network
simulator, and showed that LSPWSN consumes nearly five times more resources than
CoAP, with nearly four times more net packets than CoAP. Therefore, LSPWSN may not be
applicable, due to performance degradation. Further improvements are needed to improve
the performance of LSPWSN.

Van et al. [16] have proposed a reverse proxy approach to overcome RESTful end-
to-end security and performance problems in constrained environments. The authors
believed that the identified problems could be solved using the reverse proxy approach,
which splits end-to-end security on the proxy. Therefore, the Security Service Proxy (SSP)
was proposed to provide additional functions and services on constrained networks and
nodes. The primary goal of SSP is to reduce overhead and improve the performance and
functionality of constrained RESTful environments. SSP has achieved good results, but it
also has some limitations. It introduces a single point of failure, in terms of security and
operation. In addition, SSP can quickly lose all sessions and public/private keys, in the
case of a compromise [16].
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Ukil et al. [17] have proposed a CoAP lightweight security protocol for IoT applications,
based on the Advanced Encryption Standard (AES) algorithm and with key length of 128.
It is fast, efficient, adaptable to different IoT applications, resilient to replay and man-in-
the-middle attacks, and has low overhead; however, this protocol suffers from the defects
described in [4]. The authors assumed that pre-shared keys are hard-coded into each device
at the time of manufacturing, which is not always applicable. It is recommended that the
program be improved to work without such assumptions, in order to assess the proposed
technical performance.

Bhattacharyya et al. [18] have proposed a lightweight key agreement protocol, named
LESS, for the session key agreement process of CoAP. After the session is established, control
is switched from CoAP to DTLS to provide channel security; however, the protocol does not
provide anonymity, forward secrecy, and is vulnerable to Key Compromise Impersonation
(KCI) attacks.

The solution proposed by Nathi et al. [19] aims to achieve lightweight identity authen-
tication and security protection on the CoAP, where the payload is encrypted based on
the mutual service protocol between the client and the server. The data exchange phase is
initiated with the server application, which does not contain any handshake mechanism
and does not have a key exchange algorithm. The security scheme uses two rounds of
encryption and decryption to ensure the security of communication on the network. How-
ever, in the network deployment process, an applicability problem appears, as described
in the work [4]. The shared key needs to be written into the device’s read-only memory
(ROM) when leaving the factory, which limits the scalability of the network.

Suman et al. [20] have explained the shortcomings of the LESS protocol [18] in their
work and named their protocol ECC-COAP, claiming that it improved the LESS protocol
and reduced the number of flights to five. They used the AVISPA tool to verify the protocol,
and their results indicated that it can provide adequate security. However, the protocol
does not provide anonymity, the network overhead of the protocol is too significant, and
the protocol does not provide forward and backward secrecy under the assumption that
the adversary obtains the private key of both parties.

Abosata et al. [21] have proposed a lightweight authentication optimization protocol
for distributed sensors based on payload encryption, which integrates and optimizes the
authentication mechanism of DTLS in the CoAP architecture. However, the alias ID and
the shared secret used in the protocol are fixed, such that there is no unlinkable attribute.
Therefore, the system will have great hidden trouble when the pre-shared information
is compromised. In addition, the server needs to store all the expired one-time random
nonces, which requires a significant storage expense in the network with numerous nodes
and long-term existence.

Oliver et al. [22] have proposed a lightweight CoAP mutual authentication protocol
using the Shared secret and XOR, hash calculation, symmetric encryption, and AES back-
and-forth in a message for the entire process; in terms of computational load and network
load, this protocol provides extremely lightweight services. However, the scheme security is
only provided by a shared secret key. The session key combines plain-text random numbers,
which do not provide anonymity and forward secrecy, such that there are significant security
risks when the key is compromised.

In a word, the existing key exchange schemes of CoAP still have many defects, and
researchers need to invest more in their analysis and design. However, secure key exchange
schemes are also essential to the entire IoT. Recently, various security protocols have been
proposed. We studied two that utilize the ECC algorithm and have similar application
scenarios as the proposed protocol. One is a device control and key agreement protocol for
IoT called LACKA-IoT, proposed by Das et al. [23]. The other is a two-party authentication
protocol for IoT, proposed by Alzahrani et al. [24]. It can be stated that these two works
have security flaws [25]. We will compare our protocol with these works [20–22] with
regard to performance and security in Section 6.
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2.2. Applicability of Existing CoAP Secure Key Exchange Schemes

As CoAP is an M2M protocol, it has been stipulated, in RFC7252, that the client
initiates the direction of resource discovery and observe mode to the server. However,
in reality, the server initiates a request to the sensor for data (as shown in Figure 1). As
a result, researchers have potential conflicts in their understanding of CoAP. In the Internet
of Things employing CoAP, it is necessary to explain who play the roles of client and server.

The network architecture of CoAP differs from the usual Server–Client architecture,
in that the sensor is thought of as the client, that is, the party that holds the resource.
The device that initiates the request is usually a gateway or server in the network with
no resource limitations. This provides the possibility of device discovery, the observe
mode, piggybacks, and multicasting. As can be seen from the CoAP framework, the
device requests data from the sensor, and the sensor is the data holder responsible for
responding to and providing data to the Initiator, that is, as an M2M communication
protocol, CoAP allows nodes to play the role of both Initiator and Responder. However,
sensors with limited resources as end nodes should only respond without providing the
function of initiating data, as they require data from users and taking into account their
limited hardware. This has been previously explained (see, e.g., [1,18,26]). However, the
CoAP network architecture assumed in the literature [22] is the same as that in [20]. These
contrary request–response assumptions will lead to implementation contradictions, where
either the lightweight or discovery and observation characteristics of CoAP will be abandoned.

Therefore, the scenario proposed in this article assumes that an Initiator with unlimited
resources initiates the request. The Initiator and Responder are one-to-many or few-to-many.
An Initiator stores the pre-shared information of all Responders, while a restricted Responder
(such as a sensor) stores the pre-shared information of one or more of the Initiators. To avoid
ambiguity, “Initiator” and “Responder” are used instead of “client” and “server”.

2.3. Formal Analysis Tools for Security Protocols

The model checking procedure generally consists of four basic steps. The researcher
thoroughly studies the protocol standard/specification in the first step. The second step
involves formal modeling, according to the given specification. In the third step, a model
checker performs an automatic formal verification. In the last step, the formal verification
results are output, and the standard/specification is upgraded, based on these results [27].

The model check software CPN Tools used in this paper is a Colored Petri Net (CPN)
tool developed by Aarhus University of Denmark, a visual CPN simulation analysis tool.
The model can be run directly on the UI interface when the modeling is completed. It
enables researchers to intuitively observe the various states and performances of the model
at run-time. It implements the modeling and simulation of high-level Petri nets and
introduces SML/NJ as an auxiliary language. The tool provides the ability to conduct state
space analysis. It can automatically calculate the state space and generate reports [28]. After
the state space is computed, a state space search can be performed through customized
coding, making formal model checking possible [29]. In addition, this tool also provides
functions such as monitoring and time attribute extension [30].

