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Abstract: At present, the online insulation monitoring and fault diagnosis of mining cables are exten-
sively discussed, while their operation status assessment has not been deeply studied. Considering
that mining cables are closely related to the safe and stable operation of coal mine power supply
systems, a comprehensive evaluation method including the Analytic Hierarchy Process (AHP), the
membership cloud theory, and the D-S evidence theory is proposed in this paper in order to accurately
assess the operation status of the mining XLPE cable. Firstly, the membership cloud is introduced to
solve the index membership degree and the weights are calculated by an improved weight vector
calculation method. Secondly, the conversion from the base layer indicator membership degree to
the target layer trust degree is realized based on the D-S evidence theory. Then, the cable operation
status is judged via the trust degree maximum and the distribution of conflict coefficients is further
analyzed to warn the indicators with a bad status in the base layer. Finally, the feasibility of the
proposed evaluation method is verified by a sufficient and detailed case analysis.

Keywords: status evaluation; mining XLPE cables; membership cloud; D-S evidence theory

1. Introduction

As an important component of a coal mine’s power grid, the mining XLPE cable
(hereafter referred to as mining cable) is the core component of a coal mine’s power
supply system, and its operational safety status directly affects the stable operation of the
coal mine’s power grid and even concerns the production safety of the coal mine itself.
The operating safety status of these mining cables is mainly affected by their operating
environment and operating conditions [1]. Unlike the operating environment of cables
in ordinary power grids, the air humidity in underground coal mines is high and the
temperature varies greatly in different areas. Because of this, the insulation in mining cables
is easily aged which leads to insulation degradation, and the space in underground coal
mines is narrow, making mining cables susceptible to smashing, touching, and dragging,
which cause the cable insulation to be damaged, wherein grounding or leakage faults
can occur. The grounding method of the neutral point through to the arc extinguishing
coil is usually used in a coal mine’s power grid, although this grounding method can, in
principle, allow the power supply system to operate with faults for 2–3 h. However, the
underground environment of coal mines is different from that on the ground. The closed
underground environment is filled with a large amount of gas and coal dust. When the
mine cable discharges due to insulation failure or single-phase grounding, the generated
sparks can easily lead to the environment catching “fire” and/or ”explosive” conditions
which could cause serious coal mine safety accidents such as electromechanical accidents,
cable “release”, underground fires, and explosions [2–5]. According to the national and
provincial coal mine accident analysis reports released in 2021, there were 122 coal mine
accidents and 225 fatalities in 2020 of which electromechanical, gas, and cable discharge
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accidents accounted for 19% of the total number of accidents and 27% of the total number
of fatalities, with some provinces accounting for a higher percentage of electromechanical,
gas, and cable discharge accidents than the national accident rate. In some provinces, the
proportion of electromechanical, gas, and cable discharge accidents was higher than that of
average national accidents, and, among these, cable failure in coal mines was a direct cause
of cable discharge accidents, an important factor that led to a number of electromechanical
accidents and was a major external source of ignition-causing gas accidents.

Mining cable faults pose a long-term threat to the economic, safe, and reliable operation
of coal mine power grids. Therefore, it is crucial to diagnose the operation status and fault
monitoring of mine cables within coal mines. If we can intelligently sense and evaluate the
operational safety status of cables in a coal mine power grid in real-time and accurately
detect abnormalities and warnings of faults before they occur in order to prevent accidents
before they happen, this will break through the current technical bottleneck and, with a
small amount of investment, solve the actual demand problem and effectively reduce the
personal and property losses caused by cable faults. This is a necessary precondition to
ensure the safety of coal mine production and can bring about strong economic and social
benefits and broad application prospects with significant research necessity and urgency.

