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Abstract: Radar is a promising non-contact sensor for overnight polysomnography (PSG), the gold
standard for diagnosing obstructive sleep apnea (OSA). This preliminary study aimed to demonstrate
the feasibility of the automated detection of apnea-hypopnea events for OSA diagnosis based on
60 GHz frequency-modulated continuous-wave radar using convolutional recurrent neural networks.
The dataset comprised 44 participants from an ongoing OSA cohort, recruited from July 2021 to
April 2022, who underwent overnight PSG with a radar sensor. All PSG recordings, including
sleep and wakefulness, were included in the dataset. Model development and evaluation were
based on a five-fold cross-validation. The area under the receiver operating characteristic curve for
the classification of 1-min segments ranged from 0.796 to 0.859. Depending on OSA severity, the
sensitivities for apnea-hypopnea events were 49.0–67.6%, and the number of false-positive detections
per participant was 23.4–52.8. The estimated apnea-hypopnea index showed strong correlations
(Pearson correlation coefficient = 0.805–0.949) and good to excellent agreement (intraclass correlation
coefficient = 0.776–0.929) with the ground truth. There was substantial agreement between the
estimated and ground truth OSA severity (kappa statistics = 0.648–0.736). The results demonstrate
the potential of radar as a standalone screening tool for OSA.

Keywords: obstructive sleep apnea; polysomnography; radar; deep learning; convolutional recurrent
neural network

1. Introduction

Obstructive sleep apnea (OSA) is the most common type of sleep-disordered breathing,
characterized by the recurrent cessation of breathing during sleep due to complete or
partial obstruction of the upper airway [1]. Repetitive episodes of hypopnea and apnea
can result in sleep disruption and the alteration of neural activity due to intermittent
hypoxemia, hypercapnia, microarousals, and fragmented sleep [2]. OSA is associated
with an elevated risk of hypertension, stroke, and type 2 diabetes mellitus [3]. In addition,
cognitive dysfunction, cardiovascular and cerebrovascular diseases, and increased mortality
are highly prevalent in OSA patients [4,5]. Polysomnography (PSG) is the gold standard for
diagnosing OSA [6]. However, PSG requires a specialized facility with trained technicians
and various sensors directly attached to the patient’s body, which causes inconvenience
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and possibly affects sleep behavior [7]. The “first-night effect,” which has been considered
a result of sleeping in the unfamiliar circumstance of a sleep laboratory, is one of the
limitations of PSG [8]. In addition, because PSG innately evaluates only one or a few nights,
it is inadequate for long-term monitoring and screening [9]. In this context, there has been
an increasing interest in developing sensors from various sources with less or no contact,
such as cameras, ballistocardiography, sound, and radar [10–12].

A radar is a non-contact detection system that processes radio waves transmitted to
and reflected by a target. In the medical field, radar sensors typically analyze the modu-
lation effect caused by body movements and have thus been developed for monitoring
vital signs and limb movements [13,14]. Respiratory effort, which is conventionally mea-
sured with thoracoabdominal belts in PSG, can be detected using radar by targeting chest
wall movements [15–17]. Compared with other non-contact sensors, radars can detect
respiratory efforts at longer distances of up to 30 m, even in the presence of non-metal
materials between the radar and the subject, making them more applicable to sleep en-
vironments [17]. There are different types of radar according to the type of transmitted
signal, such as impulse radio ultra-wideband (IR-UWB) radar and frequency-modulated
continuous-wave (FMCW) radar [13]. The present study utilizes an FMCW radar.

Previous studies have investigated radar-measured respiratory signals for diagnosing
OSA using various interpretation methods, including manual reading [18], amplitude
thresholding [19,20], and classical machine learning with handcrafted features [21–23].
However, these methods often rely on explicit rules and prior domain knowledge, making
them less robust to dynamic and noisy real-world data [24]. In this regard, deep learning,
a subset of machine learning and artificial intelligence, which has shown great success
in medical imaging [25] and biosignals [26], is a promising alternative. However, deep
learning studies on radar-based OSA diagnosis are rare, especially regarding FMCW radar.

Therefore, this study aimed to demonstrate the feasibility of applying deep learning to
FMCW radar data for detecting sleep apnea-hypopnea events as a preliminary study of an
ongoing prospective OSA cohort using an in-development radar. The main differences of
this study compared to previous deep learning methods for OSA diagnosis are as follows:
(1) we used a detection model with dense predictions instead of classification models,
(2) we conducted an event-oriented and patient-oriented performance evaluation as well as
segment analysis, and (3) we included the entire PSG recording without excluding waking
hours. In particular, our deep learning method was based on a convolutional recurrent
neural network (CRNN), which was first proposed for scene text recognition [27] and has
also been used for sound event detection [28].