Compared with other formal verification tools for security protocols, such as ProVerif,
Scyther [31], AVISPA, and so on, CPN Tools possesses unique advantages. In [32], CPN
Tools was compared with various other automated verification tools. The authors claimed
that the main advantage of CPN Tools was in the extraction of attack traces of the protocol.
When the possible vulnerabilities of the protocol are found, the attack traces extracted
by ProVerif and AVISPA were relatively single and, so, they cannot fully determine the
possible flaws of the protocol. Scyther’s Adversary model was considered the most potent
Adversary model in [30], which can extract multiple attack traces. However, compared
with ProVerif, AVISPA, and other cryptographic verification tools, it is limited by a fixed
algorithm and lacks support for newer cryptographic primitives (e.g., homomorphic en-
cryption, attribute encryption, and so on), which are defined in the analysis of some security
protocols. At the same time, the algorithm also limits Scyther’s search for protocol flaws.
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In an analysis of the TMN protocol [29], CPN Tools was found to be able to find security
vulnerabilities that Scyther could not.

CPN Tools can be considered semi-automatic, compared to the above tools. It requires
the modeler to input the description of the Adversary model and analyze each protocol
uniquely, but this is also an advantage of CPN Tools. The high flexibility allows modelers to
conduct targeted verification according to different security protocols, customize symbols
and functions, describe cryptographic primitives according to their characteristics, and sim-
ulate various cryptographic primitive algorithms. New and more complex cryptographic
primitives can still be emulated. After detecting protocol security problems, the number of
attack paths extracted is based on the grade of the fine-grained model built, which makes
the protocol vulnerabilities that CPN Tools can discover more accurate and comprehensive
than other tools.

Furthermore, CPN Tools simulation can also analyze part of the protocol’s perfor-
mance. CPN Tools can simulate the network environment and concurrent running process
based on suitable modeling. The correctness and robustness of the model can be experi-
mented with by setting the running times and setting appropriate observation places or
monitors [32,33].

In recent years, as the superiority of CPN security formal analysis has been realized,
more and more researchers have paid attention to and utilized CPN Tools for protocol
security analysis. Permpoontanalarp et al., have used CPN Tools to analyze the TMN
protocol [34] and compared several protocol analysis tools. The authors proposed a method
to apply an on-the-fly method to CPN Tools and successfully analyzed the security of the
TMN protocol, finally providing an improved scheme. Igorevich et al., have analyzed secu-
rity in the domain of an in-vehicle communication security protocol using CPN Tools [35].
Two known replay attacks on the protocol were modeled and demonstrated. Amoah et al.,
have used CPN Tools to analyze the DNP3-SA protocol [36]. They claimed to have found
a previously undiscovered attack trace and provided an improved scheme. The improved
protocol was verified by the CPN model, which proved the effectiveness of the CPN model
and the importance of formal protocol analysis. Rodriguez et al., have used CPN Tools
to model and analyze the MQTT protocol [32]. When verifying the protocol model, the
authors used incremental model checking to reduce the impact of the state explosion prob-
lem. In this work, the quality of service (QoS) mechanism of MQTT was modeled, and the
issues of different MQTT QoS were analyzed. Luo et al., have used CPN Tools to analyze
the security of the Wireless Hart protocol [28], verified the known protocol vulnerabilities
through state space analysis, updated the protocol for security flaws, and used CPN Tools
to verify the updates again. In addition, other similar works [37–39] have used CPN Tools
to conduct formal security analyses for the SIP protocol, 5G AKA and QKD protocol. From
the above, it can be seen that CPN Tools play an essential role in the formal analysis of
security protocols.

3. Proposed Scheme

The proposed protocol includes anonymity, mutual authentication, and key agreement.
Considering perfect forward and backward secrecy and other security attributes, the
scheme adopts technology based on the elliptic curve to make the protocol as lightweight
as possible. The symbols used in the protocol are shown in Table 1.

The scheme consists of the Initialization and Registration phase and the Identity
Authentication and Key Agreement phase.
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Table 1. Notation and descriptions.

Symbol Description

IDi, IDr Identity of Initiator (I), Responder (R)

ni, nr Random nonce chosen by I and R

p A large prime number

Fp A prime finite field

G Base point over E/Fp

Z∗p A finite field {1, . . . , p − 1}

(qi, Qi), (qr, Qr) Private and Public key pair of I, R

Sr, pSr Current and previous secrets shared between I and R.

Kidr, pKidr Current and previous key index shared between I and R

(v1, . . . , v4) The value split by h(q iQr||Sr||Kidr)

SK Session Key between I and R

Ni, Nr The elliptic curve points Ni= niG and Nr= nrG

pN previous Ni stored by R⊕
, || Bitwise XOR, Concatenation operation

⊥ Null

h(.) One-way hash function

E(a, b)/Fp

An elliptic curve over prime field Fp defined by non-singular elliptic curve equation:
y2= x3+ax + b (mod p)

a, b are constants, x, y, a, b ∈ Fp, and 4a2+27b2(mod p) 6= 2

Note: The point multiplication of all elliptic curves in the protocol only retains x coordinates, which will not be
described in the following.

3.1. Initialization and Registration

In the first phase, the TA is assumed to exchange secrets with the Initiator and Responder
through a secure channel. The role of the TA is to assign IDs to all devices and assist the
devices in identifying each other initially and pre-sharing the secret. In addition, since the
protocol is entirely anonymous, a TA is required to store all devices’ real IDs and public keys
to achieve non-repudiation when necessary. The procedure of this phase is shown in Figure 2.

First, the TA selects an elliptic curve E/Fp, a generator G, and a one-way hash function
h(.) over a finite field Fp with sizeable prime order p (SHA3-256 is recommended). Except
for the split (v1–v4) data, the first 128 bits of the hash string are truncated. Then, a 64-bit
Extended Unique Identifier (EUI64) is selected for each device, as the device ID, and the
essential data are sent to each registering device. The device will perform the calculation
using the specified algorithm and save its ID.

Next, the Responder device randomly selects its first secret Sr, calculates the hash
value Kidr= h(Sr), selects the private key qr ∈ Z∗p and stores it in secure memory, cal-
culates the public key Qr= qrG, and sends the public key, Sr and Kidr to the TA. The
Initiator selects the private key qi ∈ Z∗p and stores it in secure memory. After calculat-
ing the public key Qi= qiG, it sends the public key to the TA. TA records the IDs and
public keys of both parties. Moreover, the TA sends Sr, Kidr, and Qr to the Initiator, and
Qi to the Responder. Upon receipt, the Responder will create and save the pre-shared
data in its Non-Volatile Memory format < Kidr, pKidr, Sr, pSr, Qi > and initial values
< Kidr, ⊥, Sr, ⊥, Qi >. The Initiator creates and saves data to the database in the format
and initial value < Kidr, Sr, Qr >.

The Initiator also needs to save each Responder’s IP address, port, and other corre-
sponding information in reality; however, this is irrelevant to the discussion in this paper,
so it is not further discussed.
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Figure 2. Initialization and registration phase.