In order to achieve an accurate assessment of the operating status of mining cables, this
paper establishes a mining cable evaluation index system using hierarchical analysis based
on a combination of expert industry opinions, relevant literature, protocols, and research.
We first divide the mining cable status into severe, abnormal, attention, and normal, and
then transform the standard status level into a visualized status space according to the cloud
model theory; then, we calculate the membership degrees of quantitative and qualitative
indicators, respectively; then, we use the improved AHP weight calculation algorithm to
calculate the weights of each indicator in the indicator layer; and, finally, in order to reduce
the uncertainty within the evaluation process, the fusion of the indicator membership and
weights is realized step-by-step based on the D-S evidence theory and the current cable
status is judged based on the fusion results.

The structure of this paper is as follows: Section 2 provides a literature review and sum-
marizes previous research results; Section 3 introduces the AHP algorithm, the improved
AHP weight calculation algorithm, and the D-S evidence theory; Section 4 describes the
mining cable condition evaluation system and the calculation of the membership degrees
of quantitative and qualitative indicators; Section 5 presents the detailed numerical work
in the evaluation model; and, finally, the conclusions of this paper are given in Section 6.

2. Literature Review

Currently, cross-linked polyethylene (XLPE) power cables are widely used because
of their excellent insulation and heat resistance properties [6–8]. Due to uncertainties in
the design and production process, the frequency of faults has gradually increased, reduc-
ing the safety of the power grid. Cable insulation or fault monitoring methods mainly
include temperature, DC components, dielectric loss, partial discharge, and traveling
wave detection methods [9–11]. DC component and dielectric loss methods can only be
used to perform overall insulation condition assessment with low accuracy. The local
discharge method is influenced by the surrounding environment and signals propagation
distance [12]. High-frequency signals decay rapidly making long-distance measurements
difficult. Temperature monitoring methods are not sensitive enough for fault identification
and the data generated by them is of limited use. For the traveling wave method, it is diffi-
cult to detect cable faults because the amplitude of the wave head is significantly attenuated
after the reflected wave propagates through the long cable, and it is easily affected by the
interference signal. To make up for the shortcomings of the previous methods, many novel
methods for online cable monitoring have been proposed by many experts and scholars
in recent years. Guangya Zhu [13] proposed a new online monitoring method of power
cable insulation conditions based on low-frequency signal injection. For this method, a
low-frequency signal is injected into the power system via the potential transformer’s (PT)
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open delta configuration. The cable conductor voltage and leakage current are detected.
The interpolating windowed fast Fourier transform (FFT) algorithm is applied to calculate
the dielectric loss angle. Then, the cable tangent delta (tanδ) can be deduced and the
cable condition can be assessed. Wei Zhao [14] drew a two-dimensional trajectory map
by simultaneously measuring two circulating currents in a coaxial cable. Fault criterion
and databases are established to detect faults by analyzing the changes in trajectory char-
acteristic parameters. Wenxia Pan [15] proposes a distributed online monitoring method
for cable PD based on the phase-sensitive fiber-optic time domain reflection (ϕ-OTDR)
principle. When the cable has PD, the backscattered Rayleigh light intensity change of
the PD position is higher than the intact position. Yang Wu [16] proposed a monitoring
scheme based on CM leakage current measurements at selected monitoring frequencies
and developed an aging feature extraction method based on principal component analysis
(PCA) which provides an estimate of the insulation’s aging severity.