2. Materials and Methods
2.1. Study Participants

This study included participants from an ongoing prospective cohort study approved
by the Institutional Review Board of the Boramae Medical Center of Seoul National Uni-
versity (IRB No. 10-2021-16) and was performed in accordance with the principles of the
Declaration of Helsinki. All the participants provided written informed consent.

Participants were recruited from adults with chief complaints of sleep-disordered
breathing, referred to the Boramae Medical Center of Seoul National University. The symp-
toms of sleep-disordered breathing include snoring, shortness of breath, and witnessed
apnea during sleep. Participants with major medical conditions in the pulmonary, cardio-
vascular, or cerebrovascular systems were excluded. All enrolled participants completed
sleep questionnaires and overnight PSG, and clinical information, including detailed sleep
history, medical history, and body mass index, was obtained.

2.2. Sleep Questionnaires and Polysomnography

The participants were instructed not to drink alcohol or caffeinated beverages and
to sleep and wake up at regular hours for a week before the study. Subjective daytime
sleepiness was scored using the Epworth Sleepiness Scale [29] and the Stanford Sleepiness
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Scale [30]. Sleep quality and disturbances during the month prior to the study were
evaluated using the Pittsburgh Sleep Quality Index [31]. The PSG recording was conducted
with Twin-PSG software (Natus Neurology Incorporated, West Warwick, RI, USA) using a
standard PSG routine with the addition of the radar sensor. The recordings of bioelectrical
potentials included a 6-channel electroencephalogram, a 4-channel electrooculogram, an
electromyogram, and an electrocardiogram. A thermistor, a nasal air pressure monitoring
sensor, an oximeter, piezoelectric bands, and a body position sensor were also applied to
the patients. PSG data, including sleep parameters and respiratory events, were scored
according to the American Academy of Sleep Medicine (AASM) manual [32]. Apnea was
defined as a ≥90% reduction in airflow lasting at least 10 s. Apnea was further classified as
central or obstructive if inspiratory effort was absent or present, respectively, throughout
the entire period of absent airflow. Hypopnea was defined as a ≥30% reduction in airflow
lasting for at least 10 s and was associated with either a ≥3% oxygen desaturation or
arousal. The apnea-hypopnea index (AHI) was defined as the number of apnea-hypopnea
events divided by the total sleep time (hours) in the PSG scoring data. The severity of OSA
was classified into four categories based on AHI: normal (AHI < 5), mild (5 ≤ AHI < 15),
moderate (15 ≤ AHI < 30), and severe (AHI ≥ 30).

2.3. Radar Setup

A FMCW radar sensor (AU Inc., Daejeon, Korea) was placed 2 m from the patient’s
chest on the ceiling of the sleep laboratory (Figure 1). The architecture of the radar sensor
is illustrated in Figure 2. The general principles of radar signal acquisition are provided in
the Supplementary Materials.

Figure 1. Photo and illustration of radar (red box) setup for respiratory signal monitoring.

×

Figure 2. The architecture of the radar sensor: ANT = antenna, LNA = low-noise amplifier,
PA = power amplifier, IF = intermediate frequency, ADC = analog-digital converter, and DSP = digital
signal processor.

Figure 3 shows the overall flow of how the respiratory signals were extracted from
the raw radar signals. First, the distance to the target was determined by applying a fast
Fourier transform to the ADC samples. Then, to remove high-frequency noise, chirp-to-
chirp variation signals at the target distance were filtered using a low-pass filter. Finally,
the respiratory signals were demodulated from the filtered signals.
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Figure 3. A flowchart describing the extraction of respiratory signals from radar signals.

Most previous studies [33] used the phase demodulation method to extract respiration
signals. The phase demodulation method suffers from the in-phase and quadrature (IQ)
mismatch issues. The IQ mismatch changes the center coordinate of the trajectory, which
is caused by respiration. In this study, we used the cumulative amplitude of a vector
by subtracting two vectors in a complex domain for a unit of time, which corresponds
to the time difference between chirps. Because our demodulation method considers the
difference between the two vectors, the IQ mismatch effect can be suppressed [34]. Figure 4
shows the demodulation method. Respiratory signals in the complex domain are shown
in Figure 4a. The respiratory signals were obtained by integrating the amplitudes of the
vectors whose signs were determined by the direction. Figure 4b shows the demodulated
respiratory signals.

(a) (b)

Figure 4. The mechanism for demodulating respiratory signals from radar output signals:
(a) respiratory signals in the complex domain and (b) demodulated respiratory signal.