3.2. Identity Authentication and Key Agreement

This phase allows the Initiator and Responder to identify and trust each other, establish
symmetric encryption keys required for subsequent data interaction, and update shared
secrets. It consists of four steps (see Figure 3):

• Step 0: Responders power on

In this phase, the pre-shared data are read into memory, the static memory space is
allocated for the long-term variable pN required by the corresponding communication
object, and the error counter is set to an initial value of 0.

• Step 1: Initiator→ Responder: {Kidr, Ni, v1, MAC1}
The Initiator finds the public key Qr, Kidr, and the secret Sr of the target, calculates

h( q iQr||Sr||Kidr) and divides the result evenly into (v1, v2, v3, v4). Select a random
nonce ni, calculate Ni= niG and Pi= niQr, calculate MAC1 = h(Kidr||v2||Pi), and send
Message1 = {Kidr, Ri, v1, MAC1} to the Responder.

• Step 2: Responder→ Initiator: {v3, Nr, MAC2}
After receiving the request from the Initiator, the Responder uses the received Kidr’

to find the corresponding value in the storage. As the protocol stipulates that the latest
and previous Kidr values can be accepted, it first determines whether the Kidr’ value exists
in storage. If it does not exist, the protocol is aborted, the error counter is incremented
by 1, and the error is logged. If it exists, it takes out the corresponding Sr, Qi, and uses
Kidr’ as the Kidr value used in this process. The Responder checks whether the received
value of Ni’ is the same as the previous value of Ni (pN) stored by the Initiator. The
received message is directly discarded without processing if the value is the same. If it
is different, calculate h(q rQi || S r || Kid r) = (v1, v2, v3, v4), and check that the received
v1’ value and the calculated v1 value are equal. If not equal, the protocol is aborted, the
error should be logged, and the error counter increases 1. If equal, calculate Pi= qrNi,
MAC1 = h(Kidr||v2||Pi), check the received MAC1’ value, and calculate that the MAC1
and MAC1’ values are equal. If not equal, the protocol is interrupted, the error is recorded,
and the error counter increases 1. If equal, replace with the received Ni’ record of pN
values corresponding to the Initiator. Choose a random number nr, calculate Nr = nrG,
Pr= nrQi, and MAC2 = h(v3 || v4 || P r || P i). Calculate the SK value and Snew

r and Kidnew
r

as follows: SK = h(Pi
⊕

Pr || v4 ), Snew
r = h(P i || P r || v2 || v4 ), Kidnew

r = h(S new
r
)
. Up-

date the shared secret in the store: Replace pSr with Sr, pKidr with Kidr, Sr with Snew
r , and
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Kidr with Kidnew
r . Finally, empty the temporary memory data and send response Message

2 = {v3, N r , MAC2} to the Initiator.

• Step 3: Initiator confirmation

The Initiator receives the response message from the Responder and checks whether
the received v3’ is equal to the v3 value calculated in the previous step and whether
the received N′r value is not equal to the Ni value calculated in the previous step. If
there are any false results, the process is aborted and the temporary data in memory is
cleared. If all is true, then calculate Pr= qiNr, MAC2 = h(v3 || v4 || P r || P i). Then, check
whether the received MAC2’ value is equal to the calculated MAC2 value. If not, the
Initiator does nothing and clears the temporary data from memory. If equal, then calculate
SK = h(Pi

⊕
Pr || v4 ), Snew

r = h(P i || P r || v2 || v4 ), Kidnew
r = h(S new

r
)
. Finally, update

the values corresponding to the database, replacing Sr with Snew
r and Kidr with Kidnew

r .

Figure 3. Identity authentication and key agreement phase.
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3.3. Subsequent Instructions

After the above protocol has run, both parties obtain the session key SK and the session
is established. During the specified session period, the two communicating parties encrypt
the message with the session key. CoAP can be encrypted with a symmetric encryption
cipher suite, such as AES-GCM.

The error counter set in the Responder can reflect the situation of the device being
attacked, to a certain extent. Therefore, once the counter value changes, the Responder can
send an alarm message to the Initiator (including the protocol step), in order to find the error.
This allows managers or proactive defense systems to identify the attack on the Responder,
determine which part of the system is vulnerable, and decide whether to intervene.

As the transmitted messages do not include time stamps, the protocol does not require
time synchronization between devices. However, in reality, the Responder should set
several timers, according to the specific situation. For example, when the value of the error
counter increases more than a certain threshold within a certain period, the Responder
may send an alarm message to the Initiator and block the channel for a period to avoid
DoS or battery depletion attacks. The Initiator can set the response window of the request
message, and the request must be received within the specified time. Otherwise, the request
is regarded as lost.

4. Formal Modeling and Security Verification
4.1. Adversary Model

The Dolev–Yao (DY) Adversary model has been widely used in the formal analysis of
security protocols. The traditional DY model can be summarized into the following five points:

1. The Adversary can eavesdrop, block, and intercept any message on the network.
2. The Adversary can send and re-send messages.
3. The Adversary can combine and decompose messages.
4. The Adversary is familiar with encryption, decryption, hash, and other cryptographic

operations. They can perform any encryption operations specified in the protocol,
and decrypt encrypted messages when the decryption key is known.

5. The Adversary is a legitimate member of the system. They have been registered with
the system and possess all legitimate security parameters.

However, the DY model is no longer sufficient to fully describe the full capabilities
of modern adversaries [40]. Therefore, we extend the DY model (to eDY), assuming that
an Adversary satisfying the DY model can also have one of the following capabilities:

eDY1: When verifying the defense against attacks, such as leaking temporary session infor-
mation, the Adversary can obtain temporary random numbers to generate session keys.
eDY2: When verifying characteristics such as perfect forward secrecy, an Adversary can
obtain another entity’s current session key or the long-term key.
eDY3: When verifying an attack caused by disclosing a pre-shared secret, an Adversary
can obtain the value of a pre-shared secret between other entities.

Note that eDY1-eDY3 are separately attached. Each time, the Adversary is allowed to
satisfy only one of eDY1-eDY3, instead of all of them, while verifying a specific attribute.
Otherwise, it is considered a Trivial Attack.

4.2. Formal Modeling

The formal security protocols verification method based on CPN Tools used in this
paper is an incremental attribute verification method based on the state space. It belongs to
the category of formal attribute verification [27].

The goal of modeling was to depict the DY Adversary and its extensions in the model
based on CPN Tools as accurately as possible, in order to verify the proposed protocol. The
proposed CPN security formal model checking method is summarized in the following.

According to the capability of the DY model, it gives the Adversary a vast knowledge
base and the ability to split and combine protocol messages, randomly combining all
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possible messages in each step, in turn forming the state space of each protocol step. The
state space is checked to find the states that are responded to by the honest entity. The
traces of these states are extracted to judge whether the message accepted by the honest
entity is illegitimate. If the message is illegitimate, the protocol has a defect in this step. If
not, the protocol is safe for this step, and the testing of subsequent steps can continue.