However, the online monitoring of the cable is only for online monitoring of a certain
index of the cable and does not evaluate the overall running status of the cable in many
aspects. In response to such problems, more and more scholars put their research focus on
cable condition assessment. Heqian Liu [17] introduced the theory of dielectric response
such as the isothermal relaxation current. Combined with the cable-aging equivalent
model, the isothermal relaxation current peak-split fitting method, to represent the different
processes of relaxation according to the attenuation characteristics of isothermal relaxation
current, is provided. Lulu Li [18] proposed a non-invasive aging assessment method using
transient disturbances originating from the system. The relative dielectric constant of the
cable is extracted from the response of transient disturbances instead of the conventional
dielectric loss angle in order to characterize the aging state more sensitively. Yanqun
Liao [19] proposed a novel holistic approach in order to facilitate the implementation of
risk-based maintenance strategies for cable conduits, cable terminations, joints, bodies,
and grounding systems for each cable loop. Based on the polymer trap theory and the
extended Debye model, the shape of the PDC curve, depolarization charge, parameters of
the extended Debye model, aging factor (A), elongation at break retention rate (EB%), and
their relationships under different thermal aging degrees were analyzed by Yiyi Zhang [20].
It is worth noting that there are many factors that affect the running state of the cable
and no relevant scholars have carried out an in-depth analysis of the factors affecting the
running state of the cable in all aspects and angles. Therefore, an index system that can
scientifically evaluate the running state of the cable has not yet been established. At the
same time, the comprehensive evaluation method of cable operation status also needs to be
studied more deeply.

3. Evaluation Models and Principles
3.1. AHP Method

AHP is a multi-criteria decision-making method (MCDM) developed by T.L. Satty in
order to evaluate and select alternatives based on a set of selected criteria [21]. This process
can combine judgments from intangible qualitative criteria with tangible quantitative
criteria. The specific steps of the AHP are as follows:
STEP 1: Establish a hierarchical structure.

We need to stratify the problem to be analyzed and establish a three-level structure
model including the target layer, factor layer, and base layer.
STEP 2: Construct a comparison judgment matrix.

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 (1)
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We need to construct a matrix A according to the relative importance of each indicator.
The basis for judging relative importance is shown in Table 1. aij represents the importance
of the i-th indicator relative to the j-th indicator. When i = j, there is aij = 1; otherwise, there
are aij > 0 and aji = 1/aij.

Table 1. Meaning of the scale.

Scale Meaning

1 The two indicators are equally important
3 The former indicator is slightly more important than the latter
5 The former indicator is more important than the latter
7 The former indicator is certainly more important than the latter
9 The former indicator is much more important than the latter

2, 4, 6, 8 The judgment is between the two adjacent judgments

STEP 3: Calculate the weight vector.

ωi =

(
n
∏
j=1

aij

) 1
n

n
∑

k=1

(
n
∏
j=1

akj

) 1
n

(2)

According to Formula (2), W = [ω1, ω2, . . . , ωn]T can be calculated.
STEP 4: Consistency test.

In order to verify whether the weight vector is reasonable, we need to check its
consistency. Formulas for calculating the random consistency ratio CR are as follows:

CR =
CI
RI

(3)

CI =
λmax − n

n− 1
(4)

λmax =
1
n

n

∑
i=1

(AW)i
ωi

(5)

where (AW)i is the i-th element of the product of A and W.
The average random consistency index RI of the multilevel matrix can be obtained

from Table 2.

Table 2. Random consistency index.

n 1 2 3 4 5 6 7 8

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.45

If CR < 0.1, the comparison judgment matrix has a satisfactory consistency index;
otherwise, the comparison judgment matrix needs to be readjusted.

In order to solve the problem that AHP is too subjective, we propose an improved
weight vector calculation method. The method replaces the comparison judgment matrix
with the interval judgment matrix and searches for the matrix with the highest consistency
ratio in the interval to calculate the weight vector. This can reduce the subjectivity of
experts and improve the objectivity of weights. The specific weight vector calculation has
been introduced in detail in our previous study, and, therefore, in this paper, we will not
describe too much due to the limitation of space and the details can be referred to in the
literature [22].
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3.2. Membership Cloud Theory

The membership cloud is a model proposed by academician Deyi Li in 1995 for con-
verting qualitative evaluation and quantitative values, which represents the conversion
relationship between numerical and linguistic values and can take into account the ran-
domness and fuzziness of linguistic evaluation. The fuzziness is described by the width of
the cloud and the randomness is described by the thickness of the cloud [23].