2.4. Data Preparation and Preprocessing

A full-night radar recording was obtained regardless of sleep stages to emulate a
real-world application, as the radar alone cannot distinguish the sleep status. The respira-
tory signals acquired from the radar were preprocessed using minimal signal-processing
methods. The respiratory signals were first downsampled from the original 1000/33 Hz
sampling frequency to 8 Hz using Fourier transformation. Next, the radar data were
segmented into 1-min segments with a stride of 30 s. A segment-wise z-score normaliza-
tion was then performed based on the mean and standard deviation of the signal values.
Event labels were annotated with 1-s temporal resolution according to the reference PSG.
Each segment was considered abnormal if it was labeled apnea or hypopnea for at least
10 consecutive seconds.
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2.5. Model Development

A five-fold cross-validation was performed for model development and evaluation.
First, the study population was randomly split into five groups. In each fold, the signal
segments obtained from patients in the four subgroups served as the training set, and those
from the remaining patients served as the validation set. In addition, two types of models
were prepared: binary and multiclass. The apnea-hypopnea events were considered as a
single abnormal class for the binary model and separated for the multiclass model.

Inspired by SELDnet [28] for sound event localization and detection, a detection model
with a CRNN architecture composed of convolutional neural networks (CNNs), recurrent
neural networks (RNNs), and fully connected (FC) components was employed. The CNN
component consisted of four convolutional blocks. Each block was implemented as a stack
of two sets of 1-D convolution, batch normalization, and rectified linear unit (ReLU) layers,
followed by a max-pooling layer and dropout layer. All convolutional layers had 64 filters
with a kernel size of 3 and a stride of 1. The max-pooling layers had a stride length of
2 except for the last block, which had a stride length of 1. The RNN component was a
bidirectional long short-term memory (LSTM) layer with 128 units. The FC component
consisted of an FC layer with 128 filters, a ReLU layer, a dropout layer, and a final FC layer
with the same number of filters as the number of classes. All the dropout layers in the
CRNN had a dropout rate of 0.2.

The sum of cross-entropy and Dice loss was used as the training objective adopted
from medical image segmentation tasks [35] and a batch size of 64. The Adam optimizer [36]
with an initial learning rate of 0.001 was used, which was reduced by half if the validation
loss did not improve for 10 epochs. The maximum number of training epochs was set to
100, and early stopping was applied if the validation loss did not improve for 25 epochs.
The model development was implemented using Keras (version 2.8.0; https://keras.io/)
with a Tensorflow (version 2.8.0; Google LLC, Mountain View, CA, USA) backend on a
workstation with an NVIDIA GeForce RTX 3080 GPU (Nvidia, Santa Clara, CA, USA) and
31 GB RAM.

2.6. Performance Evaluation

The performance evaluation was based on gathering inference results from the valida-
tion sets from each fold in the cross validation. Following the clinical significance of AHI, all
apnea-hypopnea events were considered as a single abnormal class, and model predictions
for each time point were calculated as 1 − probability f or class Normal for both binary and
multiclass models. Performance evaluation was conducted in three ways: per-segment
classification, global event detection, and AHI estimation.

First, a receiver operating characteristic (ROC) curve was obtained for per-segment
binary classification. Consistent with the ground truth labeling, the predicted probability
of each 1-min segment was defined as the minimum threshold that yielded 10 consecutive
seconds with above-threshold predictions. From the ROC curve, the area under the ROC
curve (AUROC) was computed, along with 95% confidence intervals (CI) using the Delong
method [37]. In addition, the optimal cut-off point yielding the maximum value of the
Youden index [38] was obtained from the ROC curve. Based on the optimal cutoff point,
the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV),
and accuracy were calculated.

In addition to the per-segment evaluation, the global event detection performance
was assessed by computing the abnormal respiratory event detection sensitivity and false-
positive detections per participant. The predictions from a patient’s full-night PSG were
first aggregated as averages of prediction probabilities from two adjacent overlapping
segments, because the segments were 1-min long with intervals of 30 s. Estimated abnormal
respiratory events were defined as consecutive above-threshold predictions of at least 10 s
and determined true-positive or false-positive at an intersection over union (IoU) threshold
of 0.5 compared with the ground truth. The optimal cutoff point yielding the highest F1
measure, defined as the harmonic mean between precision and recall, was used to obtain

https://keras.io/
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the results [39]. Based on the optimal cut-off point, sensitivity, PPV, and false-positive
detections per patient were calculated. In addition, since sleep status was not accounted
for in the predictions, the estimated abnormal respiratory events were further categorized
depending on whether they occurred during sleep or wakefulness. To this end, in-sleep
estimated events were defined as events in which the patient was asleep for more than half
of the event time.