4.2.1. Modeling of the Proposed Protocol

In order to keep the CPN model page clear and easy to understand, we use a top-down
hierarchical approach to process the model (the CPN model file of this paper can be found
in Supplementary Materials). The protocol CPN model consists of 12 sub-pages in 4 layers.
Its hierarchical block diagram is shown in Figure 4.

Figure 4. Hierarchical block diagram for a complete view of the model.

The top-level CPN model of the protocol is shown in Figure 5.

Figure 5. Protocol top-level CPN model.

The initiator and responder communicate through the network interfaces C1 and C2.
The adversary controls the network, and the network transition is the adversary.

The second-layer model of the Initiator is shown in Figure 6.

Figure 6. The second-layer model of Initiator.
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The Initiator’s processing is divided into two sub-pages: OP1 for processing when the
request information is sent, and OP3 for processing after the response message is received. The
Initiator’s key pair and the pre-shared secret information are stored in the database; in practice,
the key pair may be stored in the secure memory, which is only symbolized in the model.

The second-layer model of the Responder is shown in Figure 7.

Figure 7. The second-layer model of Responder.

In this model, the Responder’s processing is divided into two sub-pages. The role of
OP2_1 is to process and verify the received request, while the role of OP2_2 is to prepare
and send a response message after the message is validated. The non-Volatile_Memory
stores the pre-shared secrets of all the devices communicating with it. In addition, the
Respder_RAM stores static variables specified by the protocol and temporary data loaded
at run-time.

The Initiator model sub-page OP1 is shown in Figure 8.

Figure 8. Initiator model sub-page OP1.
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OP1 is the starting page for all model simulation runs, where the Initiator computes
and sends the key agreement request. Starting with the transition Read_(Start), the transi-
tions Calc_Vs (calculate the values of v1,v2,v3,v4), Select_Nonce_Calc_Ni_and_Pi (select
random numbers and calculate fresh Ni and Pi values), Calc_MAC1 (calculate MAC1), and
Gen_Token_and_Send (sends a message) are triggered in turn. According to the DY Adver-
sary model, as the Adversary is also a legitimate member of the protocol, the target objects
of Initiator in the model include the legitimate Responder and the considered legitimate
Adversary. The sub-page randomly generates two kinds of request messages, targeting the
Responder or Adversary. The model temporarily stores the required data in the interface
Initiator_RAM for usage by OP3 child pages. In addition, the fusion places CP1–CP4 and
Intercepted observe the simulation run result sets, simulating the behavior of the error
counter. The places Request_Counter, Finished, and Deny_Restart above are flow control
places. The value in Finished keeps track of the number of simulation runs.

The Responder model sub-page OP2_1 is shown in Figure 9.

Figure 9. Responder model sub-page OP2_1.

Message 1 sent by the Initiator should be received by the Responder OP2_1 sub-
page for validation. According to the rules of the protocol, the received Kid’ can be
divided into three cases, which trigger one of the transitions Kid’ = Kid_Calc_V1(1),
Kid = pKid_Calc_V1(1), or Kid’_invalid(1). If Kid’ does not exist in the store, The transition
“Kid’_invalid(1)” triggers, increasing the counter’s value CP1 and terminating the run.
If Kid’ exists and is equal to the stored Kid value, the transition Kid’ = Kid_Calc_V1(1)
triggers, loading Kid and S into memory. If Kid’ exists and is equal to the stored pKid
value, the transition Kid = pKid_Calc_V1(1) is triggered, which loads pKid, and pS into
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memory as the Kid and S values used in the subsequent calculation. The transition Fresh-
ness_Check_(2) is then triggered, in order to determine whether the accepted value of N is
not equal to the last stored value of N (pN). If so, the message is discarded, the counter CP2
is incremented by 1, and the operation is terminated. If not, the transition Verify_v1_(3)
is triggered, in order to determine whether the received value of v1 equals the calculated
value of v1. If not, the process is terminated, and the counter CP3 is incremented by 1. If
equal, the transition Calc_Pi, MAC1_and_Verify_(4) is triggered to put the values used to
calculate Pi and MAC1 into memory and compare them with the received MAC1’. If not
equal, the process terminates, and the counter CP4 is incremented by 1. If equal, it goes to
the following sub-page (OP2_2).

The Responder model sub-page OP2_2 is shown in Figure 10.

Figure 10. Responder model sub-page OP2_2.

The place Alarm in this sub-page is used to display alerts that the model sets in
two ways: One is that the fusion CP1–CP4 detects the interrupt caused by the failure of
judgment in Responder OP2_1. If this happens, Alarm will get the token “Warning: Attack
detection (1)”. The other is caused by the originator sending a message of old shared values,
due to a Network outage or desync attack. Alarm will get the token “Notice: Network
anomaly (1)” if this happens. During the model simulation run, the number after the
token’s prompt message is variable, representing the number of times the anomaly has
been found.

The Initiator model sub-page OP 3 is shown in Figure 11.
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Figure 11. Initiator model sub-page OP 3.

This model simulates the process of the Initiator after receiving the response message.
In turn, the transition Unpack_and_Calc_Pr is triggered when the received value of v3’
is equal to the value of v3 calculated in the first step, and the received value of N is not
equal to the value of N issued in the first step. If these two conditions are not met, the
transition Check_Failed1 is triggered, the error counter Stopped’ gets the Token (the original
Token+1), and it stops running. If the condition is satisfied, the Pr value is calculated. The
transition Calc_MAC2_and_Verify is used to compute MAC2 and verify whether it is equal
to the received MAC2’. If not, the transition Check_Failed2 is triggered, and the error
counter Stopped obtains the token and stops running. If equal, proceed to the next step.
The transition Calc_SK_and_Sr_new is used to calculate SK and Sr_new, and the transition
Update_Shared_Values is the last transition in the protocol model, which is used to update
the shared secrets in the memory. The fusion place Complete on the page records the
number of completions.

4.2.2. Modeling of Adversary

A powerful Adversary can cause a variety of abnormal states and even state space
explosion of a protocol. Moreover, as the security attributes of the protocol are related to
freshness, the protocol should consider at least two runs, making the CPN model’s running
process more challenging to control. When modeling a CPN, we store the previous protocol
run directly into the Adversary’s initial knowledge base, in the form of the minor units
available to the Adversary, in order to simulate that the Adversary has already executed the
protocol with each entity before this simulation. Thus, the process is executed only once, but
the results of a second run are simulated. As such, the state space size is effectively reduced.

Furthermore, in order to additionally control the state space size, we adopt incremental
verification based on the steps specified by the protocol and perform verification in a step-
by-step manner. In the first step of protocol verification, a breakpoint was set after the
Responder sent the message, and only the randomly synthesized message of the Adversary
and the response message sent by the Responder were analyzed, in order to test the
Responder’s ability to resist illegitimate messages. Then, before verifying the second step,
let the Adversary in the first step only combine the standard response to the message. In the
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second step, the Adversary receives a message like this, then sends a random combination
to the Initiator. Finally, the state space size is limited to a more appropriate category.

In order to implement the above control, the extension of the Adversary model, and
the simulation of the protocol, we designed some configuration items for the model, as
listed in Table 2.

