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Abstract: Video compression sensing can use a few measurements to obtain the original video by re-
construction algorithms. There is a natural correlation between video frames, and how to exploit this
feature becomes the key to improving the reconstruction quality. More and more deep learning-based
video compression sensing (VCS) methods are proposed. Some methods overlook interframe informa-
tion, so they fail to achieve satisfactory reconstruction quality. Some use complex network structures
to exploit the interframe information, but it increases the parameters and makes the training process
more complicated. To overcome the limitations of existing VCS methods, we propose an efficient
end-to-end VCS network, which integrates the measurement and reconstruction into one whole
framework. In the measurement part, we train a measurement matrix rather than a pre-prepared
random matrix, which fits the video reconstruction task better. An unfolded LSTM network is utilized
in the reconstruction part, deeply fusing the intra- and interframe spatial–temporal information.
The proposed method has higher reconstruction accuracy than existing video compression sensing
networks and even performs well at measurement ratios as low as 0.01.

Keywords: video compressing sensing; end-to-end deep learning network; unfolded LSTM; mea-
surement matrix training

1. Introduction

It is a dynamic world, and the video captures this world of objects and movement.
The video is composed of continuous pictures. Generally speaking, the human eye can
distinguish the frame rate is 15 frames per second [1]. More than 15 frames will be
considered a motion video. The ordinary camera frame rate is generally between 30 and
60 fps, which can meet most cases of content recording, while high-speed cameras need to
reach 120 fps or even higher. Although high-speed video offers rich details, it comes with
higher storage space and transmission bandwidth usage.

Compressive sensing (CS) [2] can acquire the measurements of the original signal
at a rate lower than the Nyquist sampling rate and use an algorithm to reconstruct the
original signal. This feature makes it widely used in the video field. On the one hand, it
can be applied to construct high-speed cameras. By compressing consecutive frames into
one frame at one measurement, it is possible to use a plain low-speed camera sensor to
achieve high-speed cameras, e.g., single-pixel camera [3], single-coded exposure camera [4],
and coded strobing camera [5]. On the other hand, the VCS algorithm can alleviate the
enormous demand for massive storage and transmission bandwidth required for video.
VCS allows transmitting the video under 100× compression, significantly improving
transmission efficiency and quickly reconstructing it at the receiving end.

According to the measurement of video frames, the existing VCS methods can be
divided into temporal multiplexing VCS (TVCS) and spatial multiplexing VCS (SVCS).
TVCS obtains a 2D measurement frame from sampling across the temporal axis, which
superimposes k measurement frames into one frame. Its measurement ratio is 1/k. The
method proposed in [4,6–10] belongs to this category. These methods can obtain a high
spatial resolution, which is generally implemented on sensors with low frame rates.
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The SVCS is derived from single-pixel cameras [3]. It uses a programmable high-speed
photodetector to measure the image. Only one measurement value is output for each
measurement. A set of measurement values is obtained after multiple measurements,
which is used to reconstruct the original video frame. Figure 1 shows the SVCS process.
The size of the input video frame is W × H = N, and it can be vectorized as x ∈ RN . The
measurement matrix (MM) is expressed as Φ ∈ RM×N , which can be viewed as a set of M
patterns, and each row of the MM corresponds to a vectorized pattern. The measurement
process is to make the inner product of each pattern and the original signal, output a single
measurement value, and obtain the measurement vector y ∈ RM after M times calculation.
The SVCS is formulated as follows:

y = Φx (1)

Compared with TVCS, the SVCS can reconstruct the original frames with fewer
measurements, thus achieving a relatively low measurement ratio. As a result, it causes
severe loss of image information in the measurement, leading to decreased reconstruction
quality. In this paper, our proposed method belongs to SVCS. Therefore, making a tradeoff
between measurement ratio and reconstruction quality is one problem to be solved.

Figure 1. Principle of SVCS measurement process.