Moreover, AHI was calculated as the number of estimated abnormal respiratory events
divided by total sleep time and OSA severity and was estimated in line with the standard
PSG scoring system [32]. Similarly, the corrected estimated AHI and OSA severity was
calculated based on the number of in-sleep estimated abnormal respiratory events. The
estimated AHIs were compared with ground truths using the Pearson correlation coefficient
(r), intraclass correlation coefficient (ICC), and Bland–Altman analysis. The estimated OSA
severities were compared with the ground truths using linear weighted kappa statistics (κ).
The AHI estimation results were based on the same binarization thresholds used for event
detection evaluation.

3. Results
3.1. Study Participants

Initially, 55 participants were enrolled in the study from July 2021 to April 2022.
Among them, 11 were excluded from the study for the following reasons: withdrawal of
consent (n = 9) and accidental failure to execute the radar data collection program (n = 2).
Therefore, 44 participants underwent PSG integration using the FMCW radar sensor.
Among them, there were nine normal participants, and the numbers of patients with mild,
moderate, and severe OSA were 7, 15, and 13, respectively. The baseline demographic and
sleep characteristics of the study population are presented in Table 1.

Table 1. Demographic and polysomnographic data of the study population.

Variables Normal Mild OSA Moderate OSA Severe OSA

Subject characteristics

Number (male/female) 9 (2/7) 7 (4/3) 15 (10/5) 13 (9/4)
Age 46.4 ± 17.9 49.9 ± 18.0 57.9 ± 9.5 55.3 ± 17.5

Body mass index (kg/m2) 24.6 ± 4.1 24.9 ± 1.9 25.2 ± 2.9 26.7 ± 17.5
Neck circumference (cm) 36.7 ± 3.0 39.0 ± 3.6 38.6 ± 4.2 40.8 ± 3.1

ESS score 4.8 ± 3.1 5.0 ± 3.3 9.0 ± 3.7 8.5 ± 3.8
SSS score 2.2 ± 1.0 3.0 ± 0.8 2.0 ± 0.5 2.4 ± 0.8

PSQI score 8.6 ± 3.2 11.0 ± 2.8 10.0 ± 3.5 9.7 ± 4.0

Polysomnographic data

Time in bed (min) 362.6 ± 106.5 412.0 ± 16.2 396.0 ± 23.9 400.1 ± 24.4
Total sleep time (min) 294.4 ± 97.2 311.0 ± 43.6 314.8 ± 66.7 266.5 ± 90.6

Sleep latency (min) 18.2 ± 30.5 17 ± 12.7 16.4 ± 27.6 13.8 ± 14.8
Sleep efficiency (%) 80.1 ± 8.7 75.7 ± 11.7 78.9 ± 13.7 66.3 ± 22.1

N1 (%) 12.3 ± 7.2 14.0 ± 2.6 16.9 ± 8.0 33.4 ±13.5
N2 (%) 52.3 ± 5.0 51.4 ± 5.7 51.3 ± 6.4 47.2 ± 9.6
N3 (%) 20.0 ± 3.0 19.2 ± 2.1 16.7 ± 5.3 8.5 ± 8.4

REM (%) 15.4 ± 9.6 15.4 ± 6.7 15.0 ± 6.2 10.9 ± 7.9
Apnea index (events/h) 0 0.1 ± 0.2 2.8 ± 3.2 20.1 ± 20.6

Hypopnea index (events/h) 2.5 ± 1.9 10.3 ± 2.6 20.3 ± 4.2 34.6 ± 11.0
AHI (events/h) 2.6 ± 1.7 11.1 ± 3.1 23.3 ± 4.4 59.2 ± 18.2

RERA index (events/h) 0.1 ± 0.3 0 0 0
Arousal index (events/h) 19.9 ± 10.7 20.8 ± 5.9 29.4 ± 10.4 53.9 ± 17.6
Lowest O2 saturation (%) 89.0 ± 3.3 87.7 ± 2.6 83.6 ± 3.4 72.8 ± 11.2

Number of segments Abnormal 296 906 3917 6016
Normal 6298 4911 8063 4485

Data are presented as the mean ± standard deviation. N1, N2, N3, and REM sleep stages. OSA, obstructive
sleep apnea; ESS, Epworth Sleepiness Scale; SSS, Stanford Sleepiness Scale; PSQI, Pittsburgh Sleep Quality Index;
AHI, apnea-hypopnea index; RERA, respiratory effort-related sleep arousal.
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3.2. Per-Segment Classification Performance