The definition of the membership cloud is: let U be an exact numerical representation
of the universe of discourse. In the corresponding qualitative concept A on U, for any
element x in the universe, there is a random number y ∈ [0, 1] with a tendency to be stable,
which is called the membership degree of x to A, and the distribution of the membership
degree in the universe is called the membership cloud, referred to as a cloud. Clouds
are composed of several cloud droplets. Cloud droplets are quantitative descriptions of
qualitative concepts. The generation process of cloud droplets expresses the uncertainty
mapping relationship between qualitative concepts and quantitative values. According to
the dimension of the universe U, a cloud can be divided into a one-dimensional cloud, a
two-dimensional cloud, a multi-dimensional cloud, and so on.

The portrayal of the cloud model relies on three parameters, which are expectation
Ex, entropy En, and super entropy He. Among these, Ex reflects the central value of a
concept corresponding to a theoretical domain, En reflects the ambiguity of the concept,
and He reflects the discrete degree of the cloud drops. The forward cloud generator forms a
number of random numbers with stable tendencies based on the numerical characteristics
of the cloud model to form an evaluation cloud; the inverse cloud generator calculates the
numerical characteristics of the cloud model based on finite expert evaluation.

3.3. D-S Evidence Theory

In the 1960s, Dempster proposed the concept of evidence theory and his student Shafer
redefined it and created the “mathematical theory of evidence”, which was later called D-S
evidence theory. Because D-S evidence theory has the ability of uncertainty reasoning and
can represent, fuse, and decide uncertain information, it has been widely used in the fields
of decision analysis, pattern recognition, and information fusion. The basic principles of
D-S evidence theory are as follows [24,25]:

Assuming that U is the identification frame, it is a finite and complete universe of
discourse, and A is a subset of U. If there is a set function m:P(U)→[0, 1] that satisfies the
condition of Formula (6): {

∑
A⊆U

m(A) = 1

m(∅) = 0
(6)

where m is the probability distribution function on the identification frame U. When
m(A) > 0, A is a focal element; m(A) is the function value of the probability distribution
function corresponding to event A. When the identification frame U is incomplete, m(∅) 6= 0.
This paper only discusses the case when the identification frame U is complete and the
elements are limited.

Dempster’s rule for fusing N pieces of evidence is shown in Formula (7):

m(A) =
1

1− K ∑
A1∩...AM=A

N

∏
i=1

mi(Ai) (7)

In Formula (7):

K = ∑
A1∩...AM=∅

N

∏
i=1

mi(Ai) (8)

where K represents the conflict size between the evidence bodies. When K = 1, the combi-
nation rule is invalid and the evidence bodies completely conflict. When K→1, the fusion
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decision result may be contrary to common sense, so effectively resolving evidence conflicts
is an important part of obtaining reliable fusion results.

4. Empirical Application of the Evaluation Model

In accordance with the requirements of AHP, we analyzed the main factors affecting
the operation status of cables for coal mines, determined the interval judgment matrix
of each layer, and obtained the optimal weight vector through the improved AHP algo-
rithm. The membership matrix of each layer to the target layer was established through
the membership cloud theory and the optimal weight vector was synthesized with the
membership matrix by evidence synthesis through the D-S evidence theory in order to
obtain a comprehensive judgment on the operating state of the mine cable.

4.1. Section of the Voltage Situation Evaluation

The operating condition of mining cables is influenced by a variety of factors. The
selection of evaluation indexes plays a crucial role in the accuracy of evaluation results. In
this paper, when constructing the evaluation index system, we strictly follow the five basic
principles of systematicity, objectivity, measurability, scientificity, and hierarchy. Combining
many references and expert opinions, a total of 11 individual indicators are selected which
finally form a progressive evaluation index system as shown in Figure 1.

In Figure 1, x11 is the index of the insulation resistance test, x12 is the index of the
pressure-tight test, and x13 is the index of the pulse current. x21 is the index of the leakage
current, x22 is the index of the dielectric loss angle, x23 is the index of the core temperature
of the cables, x24 is the index of the partial discharge, x31 is the index of the operating life,
x32 is the index of the operating environment, x33 is the index of the load condition, and x34
is the index of the history of the fault.
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Figure 1. Operation status evaluation model for mining XLPE cables Figure 1. Operation status evaluation model for mining XLPE cables.