In the past ten years, many researchers have proposed VCS reconstruction algorithms
based on optimization algorithms in the image field, e.g., [6,8,11,12]. Usually, these al-
gorithms are based on the sparse prior of the image signal and use convex optimization
or greedy algorithms to solve the reconstruction problem iteratively. These methods in-
evitably bring the problem of high computational complexity. As the resolution of the
image increases, the time consumption for computation increases exponentially, making
it challenging to meet real-time requirements. In recent years, with the wide application
of deep learning, more and more methods based on deep learning have been proposed
to solve the problem of VCS, e.g., [9,13–17]. These methods learn the inverse mapping
directly from the measurements to the original signal through the neural networks. The
reconstructed signal can be calculated through a feedforward network, which is less com-
putationally complex than the iterative optimization algorithm. The real-time performance
is improved, and the reconstruction quality is substantially improved.

The video consists of continuous frames. The video frame sequence contains the
motion information of the objects in the scene. Due to the natural correlation between
frames, it is possible to use spatial–temporal information, which is the key to improving
the quality of reconstructed frames in the case of SVCS. In [16,18,19], the spatial–temporal
information of video is fully considered when studying the VCS problem, and the spatial–
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temporal features of video frames are extracted using deep networks to enhance the
reconstruction quality. The CSVideoNet [16] uses a classical LSTM network to extract
motion features of continuous frames. In [18], Hybrid-3DNet is proposed to extract spatial
information by convolving video segments using a 3D convolutional network, while
VCSNet in [19] uses CNN residual connections to transfer interframe information and
achieve inter-frame multi-level compensation.

This paper uses an unfolded LSTM structure to model the spatial–temporal feature
in the video frame sequence. This structure is first proposed in [20] for solving sparse
Bayesian learning optimization problems by mapping the traditional process of iterative
SBL to an LSTM structure. The model shows good convergence performance using the
unfolded LSTM for sparse optimization, which can greatly accelerate the SBL optimization
solution process. Inspired by this method, we try to use the unfolded LSTM model in
the VCS problem, and it provides surprisingly good performance. In the experiment, we
found that the structure can not only take advantage of the LSTM’s property of long-time
memory of sequences to efficiently fuse the spatial–temporal information from intra- and
interframes but also fix the LSTM, which originally iterates according to the length of
sequences, to a finite length. In that case, it essentially forms a feedforward network, which
converges rapidly in the training process compared with the classical LSTM network. It
can greatly reduce training time consumption and make the reconstruction process faster.

In addition, compared with CSVideoNet and VCSNet, since the proposed method
does not adopt the multi-layer CNN structure, we use Xavier [21] to initialize the network
parameters without pre-training, which makes our proposed network more efficient.

The contributions of this paper are summarized as follows:

• A unified end-to-end deep learning VCS reconstruction framework is proposed, in-
cluding the measurement and reconstruction part, both of which consist of deep
neural networks. We train the framework using a single loss function in a data-driven
method, which makes the training process more efficient and faster;

• The spatial–temporal information fusion reconstruction with multiple sampling rates
is accomplished by using the unfolded LSTM network, which obtains better recon-
struction effects and improves the convergence performance significantly;

• Compared with the existing VCS methods, we demonstrate that the proposed network
provides better reconstruction results under a wide range of measurement ratios, even
under the measurement ratio as low as 0.01. We also experimentally demonstrate that
the network has good convergence without pre-training and converges faster than the
comparison methods.

2. Related Work
2.1. Conventional VCS Algorithm

From Eqution (1), the compressive sensing problem is reconstructing the original
signal by solving an underdetermined equation, which is an NP-hard problem. There are
some designed video signal priors for conventional VCS algorithms, e.g., Gaussian prior,
sparse prior and TV prior, as regularization terms to the equations to constrain the possible
solutions in a particular range. In [4], the Gaussian mixture model (GMM) is extended to CS
territory. The method assumes that the pixels in video blocks obey the GMM distribution
and use GMM to model the spatial–temporal video blocks. Video frames are reconstructed
by E-M iteration. In [22], the author considers the total variational minimum can be used
as the regularization. The generalized alternating projection (GAP) algorithm is used to
solve the optimization problem. In [8], the author obtained better reconstruction accuracy
by using low-speed image frames as side information to assist video reconstruction.