The binary model showed an overall AUROC of 0.846 (95% CI [0.842, 0.851]) for per-
segment classification, with a sensitivity of 74.4% (95% CI [73.6%, 75.3%]) and a specificity
of 80.3% (95% CI [79.7%, 80.8%]). The multiclass model showed similar results, with an
overall AUROC of 0.844 (95% CI [0.840, 0.849]), a sensitivity of 72.1% (95% CI [71.2%,
72.9%]), and a specificity of 81.3% (95% CI [80.8%, 81.8%]). Table 2 and Figure 5 show the
detailed classification performance. In the OSA severity groups, the AUROC, sensitivity,
and specificity ranged from 0.796 to 0.859, 62.5% to 80.9%, and 76.5% to 86.8%, respectively.
The AUROC in patients with severe OSA was higher than that in the rest of the patients for
both the binary (0.859 vs. 0.814, p < 0.001) and multiclass models (0.857 vs. 0.809, p < 0.001).

Table 2. Per-segment classification performance in the overall study population and OSA
severity groups.

Model Metric Overall Normal Mild Moderate Severe

Binary

AUROC
0.846

[0.842, 0.851]
0.819

[0.793, 0.846]
0.796

[0.780, 0.812]
0.798

[0.789, 0.807]
0.859

[0.852, 0.866]

Sensitivity
0.744 (8289/11135)

[0.736, 0.753]
0.625 (185/296)

[0.570, 0.680]
0.657 (595/906)

[0.626, 0.688]
0.674 (2641/3917)

[0.660, 0.689]
0.809 (4868/6016)

[0.799, 0.819]

Specificity
0.803 (19065/23757)

[0.797, 0.808]
0.868 (5464/6298)

[0.859, 0.876]
0.767 (3916/4911)

[0.786, 0.809]
0.781 (6293/8063)

[0.771, 0.790]
0.756 (3392/4485)

[0.744, 0.769]

PPV
0.639 (8289/12981)

[0.630, 0.648]
0.182 (185/1019)

[0.138, 0.226]
0.374 (595/1590)

[0.343, 0.406]
0.599 (2641/4411)

[0.583, 0.614]
0.817 (4868/5961)

[0.807, 0.826]

NPV
0.870 (19065/21911)

[0.866, 0.874]
0.980 (5464/5575)

[0.977, 0.984]
0.926 (3916/4227)

[0.919, 0.934]
0.831 (6293/7569)

[0.823, 0.840]
0.747 (3392/4540)

[0.734, 0.760]

Accuracy
0.784 (27354/34892)

[0.780, 0.788]
0.857 (5649/6594)

[0.848, 0.865]
0.776 (4511/5817)

[0.765, 0.786]
0.746 (8934/11980)

[0.738, 0.754]
0.787 (8260/10501)

[0.779, 0.794]

Multiclass

AUROC
0.844

[0.840, 0.849]
0.816

[0.788, 0.843]
0.807

[0.791, 0.822]
0.795

[0.787, 0.804]
0.858

[0.850, 0.865]

Sensitivity
0.721 (8024/11135)

[0.712, 0.729]
0.628 (186/296)

[0.573, 0.683]
0.605 (548/906)

[0.573, 0.637]
0.638 (2498/3917)

[0.623, 0.653]
0.797 (4792/6016)

[0.786, 0.807]

Specificity
0.813 (19305/23757)

[0.808, 0.818]
0.850 (5352/6298)

[0.841, 0.859]
0.829 (4070/4911)

[0.818, 0.839]
0.800 (6454/8063)

[0.792, 0.809]
0.765 (3429/4485)

[0.752, 0.777]

PPV
0.643 (8024/12476)

[0.634, 0.652]
0.164 (186/1132)

[0.122, 0.207]
0.395 (548/1389)

[0.363, 0.426]
0.608 (2498/4107)

[0.593, 0.624]
0.819 (4792/5848)

[0.810, 0.829]

NPV
0.861 (19305/22416)

[0.857, 0.866]
0.980 (5352/5462)

[0.976, 0.983]
0.919 (4070/4428)

[0.912, 0.927]
0.820 (6454/7873)

[0.811, 0.828]
0.737 (3429/4653)

[0.724, 0.750]

Accuracy
0.783 (27329/34892)

[0.779, 0.788]
0.840 (5538/6594)

[0.831, 0.849]
0.794 (4618/5817)

[0.783, 0.804]
0.747 (8952/11980)

[0.739, 0.755]
0.783 (8221/10501)

[0.775, 0.791]

Data are presented as values (numerator/denominator, if applicable) [95% confidence intervals]. AUROC, area
under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value.