Table 2. Other initial value configurations.

Variable Name Type Position Effects on the Model

sim Bool Pages
Pallete

If true, enable loop simulation. Allow setting the
transition triggers at specified times.

AttM1 Enum Pages
Pallete

On: enable recombined message 1.
Off: message 1 will send without modification.

AttM2 Enum Pages
Pallete

On: enable recombined message 1.
Off: message 1 will send without modification.

Brk: set a breakpoint where message 2 is received.

SkipChkM1 Bool Pages
Pallete If true, the Adversary combines only legitimate message 1.

iniAtt Enum Pallete

0: Initialize the AKB with the original DY.
1: Initialize the AKB with the original DY and eDY1.
2: Initialize the AKB with the original DY and eDY2.
3: Initialize the AKB with the original DY and eDY3.

LR Int Pallete When sim = true, set the loss rate of message 2.

The second-layer page of the network (Adversary) is shown in Figure 12.

Figure 12. The second-layer page of the network (Adversary).

The Adversary is divided into two sub-pages in the model—MSG1_Hacking and
MSG2_Hacking—for protocol messages 1 and 2, respectively.

The Adversary model sub-page MSG1_Hacking is shown in Figure 13.
After obtaining message 1 sent by the originator, the transition Unpack_and_Store

is first triggered to divide the message and store it in the knowledge base. It is then
controlled by the configuration item AttM1, in order to decide whether to re-assemble the
message. If AttM1 is Off, the transition Direct_Send is triggered to send the message to C2
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without processing. Otherwise, the process moves to the MSG1_Repack sub-page. When the
configuration item sim is enabled, the transitions Clear and Reset are used to clean up invalid
data in the Adversary’s knowledge base, in order to avoid too much data during simulation.

Figure 13. Adversary model sub-page MSG1_Hacking.

The Adversary model sub-page MSG1_Repack is shown in Figure 14.

Figure 14. Adversary model sub-page MSG1_Repack.
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In this sub-page, the Adversary first attempts to compute various possible messages in
the format of message 1 using the transition Process_data, based on the data in the existing
knowledge base, including legitimate messages communicated to the Adversary. Then,
it combines all the new data into the knowledge base. The transition Pack is randomly
combined, according to the format of protocol message 1, and the combined message 1 is
sent to C2. The role of Skip_check_Msg1 in the page is to skip the random packing by
judging the configuration item SkipChkM1 when verifying the Initiator of the second step
of the protocol. This transition only combines the request messages that the Responder can
respond to, according to the results of the first model checking.

The Adversary model sub-page MSG2_Hacking is shown in Figure 15.

Figure 15. Adversary model sub-page MSG2_Hacking.

As in the Msg1_Hacking sub-page, this sub-page divides the received message 2 into
the knowledge base by triggering the transition Unpack_and_Store. According to the value
of AttM2, it triggers the transition Direct_Send_(or intercept), or enters the MSG2_Repack
sub-page to recombine message 2. The transition Update_AKB is used to update the
knowledge base when sim = true and AttM2 = 2, in order to prevent excessive data.

Correspondingly, if the breakpoint AttM2:=Brk is set in the first validation step, it will
prevent the transition Unpack_and_Store from firing, and the process will be interrupted there.

Transition Intercepted is for validation to synchronization attack or network failure
data loss of counter. When a message loss occurs, its value is increased by one.

The Adversary model sub-page MSG2_Repack is shown in Figure 16.
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Figure 16. Adversary model sub-page MSG2_Repack.

The transition Process_data generates possible messages in message 2 format, puts the
generated atomic messages into the knowledge base, and the Pack transition will randomly
combine messages, according to the data held in the knowledge base, and send them to C1.

The Adversary’s fusion place LOG stores path messages in an on-the-fly manner.
It allows the traces to be extracted quickly after the state space calculation. This place
records the contents of the interactive messages for each run in order. The four recorded
messages are distinguished by the identifiers “A”, “B”, “C”, and “D”, where “A” represents
the request message sent by the Initiator, “B” represents the request message sent to the
Responder after tampering by the Adversary, “C” represents the response message sent
by the Responder after processing the request message, and “D” represents the response
message sent back to the Initiator after tampering by the Adversary.

4.2.3. Security Verification

Due to setting multiple configuration values and observation places in the model, the
logic processing becomes more convenient when searching the state space. For example, if
the place Complete under the OP3 sub-page in the dead marking has only one Token with
the value 1, it means that both the protocol Initiator and Responder have run the protocol
entirely once. If there are only three messages in the Adversary’s place LOG of a dead
marking, it means that the Responder responds to the message, but the Initiator does not
receive it.

According to the eDY model, our validation goal was as follows: Under the premise
of excluding the Adversary from delivering and combining legitimate messages, determine
whether the honest entity responds to or processes messages randomly combined by the
Adversary, and whether the Adversary has all the operands that compute one or more
of the secrets of the honest parties after the protocol runs, in a step-by-step manner. If,
in the whole state space, the honest entity at each step does not respond or process any
illegitimate message randomly reassembled by the Adversary, and the honest entity does
not reveal any secret to the Adversary, then the protocol can be considered secure under
the eDY model.

The proposed protocol consists of three steps with two interactive messages; therefore,
we divided the verification into two cases.

Case 1: When verifying the response of the honest Responder in the first step, the
configuration items are as follows:

sim:=false; AttM1:=On; AttM2:=Brk; SkipChkM1:=false.
The state trace search condition is set as follows: the Adversary has three records

in LOG.
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Case 2: When verifying the processing of the honest Initiator in the second step, the
configuration items are as follows:

sim:=false; AttM1:=On; AttM2:=On; SkipChkM1:=true.
The state trace search condition is set as follows: Complete under the OP3 sub-page of

the Initiator has a token, with value of 1.
In addition, the parameter n of extraCap(n) in iniAtt was configured, in order to verify

the security attributes of several different Adversary initial values described by the eDY
model. The specific meanings of different values are described in Table 3.

Table 3. Adversary knowledge base initial parameters and verification content.

n The Initial Knowledge Verification Content

0 Original data *

Confidentiality, integrity, authentication,
Man-in-the-middle Attack, Replay Attack,

Device Capture attack, Untraceability,
Impersonation Attack

1 Original data and private key of Initiator (I) and Responder (R)
Perfect forward secrecy,

Known-Key Attack,
Key Compromise Impersonation Attack

2 Original data and pre-shared secret between I and R Privilege-Insider Attack,
Pre-shared Information Disclosure Attack

3 Original data and fresh random nonce of I and R Known Specific Temporary Information Attack

* The adversary’s initial data according to the original DY model.

Based on the above, we performed state space computations for the two cases under
each Adversary configuration, obtaining eight sets of state space reports. The final results
are given in Table 4 (all state space reports and screenshots of searches can be found in the
Supplementary Materials).

Table 4. Results of Model Check.