2.2. Deep Neural Network-Based VCS Algorithms

The DFC network in [9] is the first VCS reconstruction algorithm using a deep neural
network. It uses a fully connected network to learn the direct mapping from the measure-
ments to the original signal, solving the underdetermined problem using a data-driven
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approach. Compared to conventional VCS algorithms, it reduces computational complexity
and improves reconstruction quality. In [23], the author demonstrates that the learned
measurement matrix is superior to the random matrix. It can achieve better reconstruction
results by integrating the measurement matrix into a unified training framework and
learning it through network training. However, using a simple ,fully connected network
makes it difficult to exploit spatial–temporal information efficiently.

In order to solve the problems above, CSVideoNet [16] uses a CNN+LSTM structure
to mine spatial–temporal information, enhancing the reconstruction quality. In order to
balance the high compression rate and reconstruction accuracy, the video is grouped in
fixed length, taking the first frame of each group as the keyframe with a low measurement
ratio. The LSTM network is used to extract spatial–temporal features of the frame group to
add motion estimation to the reconstruction process. CSVideoNet significantly improves
the reconstruction quality. However, a pre-defined random measurement matrix in its mea-
surement phase may not be adapted to the video task and limit performance improvement.

VCSNet [19] is a well-performing network composed entirely of a CNN structure.
The training process contains multi-stages, with the measurement matrix being trained
first, followed by the reconstruction part. The reconstruction part is further divided
into two stages: keyframe training and non-keyframe training. A multi-level feature
compensation method is used in these two parts, which compensates for the reconstruction
of non-key frames by using high-quality keyframes. Using CNN networks with multi-level
compensation can only compensate for the loss of spatial information in non-key frames. In
contrast, the temporal information contained in the video is hard to be learned. In addition,
up to 2K + 2 loss functions are used in the training process, and such a multi-loss network
is difficult to train.

3. Video Compressive Sensing Reconstruction Using Unfolded LSTM
3.1. Overview of the Proposed Framework

This section will give the details of the proposed end-to-end VCS reconstruction
network. The network structure is shown in Figure 2. It can be divided into encoding and
decoding parts.

Figure 2. The architecture of the proposed framework.

The encoding part provides a learned measurement matrix, which is equivalent to a
CNN’s convolution process. Since the proposed network belongs to SVCS and will lose
more spatial resolution in the measurement process due to the low measurement ratio, the
keyframe technique is introduced. The input video is split into multiple groups of pictures
(GOPs), with the first frame of each GOP as the keyframe and the rest as non-key frames. A
higher measurement ratio is applied to the keyframe to retain more spatial information. In
comparison, a lower measurement ratio for non-key frames reduces the overall sampling
rate of the GOP.

The decoding part includes the initial reconstruction and the deep spatial–temporal
information fusion reconstruction. Initial reconstruction is used in many VCS methods,
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allowing a smoother transition to the subsequent enhanced reconstruction part. In the first
stage of the decoding part, there is another CNN to perform an inverse convolution on the
measurements to obtain an initial reconstructed frame, which has the same dimensions
as the original frame. The proxy keyframes and non-key frames are input into the next
stage, the unfolded LSTM network, for the dynamic information fusion reconstruction.
The network can preserve the motion information in frame sequence and fully extract the
spatial–temporal features, achieving high-fidelity reconstructed video.

For the training, we use a single mean square error (MSE) as the loss function, directly
comparing the difference between the reconstructed and the original video segments. It
makes the training process simple and efficient, avoiding the problems of parameter balance
and poor convergence in multi-loss training.

3.2. Encoding Part

In many VCS algorithms, the measurement matrix uses a pre-defined random matrix
for measurement. However, the study in [23] indicates that the measurement matrix learned
from data has better performance in the reconstruction. The details of the encoding part
are shown in Figure 3.