(a) (b)

Figure 5. ROC analysis of per-segment classification for the (a) binary and (b) multiclass models.
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3.3. Global Event Detection Performance

The sensitivities of the binary and multiclass models were 63.3% (95% CI [62.1%,
64.5%]) and 62.2% (95% CI [61.0%, 63.4%]), respectively, for the overall study population,
with a range of 49.0–67.6% across OSA severity. The number of false-positive detections per
participant ranged from 23.4 to 52.8, and it was 17.2–31.0 when considering only estimated
in-sleep events.

Moreover, per-class sensitivities in the overall study population ranged from 53.9% to
87.0%, with lower values for hypopnea than for apnea. The sensitivity for hypopnea across
OSA severity was 47.6–58.1%, whereas the sensitivity for obstructive and central apnea
showed a wide range of 0.0–100.0% due to the small number of apnea cases in non-OSA
and mild OSA participants. In patients with moderate or severe OSA, the sensitivities for
obstructive and central apnea were 86.1–92.0% and 78.9–88.0%, respectively. The detailed
event detection performance is presented in Table 3. Figure 6 illustrates the representative
cases of different respiratory events with the model predictions.

Table 3. Global event detection performance in the overall study population and OSA
severity groups.

Model Metric Group Overall Normal Mild Moderate Severe

Binary

Sensitivity

Overall
0.633 (3948/6239)

[0.621, 0.645]
0.583 (74/127)
[0.497, 0.668]

0.551 (252/457)
[0.506, 0.597]

0.573 (1123/1960)
[0.551, 0.595]

0.676 (2499/3695)
[0.661, 0.691]

H
0.539 (2384/4427)

[0.524, 0.553]
0.581 (72/124)
[0.494, 0.668]

0.529 (220/416)
[0.481, 0.577]

0.523 (894/1710)
[0.499, 0.547]

0.550 (1198/2177)
[0.529, 0.571]

O/A
0.870 (1444/1660)

[0.854, 0.886]
1.000 (2/2)

[1.000, 1.000]
1.000 (5/5)

[1.000, 1.000]
0.920 (207/225)

[0.885, 0.955]
0.861 (1230/1428)

[0.843, 0.879]

C/A
0.790 (120/152
[0.725, 0.854]

0.000 (0/1)
[0.000, 0.000]

0.750 (27/36)
[0.609, 0.892]

0.880 (22/25)
[0.753, 1.000]

0.789 (71/90)
[0.705, 0.873]

PPV
0.695 (3948/5681)

[0.683, 0.707]
0.260 (74/285)
[0.209, 0.311]

0.475 (252/531)
[0.432, 0.517]

0.674 (1123/1666)
[0.652, 0.697]

0.781 (2499/3199)
[0.767, 0.796]

FP/patient
Overall

39.0
[30.5, 47.6]

23.4
[18.4, 28.5]

39.9
[35.4, 44.3]

36.1
[32.3, 40.0]

52.8
[39.1, 66.4]

In-sleep
26.0

[18.6, 33.4]
17.2

[13.1, 21.4]
28.0

[23.7, 32.3]
25.9

[22.2, 29.5]
31.0

[18.7, 43.4]

Multiclass

Sensitivity

Overall
0.622 (3883/6239)

[0.610, 0.634]
0.543 (69/127)
[0.457, 0.630]

0.490 (224/457)
[0.444, 0.536]

0.557 (1092/1960)
[0.535, 0.579]

0.676 (2498/3695)
[0.661, 0.691]

H
0.525 (2323/4427)

[0.510, 0.539]
0.540 (67/124)
[0.453, 0.628]

0.476 (198/416)
[0.428, 0.524]

0.508 (868/1710)
[0.484, 0.531]

0.547 (1190/2177)
[0.526, 0.568]

O/A
0.869 (1443/1660)

[0.853, 0.886]
0.500 (1/2)

[0.000, 1.000]
1.000 (5/5)

[1.000, 1.000]
0.898 (202/225)

[0.858, 0.937]
0.865 (1235/1428)

[0.847, 0.883]

C/A
0.770 (117/152)

[0.703, 0.837]
1.000 (1/1)

[1.000, 1.000]
0.583 (21/36)
[0.422, 0.744]

0.880 (22/25)
[0.753, 1.000]

0.811 (73/90)
[0.730, 0.892]

PPV
0.695 (3883/5585)

[0.683, 0.707]
0.199 (69/347)
[0.157, 0.241]

0.489 (224/458)
[0.443, 0.535]

0.673 (1092/1622)
[0.650, 0.696]

0.791 (2498/3158)
[0.777, 0.805]

FP/patient
Overall

38.5
[29.9, 47.0]

30.9
[23.7, 38.1]

33.4
[29.3, 37.5]

35.3
[30.3, 40.2]

50.1
[37.0, 63.2]

In-sleep
25.3

[17.7, 32.8]
22.2

[16.2, 28.3]
24.1

[20.4, 27.9]
24.7

[20.0, 29.3]
28.7

[16.6, 40.8]

Data are presented as value (numerator/denominator, if applicable) [95% confidence intervals]. PPV, positive
predictive value; FP, false-positive detection; H, hypopnea; O/A, obstructive apnea; C/A, central apnea.