4.2. State Space

In this paper, the operating status of the mining cables is classified as severe, abnormal,
attention, and normal, denoted as sk(k = 1, 2, 3, 4). Subsequently, the boundary values c1,
c2, and c3 of adjacent states are determined using the Weibull distribution model based on
real-time and historical data to determine the boundary interval (dmin, dmax)k of the kth
state level as shown in Table 1. Where dmin and dmax are the left and right values of the kth
bounding interval, respectively.

In view of the inherent vagueness of the division of state levels and the randomness of
the appearance of each state, for this reason, this paper uses a cloud model to portray each
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state level, i.e., the state cloud. The grade boundary interval and the maximum possible
interval of the kth state cloud (Exk − 3Enk, Exk + 3Enk) form an equation relationship, as
shown in Equation (9), from which the expectation (Exk) and the entropy (Enk) of each
state cloud can be obtained. At the same time, the distribution range of each state cloud is
constrained by the limit condition of cloud image fogging, as shown in Formula (10), to
obtain the super entropy (Hek) of each state cloud:{

Exk − 3Enk = dmin
Exk + 3Enk = dmax

⇒
{

Exk =
dmin+dmax

2
Enk =

dmax−dmin
6

(9)

Hek =
Enk
18

(10)

where Exk represents the point value that best reflects the k-th state level; Enk represents
the measured range of the k-th state level; Hek represents the degree of cohesion of the data
in the k-th state.

Send Exk, Enk, and Hek into the forward cloud generator to randomly generate the N
cloud droplets (g, µk(g)), which can be visualized in the form of clouds for each operating
state. The steps for generating cloud drops in the forward cloud generator are as follows:

Step 1: Enn = Randn(Enk, Hek). That is, Enk is the expectation and Hek is the standard
deviation to generate a normally distributed random number Enn.

Step 2: g = Randn(Exk, Enn). That is, Exk is the expectation and Enn is the standard
deviation to generate a normally distributed random number g.

Step 3: µk(g) = exp
[
− (g−Exk)

2(Enn)2

]
. The membership is calculated by this equation, and

the number pair (g, µk(g)) represents a cloud droplet distributed over the theoretical domain.
Step 4: Repeat steps 1 to 3 until enough cloud droplets are generated (generally, N is

5000) to restore different operating states in the form of cloud models.
In addition, the subsequent solution of the quantitative and qualitative index mem-

bership in this paper is not the same, so two types of state spaces are formed as shown in
Figures 2 and 3. In order to take into account the deterioration process of the quantitative
index and the tolerance of the equipment to potential adverse factors, the adjacent state
clouds in the quantitative space have a certain degree of transition trend; however, the
qualitative space is only used as the limit measure, so the adjacent state clouds in the
qualitative space are independent of each other.
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4.3. Quantitative Indicators

In this paper, before determining the membership degree of quantitative indicators,
the degradation degree function is introduced in order to normalize them and transform
them uniformly to the range of [0, 1]. The quantitative indicators within the evaluation
system can be divided into three categories: cost type (the smaller the measured value is,
the better), benefit type (the larger the measured value is, the better), and interval type (the
more centered the measured value is, the better), which are synthetically represented in
Figure 4 and Equation (11) in this paper:

d =


d0 +

1−d0
x1−xmin

(x− xmin) xmin ≤ x ≤ x1

1 x1 ≤ x ≤ x2

d0 +
d0−1

xmax−x2
(x− x2) x2 ≤ x ≤ xmax

0 x /∈ [xmin, xmax]

(11)

where x is the measured value of the quantitative index; xmin and xmax are the left and right
values of the warning range; x1 and x2 are the left and right values of the allowed range; d
is the degradation degree; and d0 is the lower limit of the warning range.
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After the degradation degree is calculated, the membership degree can be obtained
by substituting the result into the expected curve Formula (12) of each state cloud in the
quantitative space:

rk
(1) = exp

[
− (d− Exk)

2(Enk)
2

]
(12)

where rk
(1) is the membership of the quantitative index in the k-th state.