Figure 3. The measurement process based on CNN structure.

Each video frame size W × H can be divided into wp × hp = P image blocks of size
without overlapping. We denote the ith patch as xi = [x1

i , x2
i , · · · , xM

i ], where M = s× s
denotes the pixels of each small block. As illustrated in Figure 2, for the ith patch, the
measurement process can be formulated as:

yi = Φxi (2)

where Φ = [φ1, · · · , φk]
T , φj denotes the column vector, which is vectorized from the jth

pattern. yi = [y1
i , · · · , yk

i ], yj
i is the inner product of φj and xi, which denotes as yj

i = φT
j • xi.

The measurement process for each patch can be equated to convolution operation by CNN,
which has k kernels of size s × s with step length s. We arranged the format in order
(number of image channels, image height, image width); the size of the input is denoted as
(1, H, W) and output is denoted as (k, hp, wp) .

For a GOP of length T, the process from each video frame Xi = [x1, · · · , xP] to the
measurements Yi = [y1, · · · , yP] can be formulated as:

Yi = ΦXi (3)

where Yi is of size (k, hp, wp) and Xi is of size H ×W; thus, the measurement ratio (MR) is
calculated as:

MR =
k× hp × wp

H ×W
=

k× H
s ×

W
s

H ×W
=

k
s× s

(4)

From Eqution (4), it can be concluded that the size of the measurements can be easily
controlled by the number of convolution kernels k. For each GOP containing T frames,
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denoted k1, k2 be the number of convolutional kernels of the keyframe and non-keyframe,
respectively; then, the global measurement ratio can be calculated as:

MRgop =
k1 + k2 × (T − 1)

s× s× T
(5)

3.3. Decoding Part

The decoding part can be divided into the initial reconstruction and the deep spatial–
temporal information fusion reconstruction.

3.3.1. Initial Reconstruction

The initial reconstruction is used in many VCS algorithms. Firstly, a simple inverse
transformation of the measurements is completed to obtain a proxy frame with the same
dimensions as the target frame and then further refine the proxy frame in the next stage.
Figure 4 shows the details. The initial reconstruction process can be seen as the inverse
of the encoding part, converting measurements Yi with dim k× hp × wp to proxy frame
X̃i with dim 1× H ×W. Here, we focus on the inverse process. For each patch xi, we can
also use a CNN to obtain the proxy frame; just set the kernel of size (s× s)× 1× 1 and
step length to 1. By convolving the measurements yi, we obtain a column vector x̃i with
dimension 1× 1× (s× s) . Reshaping x̃i to 1× s× s , we obtain the initial reconstruction
of the patch. Extending the convolution operation to the whole frame, we can obtain the
convolutional output of size (s× s)× hp × wp. After reshaping, the proxy frame of size
1× H ×W is finally recovered.

Figure 4. The process of the initial reconstruction.

3.3.2. Deep Spatial–Temporal Information Fusion

For a GOP of length T, which has undergone a measurement and initial reconstruction
phase, we put one proxy keyframe X̃key and (T − 1) proxy non-keyframes X̃i

nonkey (i =
1, 2, · · · , T− 1) together in sequential order and denote them as X̃GOP. For continuous video
frames, the interframes contain part of the scene invariance and the motion information of
the objects. To fully use the spatial–temporal information, we propose a spatial–temporal
information fusion module based on unfolded LSTM, which helps aggregate motion and
spatial features for each frame.