3.4. AHI Estimation Performance

The estimated AHI (Figure 7) and corrected estimated AHI (Figure 8) showed strong
correlations (r = 0.805–0.949) and good to excellent agreement (ICC = 0.776–0.929) with
the ground truth, with better results for the corrected. In the Bland–Altman analysis,
the estimated AHI showed a mean bias of 1.60 (95% CI [−4.23, 7.43]) and 95% limits of
agreement (LOA) of −36.0 to 39.2 for the binary model and a mean bias of 0.95 (95% CI
[−4.19, 6.09]) and 95% LOA of −32.2 to 34.1 for the multiclass model. On the other hand,
the corrected estimated AHI showed significantly lower values compared to the ground
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truth, with a mean bias of −4.14 (95% CI [−6.50, −4.23]) and 95% LOA of −19.3 to 11.1 for
the binary model and a mean bias of −4.48 (95% CI [−7.06, −1.91]) and 95% LOA of −21.1
to 12.1 for the multiclass model.

(a) (b) (c)

−

−

−

−

−

−

−

−

−

−

Figure 6. Representative cases of (a) hypopnea, (b) obstructive apnea, and (c) central apnea, pre-
sented along with predictions from the binary model. The ground truth events are annotated with
orange boxes.

(b)(a)

(d)(c)

Figure 7. Comparison of the estimated AHI with the ground truth for the binary (a,c) and multiclass
models (b,d). (a,b) Scatter plots of estimated AHI versus AHI showing the linear regression line (blue
line) with 95% confidence intervals (blue shadowed area). (c,d) Bland–Altman plots of estimated
AHI and AHI.
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(b)(a)

(d)(c)

Figure 8. Comparison of the corrected estimated AHI with the ground truth for the binary (a,c) and
multiclass models (b,d). (a,b) Scatter plots of corrected estimated AHI versus AHI showing the linear
regression line (blue line) with 95% confidence intervals (blue shadowed area). (c,d) Bland–Altman
plots of corrected estimated AHI and AHI.

The estimated OSA severities showed substantial agreement with the ground truth for
both binary (κ = 0.715) and multiclass (κ = 0.648) models. The OSA severities estimated
from the corrected estimated AHI showed a slightly higher substantial agreement with the
ground truth for both the binary (κ = 0.736) and multiclass (κ = 0.699) models (Figure 9).

(b)(a)

(d)(c)

Figure 9. Confusion matrices for the estimation of OSA severity of the binary (a) and multiclass
(b) models and the corrected estimated OSA severity of the binary (c) and multiclass (d) models.
Data are presented as the number of participants with the row-normalized percentage in parentheses.
The colors of the cells correspond to the row-normalized percentage.
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4. Discussion

With the increasing interest in non-contact sensors for PSG, radar constitutes a promis-
ing technology. The radar for sleep assessment primarily targets respiratory efforts, usually
measured by thoracoabdominal belts in conventional PSG. However, there is scarce litera-
ture regarding the use of radars in OSA. Therefore, this preliminary study investigated the
feasibility of the automated detection of apnea-hypopnea events for OSA diagnosis based
on FMCW radar using deep learning.

The diagnostic performance was the highest for patients with severe OSA in terms of
AUROC for per-segment classification and sensitivity for global event detection, consistent
with previous studies using thoracoabdominal belts or radar [40–43]. This may be attributed
to the higher proportion of apnea in patients with more severe OSA. While the sensitivities
for hypopnea were not significantly different among the OSA severity groups, the proposed
models showed higher sensitivities for apnea than hypopnea. In addition, our dataset
included more patients with moderate or severe OSA than those without or with mild OSA.
Therefore, because a much higher number of events were included in patients with more
severe OSA, these events would have contributed more to the model training.