Init KB 1 Case Nodes Dead
Markings Resp 2 Rm Dupl 3 Error

Count
Illegal
Resp 4

Key
Materials 5

0
1 14,304 3322 8 3 1 0 None
2 29,762 27,004 38 3 1 0 None

1
1 29,868 6972 14 3 1 0 None
2 85,572 77,408 146 3 1 0 Pr

2
1 22,086 5147 11 3 1 0 None
2 54,526 49,506 83 3 1 0 None

3
1 27,004 6280 22 5 2 0 Pi
2 101,338 92,108 144 5 2 0 Pi, Pr

1 The initial Knowledge base of the Adversary. 2 The number of nodes that messages were responded to by
legitimate entities. 3 The number of nodes after removing duplicated response messages. 4 The number of nodes
that legitimate entities responded to illegitimate messages. 5 The Key materials Adversary can obtain when the
calculation is done.

As can be seen from the verification results in the Table 4, we built a vast state space
describing the Adversary’s ability in the CPN model. The Adversary sent attack messages
that exhausted all possible combinations, but all illegitimate messages were detected and
rejected by the honest entity. The Adversary did not obtain all valid data, in order to
calculate the secrets of others. When the initial knowledge base configuration in the table
was 0 and 2, there were three messages responded to by honest entities after de-duplication,
and the trace searching result is:
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1. A interacts with Responder typically with the shared Sid of the current round.
2. A interacts with Responder typically with the shared Sid of the previous round (the

number of alarms is 1).
3. A transmitted the request sent by Initiator to Responder (without modification).

With initial knowledge base configurations 1 and 3, the Adversary in advance, through
illegitimate means, knows the current honest entities private key or fresh random number,
so they can calculate the other key materials (i.e., Pi and Pr); however, with no other key
materials, the Adversary cannot calculate on or before the session key or secret S.

At this point, the security of the proposed protocol was verified under the eDY model.
The analysis concerning the security attributes is presented in Section 5 below.

4.2.4. Protocol Simulation

In addition to the above security verification, we executed the model simulation in
CPN Tools to verify the robustness of the network’s protocol under the Adversary’s control.
In the CoAP architecture, the Initiator and Responder have a one-to-many relationship,
and the Initiator has no limited resources and does not accept messages that have not been
requested. Therefore, the main experimental target of our test is the Responder.

We set the configuration as follows:
sim:=true; AttM1:=On; AttM2:=On; SkipChkM1:=false;
Transitions: 10 million times (see Figure 17).

Figure 17. Completion of simulation notice in CPN Tools.

The purpose of this configuration was to simulate a situation where the Adversary
sends numerous deranged messages to the Responder. Furthermore, we observed how the
protocol was affected in this case, as well as the outcome of the Responder alert, in order to
verify the robustness and survivability of the protocol.

When the Adversary controlled the network and re-organized messages at each step
of the protocol, the model simulation ran 676,696 times. It can be seen in Figure 18, from
the figure, that the simulation results were consistent with the analysis results of the state
space above. All attacks against the Responder were detected, and corresponding alerts
were sent, except for 1096 cases in which the Adversary happened to combine standard
messages from the Initiator and Responder. In the following, the four cases CP1–CP4 are
analyzed separately (see Table 5).

The Intercepted token value, which represents the number of interrupts caused by
errors found on the Initiator’s side, was 52,364. According to the protocol rules, the
Initiator’s shared secret is not updated when it finds an interruption. Thus, this simulates
the case of a desynchronization attack.

Consequently, despite numerous attacks and network interruptions, synchronization
was preserved between the Initiators and Responders in the protocol. The device sensed
and discarded all attack messages, and the interactions between entities could still operate
normally after the attack was over. This indicates that the protocol has strong robustness.

It can also be seen, from the experiment, that once the value of the error counter rep-
resented by CP1–CP4 changed, it can be concluded that the Adversary had attacked the
Responder. The change in Intercepted value indicated an Adversary attack or network failure,
providing the system with the possibility of protocol-level attack and anomaly detection,
based on which the Responder may send an alert message to the Initiator of the established
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session when an anomaly is found. Once the network administrator notices the alert message,
it can determine whether the network has been compromised at the protocol level.

Figure 18. The simulation results in observation places.

Table 5. Interpretation of simulation results at CP1–CP4.

Place Times Check Value Adversary Operations

CP1 112,571 Kidr
Replayed message 1 eavesdropped before the previous

interaction or sent a fake message.

CP2 118,630 Ni Replayed previous message 1 directly.

CP3 178,381 v1 Modified the v1 in the message sent by the Initiator.

CP4 213,654 MAC1 Modified Ni in the eavesdropped previous message.

5. Security Analysis

In this section, the proposed protocol’s security attributes and attack resistance are
discussed informally, based on the model checking and experimental results presented above.

5.1. Confidentiality

The session key and shared secret Sr are the data that the proposed protocol must keep
secret. According to the state space verification results, the eDY Adversary exhausted all
possibilities and failed to obtain any secret between honest entities during the protocol’s
operation, indicating that the protocol is confidential. In the two interaction messages,
Sr, Pi, Pr, v2, v4, and SK are not transmitted in clear text. Kidr is calculated by hashing
a different secret, Sr, each time. The Adversary cannot reverse hash and, therefore, cannot
obtain Sr. Similarly, as they do not possess the private keys of both parties, they cannot
calculate the session key materials Pi and Pr calculated by elliptic curve point multiplication
of fresh random numbers every time and, so, the Adversary cannot obtain SK.
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5.2. Data Integrity

In the proposed protocol, both sides send messages only once in one interaction, and
the receiver can detect abnormal messages. The use of v1, v3, MAC1, and MAC2 ensures
data integrity. In message 1, if the Adversary forges Kidr, Sr, or the private key, v1 will
fail to verify. If Ni is changed, MAC1 = h(Kidr || v2 || P i) will fail to verify. However, in
message 2, if v3 is modified, the receiver will first detect and terminate the protocol. If Nr
is modified, MAC2 = h(v3 || v4 || P r || P i) will verify that failure. Therefore, the protocol
provides a data integrity guarantee.

5.3. Mutual Authentication

MAC1 in message 1 includes v2, data that does not appear in the sent message and
cannot be forged. The Responder confirms the identity of the Initiator by verifying MAC1.
Similarly, the Responder’s message 2 contains the v4 that has not been sent, and the Initiator
verifies the MAC2 that contains v4 to authenticate the Responder.

5.4. Perfect Forward and Backward Secrecy

The session key is generated using a random number and combination of private keys
and shared secrets. In the state space validation, this attribute was verified. The honest
entity’s private key was added to the Adversary’s knowledge base, but the validation results
show that the Adversary could not calculate the current or former SK. The Adversary cannot
obtain the secret Sr every time it changes, as it is based on random numbers; therefore, they
cannot generate the session key. Besides, if the Adversary obtains one or more session keys
that were used previously, as the sessions are unrelated, they cannot recover useful key
material from it, nor can they calculate previous or future session keys. Hence, the protocol
has perfect forward and backward secrecy.

5.5. Device Anonymity and Unlinkability

The protocol does not send device identity information in plain-text. The public
key indices are obtained through the temporary value Kidr, and there is no mapping
relationship between the value and the actual ID. Under normal circumstances, after the
session, Kidr and other message value components are updated. Adversary cannot use
Kidr linked to a specific device or other fields.