Figure 5 shows the full details of the network. The unfolded LSTM network structure
consists of LSTM cells. The update process is as follows:
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c(t)j = f (t)j � c(t−1)
j + i(t)j � c̃(t−1)

j

h(t)j = o(t)j � Tanh(c(t)j )

i(t)j = σ(Wij [h
(t−1)
j , I(t)j ])

f (t)j = σ(W f j
[h(t−1)

j , I(t)j ])

o(t)j = σ(Woj [h
(t−1)
j , I(t)j ])

c̃(t)j = tanh(Wcj [h
(t−1)
j , I(t)j ])

(6)

where the subscript j indicates the index of the stacked layers of the LSTM, I(t)j denotes

the input of the first LSTM cell, I(t)1 = X(t)
GOP, I(t)j = h(t)j−1(j > 1). h(t)j and c(t)j denote,

respectively, the hidden state and memory cell of the LSTM cell of the jth layer at the t
moment. i(t)j , f (t)j , o(t)j correspond to the input gate, forget gate and output gate. We stack
r layers of the LSTM cell to construct the LSTM stack module, denoted as FLSTM−Stacked ,
and the process of update can be formulated as:

= FLSTM− Stacked (H(t−1), X̃(t)
GOP; θ)

q(t) = h(t)r

(7)

where H(t−1) = [h(t−1)
1 , · · · , h(t−1)

r ] contains all the hidden states of each LSTM cell in the
stacking module, θ denotes the network parameters, and q(t) indicates the output of the
stacking module, which is the hidden state of the last LSTM cell in the stack.

Figure 5. The process of the unfolded LSTM.

Unfolding the LSTM stack in l steps, we can obtain a feedforward network. During
the forward stage, the input X̃(t)

GOP is broadcast to the lowest RNN cell at each unrolled
step. The input of the hidden state of the unfolding step comes from the hidden state of
the dth unfolding step. The output of (d− 1)th the last unfolding step is passed through
a fully connected network to obtain the final reconstructed video X̂GOP. Denoting the dth

unfolding step as F d
LSTM−Stacked and fully connected network as FFC(•) , the process can

be formulated as:
= F d

LSTM−Stacked(H(t)
d−1, X̃(t)

GOP; θ)

X̂GOP = FFC(q( all ))

q( all ) = [q(1), q(2), · · · , q(T)]

(8)
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3.4. Training

The VCS algorithm proposed is an end-to-end network architecture. The mean square
error (MSE) is used as the loss function to train the whole network, which is defined as:

LOSS =
1
T

T

∑
i
‖X̂i

GOP − Xi
GOP‖2

2 (9)

Adam [24] optimizer is used for training to optimize the network parameters. Com-
pared to the multi-stage training strategy VCSNet, the whole network is trained under a
unified framework with only one global loss function, making the whole network training
process concise and efficient. We use Peak Signal-to-Noise Ratio (PSNR) and Structure
Similarity (SSIM) [25] as the evaluation index of image reconstruction quality. PSNR, as a
widely used metric for image reconstruction quality in engineering, is calculated based on
the error between the corresponding pixels. The larger the value, the smaller the image
distortion, which can reflect the final video reconstruction quality to a certain extent. SSIM
is an evaluation metric based on the structural information of the scene, comparing the
brightness, contrast and structural information in the image block, which to a certain extent
can reflect the human eye’s perception of picture similarity. The reconstruction quality can
be better evaluated with these two metrics.

4. Experiment and Analysis
4.1. Dataset

UCF101 [26] is used as the dataset to benchmark our proposed network. The dataset
collects and organizes 101 kinds of human action videos and contains up to 13,000 video
clips with a duration of more than 27 h. Videos in the dataset have a resolution of 320× 240
and are sampled at 25 fps. We selected 20 types of action videos as the training set and
five types of entirely different action videos as the validation set. For comparison with
the existing VCS algorithms, we crop the video frame into two different sizes of 96× 96,
160× 160 with the center part and split them into GOPs of length 10. We obtain 271,930
and 38,000 GOPs for training and testing, respectively.

4.2. Implementation Details

We set the keyframe measurement ratio MRkey to 0.5, 0.2, 0.1 for the different com-
parison experiments. According to Eqution (5), the corresponding non-key frame ratio
MRnonkey can be calculated based on the given MRGOP. We set s = 32 and k1, k2 can be
calculated according to Eqution (4). Our network is trained for 400 epochs with a batch
size of 200. The network parameters are initialized using Xavier [21], and no pre-training
is required. Adam is applied as the optimizer, and the learning rate is set to 0.001. Our
network is trained for 400 epochs with a mini-batch size of 200.