4.4. Qualitative Indicators

Unlike quantitative indexes, the qualitative index membership is further determined
only after the experts give their scores empirically by combining the field inspection sit-
uation with the test results. In this paper, to weaken the influence of subjectivity in a
single expert, h (h = 10 in this paper) experts are invited to score; then numerical fea-
ture values are extracted from the discrete scoring results by an inverse cloud generator
(Equations (13)–(15)) and then combined with a forward cloud generator to present them
visually. The results are called floating clouds, as shown in Figure 5. The more discrete
the cloud droplets of the floating cloud are, the greater the degree of disagreement among
the experts.
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Ex f =
1
h

h

∑
j=1

pj (13)

En f =

√
π

2
× 1

h

h

∑
j=1

∣∣∣pj − Ex f

∣∣∣ (14)

He f =

√√√√1
h

h

∑
j=1

(pj − Ex f )
2 − (En f )

2 (15)

where pj is the rating given by the j-th expert (1-point scale); Exf, Enf, and Hef are the
expectation, entropy, and hyperentropy of the floating cloud, respectively.

At the same time, in view of the atomization nature of the cloud model (Equation (16)),
it is suitable for the consensus judgment of group cognition and can be used as a critical
condition in order to judge whether the scoring result of group experts is reasonable; and,
if it is not satisfied, it will be re-scored:

He f <En f /3 (16)
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The greater the degree of overlap between the floating cloud and the k-th state cloud in
the space (as shown in Figure 6), the stronger the correlation is between the two. Therefore,
this paper uses the Formula (17) to calculate the overlapping area Ok of the floating cloud
and the k-th state cloud. In Figure 6, O2 and O3 are the overlapping areas of the floating
cloud, the abnormal cloud, the floating cloud, and the attention cloud, respectively; the
standardized Ok is used as the membership degree of the qualitative index, as shown in
Formula (18):

Ok =

{∫ p0
−∞ u f dt +

∫ +∞
p0

ukdt p0<Ex f∫ p0
−∞ ukdt +

∫ +∞
p0

u f dt p0 ≥ Ex f
(17)

r(2)k =
2Ok√

2π(En f + Enk)
(18)

where rk
(2) is the membership of the qualitative indicator in the kth state, however, it should

be noted that rk
(1) and rk

(2) are only the distinctions between the membership of quantitative
and qualitative indicators and all subsequent use of rk to indicate the membership of an
indicator in the k-th state level; uf and uk are the expectation curves of the k-th state cloud
in the floating cloud and the qualitative space, respectively; p0 is the intersection value of
the two curves.
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4.5. Evaluation Algorithm Process

In this paper, based on the principle of AHP algorithm, the evaluation system of
mining cable operation status is established based on a combination of expert opinions
and literature references, and the weight vectors of indicator layer and criterion layer
are calculated according to the improved weight calculation method. According to the
respective characteristics of quantitative and qualitative indicators, different methods are
adopted to calculate the membership degree of the two types of indicators; finally, the
indicator weights are realized according to the D-S evidence theory and membership fusion
according to the D-S evidence theory. The specific process is as shown in Figure 7:
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Before conducting evidence fusion, it is necessary to standardize the identification
framework of the identification object θ = {serious state, abnormal state, attention state,
normal state, uncertain state} = {At}, t = 1, 2, 3, 4, 5; then, treat each indicator as evidence and
construct the basic confidence assignment function with a generalized fuzzy number for
it [26]. Considering that there are differences in the importance degree for each evidence,
again, in this paper, we also add the importance factor to its correction, as shown in
Equation (19):

mi(At) =


βi

rik
4
∑

k=1
rik+(1−max{rik})

t ∈ [1, 4]

1−
4
∑

t=1
mi(At) t = 5

(19)

βi = λi
ωi

ωmax
(20)

where rik is the membership degree of the i-th indicator in the k-th state; mi(At) is the trust
degree of the ith indicator within θ; βi is the importance factor of the i-th evidence; λi is the
priority trustworthiness coefficient, usually taken as 0.9; and ωmax is the maximum value
of the combination weight.