5.6. Resistance to Impersonation Attack

Each party has a private key and shared secrets in the proposed protocol, and the values
of S and Kidr are changed every time. Without knowing all the materials, the Adversary
cannot impersonate the Initiator and pass the authentication, and it is also impossible to
impersonate the Responder by responding to the Initiator with a legitimate message.

5.7. Resistance to Man-in-the-Middle Attack

In the proposed protocol, as the Adversary cannot carry out the impersonation attack,
it is impossible to insert a forged message into the session for the honest entity to identify
and authenticate. The state space verification in Section 4.2.3 verifies the resistance to
Man-in-the-Middle attacks; as such, the protocol is immune to Man-in-the-Middle attacks.

5.8. Resistance to the Privileged Insider Attack

When modeling in Section 5, we assumed that the Adversary was also a legitimate
protocol member and could communicate with honest entities normally. Therefore, this
happens to verify the resistance of the protocol to internal privilege attacks in the later state
space analysis. In addition, we put the secrets of various other entities into the Adversary’s
knowledge base separately. The verification results indicated that the Adversary could
not acquire any useful key material, demonstrating that the protocol is resistant to internal
privilege attacks.
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5.9. Resistance to the Known Session-Specific Temporary Information Attack

In this attack, it is assumed that the Adversary has access to temporary random
numbers generated by both communicating parties, as such random numbers are usually
not in protected memory, and can be exploited by the Adversary if they are not properly
removed after the session is executed. Nevertheless, in Section 4.2.3, the state space model
validation (case 3) put all the fresh random nonces of honest entities into the Adversary’s
knowledge base. It can be seen, from the results, that the Adversary could calculate Pi and
Pr, but could not get either side’s private key and, so, could not calculate the key material
v4. Therefore, the protocol is also resistant to this attack.

5.10. Resistance to the Replay Attack

The Adversary uses the intercepted message to perform a replay attack, in order
to convince the communicating party that the Adversary is the honest entity that sent
the message. The replay message of the proposed protocol has two types: one involves
replaying the previous request by the Initiator, and the other involves replaying the request
before the previous one by the Initiator. In Section 4.2.4, the simulation results show that,
for the former, as the protocol stores the Ni received by the Responder in the previous
response, the Responder can determine that the message was repeated, then discard it
without processing. For the latter, as Kidr has expired in the message at this time, the
Responder finds it in the first step of checking after receiving the message, and the message
is also discarded. However, at the Initiator, after receiving the replay message, it verifies v3’
and MAC2 to find and reject the replay attack.

5.11. Resistance to the Key Compromise Impersonation Attack

In this case, the Adversary has obtained the long-term key of an honest entity, and
attempts to communicate with other devices by pretending to be this entity. In the
proposed protocol, this is impossible. All devices, in advance, calculate the Shared
secret Sr. The Adversary, having the private key of everyone else, cannot calculate
h(q rQi || S r ||Kidr) = (v1, v2, v3, v4), and cannot be certified by other devices. There-
fore, an Adversary cannot carry out a KCI Attack on the proposed protocol.

5.12. Resistance to the Desynchronization Attack

The Adversary may intercept the response sent back by the Responder while the
protocol is running, such that the Responder updates its storage, believing that it has
received a legitimate message, while the Initiator does not receive any response and does
not update the stored value. In this way, the Adversary intends to cause a desynchronization
attack, such that legitimate parties cannot communicate normally. In Section 4.2.4, our
Adversary performed more than 50,000 such attacks in the simulation. However, the honest
entities Initiator and Responder were still synchronized, and the shared values used for
computation were not inconsistent. This was because the Responder records the previous
Kidr and Sr, and the value stored by the Initiator to calculate the subsequent request is still
valid whether or not they receive the response message during the protocol interaction.
Therefore, the protocol is not vulnerable to desynchronization attacks.

5.13. Key Misbinding Problem

In some schemes based on the elliptic curve (see, e.g., [20,24]), assuming that the party
ID is strictly public key bindings, and assuming that the public keys were obtained by the
parties in the existing security key distribution, the parties know the public key correspond-
ing to the primary body status. In reality, however, this assumption is impractical. The
Adversary can use the public key distribution process, binding the wrong public key to
each device ID. In our scheme, the binding is conducted in the form of a shared key index,
and the Adversary cannot tamper with the index value and the public key value. Therefore,
in our scheme, the binding is in the form of a shared key index and not public binding, and
does not need the above assumption.
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5.14. Resistance to the DoS Attack

The Adversary may send numerous repeated messages to exhaust the device’s re-
sources. According to the simulation experiment results, all attack messages were detected,
and CP1–CP4 were directly associated with the error counters. If a large number of error
messages are received in a short period, the protocol will detect the intent of a DoS attack,
triggering the alarm and subsequent emergency action. In the implementation, the network
administrator can set the interval between two authentication requests and, if the value
of the error counter increases too fast within a certain period, then the receiving port is
blocked for a while, along with other mechanisms to prevent the impact of DoS attacks.
In addition, the Responder alarm function may be transferred out-of-band, such that the
managers can be found at the beginning of the attack, and the network attack behavior and
involvement in the active defense measures can be determined.

5.15. Discussion of the Amplification Attack

An amplification attack is a kind of DoS attack. CoAP supports the observe mode
and multicast and, so, the Adversary can send a small number of commands to trigger
a large number of response data, or even a steady stream of response data, causing network
paralysis. Therefore, the proposed protocol is immune to amplification attacks, as the
Adversary cannot successfully implement forgery or replay attacks. However, after the
session is established, the defense of encrypted message replay and forgery attacks depends
on the underlying security protocols. In addition, at the network level, in order to prevent
network paralysis, setting allowlists for devices, firewalls, and speed limiting based on IP
and port numbers are effective methods to defend against DoS attacks.

6. Performance and Security Evaluation
6.1. Computation and Communication Overhead Evaluation

We compared the proposed protocol with similar protocols [20–24]. It was assumed
that the ID, random number, hash value, point of the elliptic curve (ECC), secret or key,
and timestamp (TS) length were 64, 128, 128, 320, 128, and 32 bits, respectively. Further-
more, the public key certificate was assumed to be a C509 certificate (CAu), encoded by
COSE [41], with a length of 139 Bytes. The ciphertext (Cip) after symmetric encryption was
uniformly calculated using 160 bits, as described in [20] (actually, the ciphertext size of AES
is calculated by the plain-text length). In addition, the time consumption of hash calculation
(Th), elliptic curve point multiplication (Tpm), point addition (Tpa), symmetric encryption
and decryption operation (TS

e/d), and time stamp operations were 0.00032, 0.0171, 0.0044,
and 0.0056 s respectively [23]. The time consumption of other operations was negligible
and, thus, ignored.