4.3. Compared with Existing VCS Algorithms

In order to fully validate the effectiveness of the proposed method, we compare the
proposed method with the existing VCS algorithms based on a deep neural network,
including CSVideoNet [16], VCSNet [19], DFC [9], and C2B [27]. PSNR and SSIM are
applied for performance evaluation.

In order to objectively compare the performance of the proposed algorithm with the
existing methods, we set the same experimental condition as the comparison algorithms
and compare the reconstruction quality separately. Since CSVideoNet and VCSNet all
belong to SVCS, the proposed algorithm is compared with these two first.

The comparison with VCSNet is shown in Table 1. We use the parameter settings of
VCSNet. Since keyframe MR is set fixed to 0.5, the length of GOP is 8 and non-key frame
MR is set to 0.1, 0.01; the corresponding global MR of GOPs is 0.15, 0.07. The reconstruction
quality of the proposed method is 2.52 db and 3.08 db higher than that of VCSNet under
two different ratios, respectively.
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Table 1. Comparison of the proposed method with VCSNet.

Name Ratio Frame Size GOP MRkey MRnonkey PSNR SSIM

VCSNet 0.15 96 × 96 8 0.5 0.1 34.29 0.90
Proposed 96 × 96 8 0.5 0.1 36.91 0.96

VCSNet 0.07 96 × 96 8 0.5 0.01 29.58 0.82
Proposed 96 × 96 8 0.5 0.01 32.66 0.91

The comparison with CSVideoNet is shown in Table 2. The experiment of CSVideoNet
challenges the ultimate performance of VCS by setting three very low global MR values
of 0.04, 0.02 and 0.01. We set the same experimental parameters, and it can be seen that
the proposed method outperforms CSVideoNet by nearly 5 db on average in the three
comparison groups.

Table 2. Comparison of the proposed method with CSVideoNet.

Name Ratio Frame Size GOP MRkey MRnonkey PSNR SSIM

CSVideoNet 0.04 160 × 160 10 0.2 0.022 26.87 0.81
Proposed 160 × 160 10 0.2 0.022 32.64 0.88

CSVideoNet 0.02 160 × 160 10 0.1 0.011 25.09 0.77
Proposed 160 × 160 10 0.1 0.011 31.11 0.84

CSVideoNet 0.01 160 × 160 10 0.06 0.004 24.23 0.74
Proposed 160 × 160 10 0.06 0.004 28.64 0.81

The VCS methods belonging to TVCS usually set the experiment to compress 16 origi-
nal video frames into one measurement frame, where MR = 1/16 (0.0625). We compare the
proposed algorithm with the existing algorithms under MR = 1/16, so we use MRkey = 0.2,
MRnonkey = 0.047, and correspondingly, k1 = 51, k2 = 12. The results are shown in Table 3,
and our proposed method achieves the best performance. We also give some reconstructed
frames as a visual comparison in Figure 6.

Table 3. Comparison of the proposed method with TVCS methods under ratio 1/16 (0.0625).

Name Ratio Frame Size GOP MRkey MRnonkey PSNR SSIM

DCF

1/16

160 × 160 16 - - 24.67 0.71
C2B 160 × 160 16 - - 32.23 0.93

CSVideoNet 160 × 160 10 0.2 0.022 28.08 0.84
VCSNet 160 × 160 10 0.2 0.022 28.57 0.86

Proposed 160 × 160 10 0.2 0.022 35.02 0.95

Obviously, through the above comparison experiments, we can conclude that the
proposed algorithm performs better than the existing VCS methods under various MRs.

4.4. The Effectiveness of the Unfolded LSTM Structure

To demonstrate the effectiveness of this unfolded LSTM structure in the algorithm,
we design comparative experiments where unfolded LSTM in the proposed algorithm is
replaced with a classic LSTM structure. The experimental results are shown in Table 4. It
can be seen that the average reconstruction accuracy is higher with the unfolded LSTM
approach than with the classic LSTM, which indicates that the unfolded LSTM structure
can improve the reconstruction quality better than the classic LSTM structure.
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Table 4. Comparison of the proposed method with classical LSTM structure.