Finally, according to the synthesis rules of evidence theory (Formulae (21) and (22)),
the fusion is carried out step-by-step. In order to solve the problem of the poor status of the
base layer indicators that cannot be shown in the final fusion results, this paper proposes
the concept of a deviation coefficient ζa, as shown in Formula (23):

m(Bt) =

∑
∩At=B

∏
t≤i≤5

mi(At)

1− K
(21)

K = ∑
∩At=∅

∏
t≤i≤5

mi(At) (22)

ξa = |KRi − KR| (23)
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where KRi and KR are the factor layer conflict coefficient and target layer conflict coefficient,
respectively, which can be obtained from Equation (22); ζa is the deviation coefficient of the
a-th indicator in the factor layer, and if ζa > 0.05, the state of the a-th indicator is taken as
the final state of the cable, otherwise, the maximum value within the fusion result of the
target layer is taken as the final state of the terminal.

5. Numerical Work

In order to verify the feasibility of the method proposed in this paper, we used the
operational data of a 6 kV cable of a coal mine grid as the basis to determine the operational
status of this cable and analyzed the superiority of the method proposed in this paper with
the actual calculation results.

5.1. Weight Vector Calculation

Due to the limitation of space, the detailed numerical calculation of the weight vector
calculation method is not presented in this paper (the detailed numerical calculation has
been introduced in the previously published literature [22]). In order to save time in the
calculation, we have written an arithmetic program for the weight calculation algorithm
using MATLAB (see Supplementary Materials), into which we only need to input the
interval judgment matrix reflecting the relative importance among the indicators provided
by the experts to obtain the weight vector that we are seeking. The weight vectors of the
indicators in each layer are calculated as follows:

W =
[
0.1637 0.5390 0.2973

]
W1 =

[
0.2493 0.1872 0.5635

]
W2 =

[
0.1102 0.2801 0.0760 0.5337

]
W3 =

[
0.2804 0.1249 0.5230 0.0717

]
W is the weight vector of each indicator in the criterion layer, and W1, W2, W3 are the

weight vectors of each indicator in the base layer, respectively.

5.2. Fuzzy Evalution Matrix

The quantitative and qualitative index membership of the base layer can be calculated
according to Formulas (12) and (18), respectively, as shown in Table 3. In this paper, in order
to show the feasibility and superiority of the requested qualitative index membership, the
results of the membership of x31, x32, x33, and x34 under the operating condition information
are compared using different methods, as shown in Table 4. Through Table 4, it is easy
to find that the most proximate state levels of x31, x32, x33, and x34 are identical under the
three methods, but the method in this paper is more convenient for us to visually determine
the proximate state levels of the four indicators, as shown in Figures 8–11. In addition,
the fuzzy statistics and the gray theory assign the possibility of x31, x32, x33, and x34 to
four pre-set state levels completely, i.e., the sum of the membership degree of x31, x32,
x33, and x34 is homogeneously normalized. Since the existing state levels are not carefully
divided, there are deviations between the state space model and the actual model. Experts
will express it with an accurate numerical value within the maximum possible range of
a certain state and ignore the occurrence of the remaining states. In view of the above
considerations, this paper uses the overlap between the floating cloud and the qualitative
space in order to reduce the interference of the above factors and make the obtained results
more conservative.
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Table 3. Index membership of base layer.