Therefore, the proposed protocol’s computation overhead is 0.07032 s for each party,
and the total is 0.14064 s. The communication overhead is 832 bits for both parties. Com-
pared with those of other protocols proposed in the literature, as detailed in Tables 6 and 7,
as can be seen from the table, the proposed scheme was not the least expensive, but it
provided more security and anti-attack attributes than the other schemes, as shown in
Table 8. Therefore, we believe that, although the Internet of Things is a restricted environ-
ment, the protocol design should be as lightweight as possible without compromising any
common security attributes, which involves a trade-off: a protocol may be too lightweight
to provide robust security, but we wish not to pay too much computing power for more
robust security.
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Table 6. Comparison of computation overhead with similar schemes.

Protocol Initiator Responder Total

Suman et al. [20] 4Th+3Tpm+4TS
e/d 3Th+3Tpm+4TS

e/d 7Th+6Tpm+8TS
e/d

Abosata et al. [21] 2TS
e/d 2TS

e/d 4TS
e/d

Oliver et al. [22] 2TS
e/d 2TS

e/d 4TS
e/d

Das et al. [23] 6Th+8Tpm+4Tpa 6Th+8Tpm+5Tpa 12Th+16Tpm+9Tpa
Alzahrani et al. [24] 4Th+3Tpm+1Tpa 4Th+3Tpm+1Tpa 8Th+6Tpm+2Tpa

Our Protocol 6Th+4Tpm 6Th+4Tpm 12Th+8Tpm

Table 7. Comparison of Communication overhead with similar schemes.

Protocol Communication Cost Flights

Suman et al. [20] 2|ID|+4|Cip|+1|CAu|+4|TS| 4
Abosata et al. [21] 2|ID|+3|nonce|+2|Cip| 4
Oliver et al. [22] 2|Cip| 2

Das et al. [23] 2|ID|+8|ECC|+2|hash|+3|TS| 3
Alzahrani et al. [24] 4|ECC|+3|hash|+2|TS| 3

Our Protocol 2|ECC|+4|hash| 2

Table 8. Security attributes and attack-resistant comparison with similar schemes.

Comparative Point
Scheme

Suman et al.
[20]

Abosata
et al. [21]

Oliver
et al. [22]

Das et al.
[23]

Alzahrani
et al. [24] Ours

Security
attributes

Mutual Authentication
√ √ √ √ √ √

Perfect forward secrecy × × ×
√

×
√

Device Anonymity ×
√

× × ×
√

No-synchronized Clocks ×
√ √

×
√ √

No-stored all expire nonces
√

× ×
√

×
√

Attack
Resistance

Replay
√

× ×
√ √ √

Man in the Middle
√

×
√

×
√ √

Key Compromise
Impersonation × ×

√
× ×

√

Privilege-Insider
√

×
√ √

×
√

Denial of service × × ×
√ √ √

Desynchronization
√ √

×
√ √ √

Known Specific Temp Info
√ √

×
√ √ √

Known Key × × ×
√ √ √

Note:
√

denotes has the attribute; × denotes does not have the attribute.

6.2. Evaluation of Security

It can be seen from Figure 19 that our proposed protocol is not the lightest in terms of
both Computation and Communication costs among the related works, as it ranks fourth in
Computation cost and second in Communication cost; however, our scheme provides more
robust security and outstanding features. The following section compares the security and
anti-attack abilities of these schemes.

Among the schemes shown in Table 8, the schemes of [21,22] sacrificed part of the
security for its extremely lightweight design. Meanwhile, the schemes of [20,23] cannot be
applied in a constrained environment due to their high computational and communication
overheads caused by the use of public key certificates. Our approach provides a lightweight
and high-security solution by combining pre-sharing and public-key cryptography technol-
ogy, aimed at a mutual compromise between weight and security, and comprises a new
solution for authentication and key establishment in M2M environments such as CoAP in
the Internet of Things.
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Figure 19. (a) Comparison of communication overheads; (b) Comparison of computation over-
heads [20–24].

7. Conclusions

Almost all communication protocols in the Internet of Things face a trade-off between
weight and security, and CoAP is no exception. Some of the existing solutions have focused
on the security of the protocol, but ignore the weight, while others only consider the
computational burden, but pose significant security risks. Among these studies, there
have been few privacy considerations. In addition, for historical reasons, the identities
of the Initiator and Responder in CoAP implementations are usually reversed, leading to
applicability problems for most schemes. In the development of the Internet of Things,
vulnerabilities based on security protocols are still a key threat. Exploring the security
requirements of various communication protocols for the Internet of Things and providing
targeted solutions considering anonymity is bound to improve the security of the Internet
of things effectively.

Furthermore, before the advent of quantum computing, there were many reliable cryp-
tographic primitives for protocol designers to choose from, in terms of security verification.
Nevertheless, most of the existing security problems arise from the use of these crypto-
graphic primitives, rather than the cryptographic primitives themselves. Consequently,
scheme design should not ignore the a priori formal model checking technique. Dolev and
Yao were pioneers in this field, contributing the Dolev–Yao Adversary model; however,
due to its age, it now has difficulty in accurately depicting the powerful capabilities of
modern adversaries. Adversaries can currently infiltrate various parts of the system, and
secrets previously thought impossible for adversaries to obtain may now be corrupted.
Therefore, improving the Adversary model and its fine-grained formal modeling analysis
can significantly improve the possibility of extracting prior vulnerabilities.

In this study, we designed a lightweight security scheme for CoAP of the Internet of
Things, which realized anonymous and secure authentication and key agreement functions
through the use of standard cryptographic primitives and cooperating with device storage.
In terms of verification, we improved the Dolev–Yao Adversary model, assuming that the
adversary can obtain the long-term private key, pre-shared secrets, or temporary fresh
nonces of the communication parties when verifying different attributes, such that the
Adversary has more abilities than that in the original model. The improved model was
implemented in a CPN modeling approach, and scheme security analysis was carried out.
The results indicate that the proposed protocol provides high security and resistance to
most attacks. In addition, compared with other relevant studies in efficiency and security,
this scheme is not the most lightweight, but it does provide security attributes and protocol
resistance that other schemes do not.

A significant feature of CoAP is its support for multicast, which allows an Initiator to
make requests to multiple Responders at the same time. The shortcoming of this work is
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that we did not consider the multicast feature. Although many other solutions, including
DTLS, do not support this paradigm, it is one of the essential features of IoT communication
that cannot be ignored.

In future work, we will accumulate more experience in protocol design and consider
how to implement group authentication and group key agreement through practical design
in the case of multicast, which can improve the efficiency of group authentication while
providing increased security. Moreover, formal verification of the Dolev–Yao Adversary
model, based on the assumption of perfect cryptography, may fail to verify the defects in
the cryptography algorithm. Therefore, exploring how to combine the formal modeling
analysis method with a security-proof method, as well as attempting to achieve it within
a software environment such as CPN Tools, in order to achieve uncomplicated and auto-
matic verification simultaneously, is considered a worthy direction for our future research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22197191/s1, Folder S1: State space and verification results; File
S1: CPNmodel.cpn. Folder S1 contains all state space reports and screenshots of state space searches.
File S1 is the complete CPN model file for this article, it can be opened using CPN Tools 4.0.1.
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