The proposed models showed limited sensitivities for hypopnea, unlike apnea, with a
range of 47.6–58.1%, even though hypopnea was the major event (71.0%, 4427/6239). This
is expected and concordant with previous studies [40–43], since hypopnea is an incomplete
form of respiratory abnormality between normal respiration and the complete cessation
of the upper airway (obstructive apnea). The diagnostic criteria for hypopnea include a
more subtle change in airflow than apnea and require additional information on oxygen
desaturation or arousal [32], which was not provided in the single-channel input of our
study. Furthermore, lower sensitivities for hypopnea can be linked to more vulnerable
interference with non-pathologic respiratory signals from changing body positions, limb
movements, or sensor noise.

Most studies on OSA exclude data from waking hours, even when the sensor (e.g.,
thoracoabdominal belt) cannot directly determine the sleep status [40–43]. However, we
included the entire PSG recording to simulate sleep monitoring environments where only
radar was used and where it was incorporated with PSG. In the former, the estimated
AHI showed strong correlations (r = 0.805–0.829) and good agreement with the ground
truth (ICC = 0.776–0.812), and there was substantial agreement between the estimated and
ground truth OSA severity (κ = 0.648–0.715). These results demonstrated the potential
of the standalone use of radar for OSA screening. When considering only in-sleep esti-
mated events, there were improvements in the estimation of AHI (r = 0.937–0.949 and
ICC = 0.916–0.929) and OSA severity (κ = 0.699–0.736), primarily due to the reduction in
false-positive detections during wakefulness. This is clearly shown in the case with poor
sleep efficiency (Figure 10), which is an outlier in Figure 7.

We employed a detection model based on a CRNN architecture instead of the clas-
sification models used in most existing deep learning methods for OSA diagnosis [44].
The classification model has certain disadvantages. First, it uses weak labels compared to
detection model. Previous works converted each segment of approximately 30 s to 1 min
into a single class by thresholding the length of the in-segment event annotations [40,41].
However, the events manually annotated in PSG are strong labels, usually with a high
temporal resolution of approximately 1 s, which can be exploited more by a detection
model without losing information than a classification model. Second, a detection model
provides more intuitive localization results for event detection than a classification model
(Figure 6). The classification model requires postprocessing with a narrow sliding window
to translate predictions into time-sequenced events (e.g., valid events if at least six consecu-
tive segments are predicted to be abnormal) [43,45]. However, such postprocessing relies
on a smoothing parameter that requires additional tuning after training the model.
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Figure 10. Prediction result of a whole PSG recording from an example case with poor sleep efficiency.
The first row shows the estimated abnormal respiratory events. When considering sleep status (last
row), false-positive detections at waking hours are reduced (second row), resulting in predictions more
similar to the ground truth (third row). H = hypopnea, O/A = obstructive apnea, C/A = central apnea.

We experimented with binary and multiclass models to investigate the potential
benefits of multiclass labels in detecting abnormal events. However, they showed similar
results, which may be attributed to several factors. First, there was a class imbalance in
respiratory events. Hypopnea accounted for the majority of the events (71.0%, 4427/6239),
followed by obstructive apnea (26.6%, 1660/6239), with central apnea being the fewest
(2.4%, 152/6239). Second, because a multiclass task is more complicated than a binary
task, multiclass labels may not necessarily help the model to learn to distinguish between
abnormal and normal respiration. The multiclass model may learn the distributions of
normal respiration in the early training phase at a level similar to that of the binary model,
with the rest of the training focusing on distinguishing different classes of events.

This study had several limitations that should be addressed in future work. First, the
number of study participants, especially those with less than moderate OSA, is insufficient.
In addition, future studies should investigate more technical modifications of radar setups,
such as signal processing or adding an under-the-mattress radar, and model development,
including hyperparameter optimization and the comparison of different deep learning
architectures. Specifically, advanced deep learning methods such as the Transformer [46]
and deep domain adaptation [47] are potential alternatives. Moreover, regarding PSG, sleep
stages (e.g., REM and non-REM), body position, and limb movements could be considered
for model development and analysis. In particular, since sleep stages and body positions
affect apnea-hypopnea frequency [48], future work could include the analysis of the effects
of different sleep stages and body positions on diagnostic performances. In addition, a
promising direction for future research is using an ensemble of the current model and
models performing radar-based predictions of sleep stages and/or body movements.

In conclusion, we demonstrated that the automated detection of apnea-hypopnea
events based on FMCW radar is feasible using a CRNN-based deep learning model.
This preliminary study, which involved an OSA cohort still in recruitment and an in-
development radar, showed the possibility of using the FMCW radar as a standalone
screening tool for OSA. Integration with other non-contact sensors for sleep signals,
such as oxygen desaturation sensors, is warranted to develop an improved non-contact
OSA diagnosis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22197177/s1. Figure S1: The signal processing flows in the
FMCW radar to detect (a) distance and (b) velocity of the target.
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