Name Ratio Frame Size GOP MRkey MRnonkey PSNR SSIM

LSTM 0.04 160 × 160 10 0.2 0.047 34.11 0.91
Proposed 160 × 160 10 0.2 0.047 35.02 0.95

LSTM 0.02 160 × 160 10 0.2 0.022 31.50 0.81
Proposed 160 × 160 10 0.2 0.022 32.64 0.91

LSTM 0.01 160 × 160 10 0.1 0.011 30.32 0.77
Proposed 160 × 160 10 0.1 0.011 31.11 0.88

4.5. Optimal Measurement Ratio Allocation for Keyframes and Non-Keyframes

We also conduct additional experiments to explore the measurement ratio allocation
for keyframes and non-keyframes at the fixed MRGOP. The experimental results are shown
in Table 5. MRGOP is set to 1/16. We found that appropriately reducing the measurement
ratio of keyframes and increasing the measurement ratio of non-keyframes can improve
the reconstruction results. We speculate that this phenomenon is due to a large amount of
redundancy in the video frame information. A relatively low measurement ratio may exist
for the keyframe to retain most of the spatial information.

Table 5. Comparison of the proposed method performance in different MRkey under the same ratio.

Frame Size Patch Size GOP MRkey MRnonkey k1 k2 PSNR SSIM

96 × 96 32 × 32 10 0.5 0.014 512 14 31.88 0.81
96 × 96 32 × 32 10 0.4 0.025 409 25 33.59 0.83
96 × 96 32 × 32 10 0.3 0.036 307 37 34.58 0.86
96 × 96 32 × 32 10 0.2 0.047 204 48 35.02 0.91

4.6. Convergence Performance and Time Complexity

We designed experiments to compare the convergence performance of different meth-
ods. The same experimental conditions are set for each method, and then, we obtain the
experimental results shown in Figure 7. The curves given are the variation of the recon-
struction accuracy of the network on the validation set in each training epoch. From this
figure, we can see that the reconstruction accuracy of CSVideoNet and VCSNet on the
validation is are not higher than 20 db, indicating that the networks are easily trapped in
local minima and challenging to converge to the optimum. The proposed method in this
paper can converge to the appropriate interval after one epoch and achieves an accuracy of
more than 30 db on the test set. Table 6 shows the time spent for each training epoch of the
network during the training process. It takes much less time for the proposed network to
train than CSVideoNet and VCSNet. From the above, the proposed network not only has
better convergence performance in the training process but also has lower time complexity
and higher overall efficiency.

Table 6. Comparison of the time complexity of the existing models and the proposed model.

Model CSVideoNet VCSNet Proposed

Time(s) 587.70 359.61 194.53
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In this paper, we propose a novel unified end-to-end VCS reconstruction network. In
the measurement sampling stage, the CNN network integrates the measurement process
into the network and learns a better measurement matrix. In the reconstruction stage, the
unfolded LSTM network is applied to fuse the spatial–temporal feature at the frames with

Figure 6. The comparison of reconstructed frames between the proposed and DFC, CSVideo, VCSNet
and C2B methods.

Figure 7. Variation curve of model reconstruction performance with the number of training epochs.

5. Conclusions

In this paper, we propose a novel unified end-to-end VCS reconstruction network. In
the measurement sampling stage, the CNN network integrates the measurement process
into the network and learns a better measurement matrix. In the reconstruction stage, the
unfolded LSTM network is applied to fuse the spatial–temporal feature at the frames with
different measurement ratios. Compared with the existing deep neural network-based VCS
methods, the proposed network can achieve better reconstruction accuracy under the same
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conditions and even obtain satisfactory reconstruction results at compression rates as low
as 0.02 and 0.01. In future work, we will build on this and continue exploring computer
vision downstream tasks such as target tracking, re-identification, etc.
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