Index Seriousness Abnormal Attention Normal

x11 0 0 0.0736 0.7228
x12 0 0 0.0491 0.8237
x13 0 0 0.0564 0.7683
x21 0 0 0.0518 0.7746
x22 0 0 0.0795 0.6938
x23 0 0 0.0432 0.8523
x24 0 0 0.0503 0.7826
x31 0 0 0.6979 0.0798
x32 0 0 0.0834 0.6779
x33 0 0.1053 0.4573 0
x33 0 0 0.0969 0.5768

Table 4. Membership solution results of x31, x32, x33, and x34 under different methods.

Method The Method of This Paper Fuzzy Statistics Grey Theory

Status s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

x31 0 0 0.6979 0.0798 0 0 1 0 0 0 0.8362 0.1638
x32 0 0 0.0834 0.6779 0 0 0 1 0 0 0.2084 0.7916
x33 0 0.1053 0.4573 0 0 0.2875 0.7125 0 0 0.3173 0.6827 0
x33 0 0 0.0969 0.5768 0 0 0 1 0 0 0.7145 0.2885
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5.3. Voltage Safety Level Judgement

According to the relevant principles of D-S evidence theory, the relevant parameters
of the factor layer indicators can be calculated by combining Equations (19) and (20), as
shown in Table 5. Combined with Table 5, the target layer m(B) = {0, 0.0059, 0.1261, 0.6805,
0.1875} can be calculated by Formula (21). According to the principle of the maximum trust
degree, it can be determined that the operating state of the cable is in a normal state and
there is also a weak degree of trust in the attention state and abnormal state. Therefore, it is
necessary to continue to analyze the conflict coefficient between the factor layer and the
target layer. Taking the conflict coefficient of the target layer as the reference value and by
comparing the conflict coefficients of x1, x2, and x3 with the reference value, the deviation
coefficient of each index of the factor layer can be calculated by Formula (23), and it is
found that the deviation coefficients are all less than 0.05, so there is no need to correct the
judgment result.

Table 5. Factor layer related parameters.

Index x1 x2 x3

Weight 0.1637 0.5390 0.2973
Seriousness m(B) 0 0 0
Abnormal m(B) 0 0 0.0520
Attention m(B) 0.0412 0.0788 0.5320
Normal m(B) 0.7618 0.8212 0.0978
Uncertainty 0.1970 0.1000 0.3182
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6. Conclusions

The safe and stable operation of mining cables directly affects the safe production
of coal mines. If we can accurately assess the operating status of mining cables, we can
prevent problems before they occur and respond in time before accidents happen. In order
to realize the accurate evaluation of the operating state of the mining cable, this paper
proposes a comprehensive evaluation method based on AHP, membership cloud theory,
and D-S evidence theory. Considering the ambiguity and randomness of the state level,
this paper introduces the membership cloud theory to visualize the cable running state in
the form of a cloud. When calculating the membership degree of the qualitative index, the
overlapping degree of the floating cloud and the state space is used as the membership
degree of the qualitative index which can more intuitively reflect the relationship between
the expert score and the state level. In the fusion of index weight and membership degree,
this paper replaces the traditional fuzzy synthesis algorithm with D-S evidence theory. The
main conclusions are as follows:

(1) In this paper, by introducing the fogging condition of the cloud model, we objectively
verify the rationality of the subjective scoring of experts and then realize the intuitive
comparison between the actual distribution of qualitative indicators (i.e., floating
cloud) and the standard distribution (i.e., qualitative space).

(2) Compared with fuzzy statistics and gray theory, the qualitative index membership
degree calculation method proposed in this paper can make the membership degree
calculation result more conservative and intuitive.

(3) The D-S evidence theory can effectively integrate the index weight and membership
degree and, at the same time, avoid a situation where the abnormal state of the
underlying index is covered by the deviation coefficient of the conflict coefficient,
thereby improving the correctness of the judgment result.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22197174/s1, Weight Calculation Program of AHP.
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