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Abstract: A probabilistic data association-based distributed cubature Kalman filter (PDA-DCKF)
method is proposed in this paper, whose performance on tracking single moving sound sources in
the distributed acoustic sensor network was verified. In this method, the PDA algorithm is first
used to sift the observations from neighboring nodes. Then, the sifted observations are fused to
update the state vectors in the CKF. Since nodes in a sensor network have different reliabilities, the
final tracking result integrates the estimations from the local nodes, which are weighted with the
parameters depending on the mean square error of the estimation and the energy of the received
signal. The experimental results illustrated that the proposed PDA-DCKF method is superior to the
other DCKF methods in tracking sound sources even under severe noise and reverberant conditions.

Keywords: acoustic source tracking; distributed acoustic sensor networks; distributed cubature
Kalman filter; probabilistic data association

1. Introduction

The problem of acoustic source localization and tracking has always been one of the
research hotspots in the field of speech processing. It has been widely used in many aspects,
such as audio and video conferencing systems, human-computer interaction and speech
enhancement, etc. [1–4]. Traditional acoustic localization and tracking methods usually
require the microphone array to have a regular geometric structure, and generally use a
centralized data processing method [5]. With the continuous advancement of technology,
some traditional microphone arrays gradually show some deficiencies. The distributed
microphone network has attracted more and more research work because it has no strict re-
strictions on the arrangement of microphones, and is a network composed of multiple nodes
arbitrarily distributed in space, usually each node contains a set of microphones [6–10].

So far, there have been many studies on acoustic source localization using distributed
microphone networks [11]. But they only locate the acoustic source based on the current
observations of multiple microphones, which can locate the acoustic source when the
background noise and reverberation are small. In noisy and reverberant environments,
spurious observations may even mask observations from real acoustic sources, degrading
localization performance. To avoid this problem, a Bayesian filter [12] combined the current
observation with a series of past observations for current position estimation, which is
more effective for dealing with the adverse effects of noise or reverberation. Theoretically,
Bayesian filters describe the tracking problem with a state-space model that includes a
dynamic model that describes the motion of the target and an observation model that
describes the relationship between the observations and the state of the acoustic source.
When the state space model is linear and Gaussian, Kalman filter can replace Bayesian
filter. However, in acoustic source tracking scenarios, the observation function is usually
nonlinear, and some conditions and properties applicable to linear systems no longer hold,
and the performance of the Kalman filter may be severely degraded.
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Extended Kalman filter (EKF) was first proposed in [13] and is the simplest and most
widely used nonlinear filtering method. EKF only intercepts the first-order term in the
linearization process to approximate the system function, but its error is relatively large. In
order to solve this problem, the literature [14] proposed iterative extended Kalman filter
(IEKF), which can improve the accuracy of EKF through several iterations. However, when
the nonlinearity of the system model is very strong, whether it is EKF or IEKF, their effect
is not good, and there are disadvantages such as poor stability and easy divergence. The
particle filter (PF) is a Monte Carlo implementation of a Bayesian filter that approximates
the state by a series of weighted particles extracted from the proposal function [15]. PF
can handle nonlinear and non-Gaussian situations well, and many PF-based sound source
tracking methods have been developed. Vermaak and Blake [16] first introduced PF to
sound source tracking. The particle filter method breaks through the limitations of linearity
and Gaussian, but its computational load is too large. In practical applications, particle
filtering will only be considered when the approximate filter fails. The Sigama point Kalman
filter method [17] was similar to the idea of particle filter. It does not use the method of
approximating nonlinear systems, but directly uses the real system and observation model
by selecting a set of effective deterministic sampling sets, namely Sigama points, which
can achieve second-order accuracy. According to the different selection methods of Sigama
points, it can be divided into UKF, CKF, QKF and so on. In general, several Gaussian
filtering methods introduced above are centralized, that is, the data of all nodes is collected
and transmitted to the central processing unit to perform the task of acoustic source tracking.
This method is generally unreliable, as any failure of the central processor renders the entire
network untraceable.

In order to solve the unreliable problem of centralized methods, many distributed
methods have been developed for sound source tracking. No central processor is needed
in the distributed method, and all nodes realize the estimation of the global state only by
exchanging data with their neighbors. In reference [18], a distributed extended Kalman
particle filter (DEKPF) for speaker tracking was developed, which combined the current
TDOA observations into EKF to propose particle filter. In reference [19], a distributed parti-
cle filter (DPF) was proposed, which applied the improved iterative covariance intersection
(MICI) algorithm and interactive multiple model (IMM) to speaker tracking in distributed
microphone networks. In reference [20], a distributed iterative EKF was proposed to es-
timate the time-varying speaker position in the microphone array. In reference [21], a
Distributed Unscented Kalman Filter (DUKF) is proposed to overcome the nonlinearity of
the measurement model in speaker tracking. The time difference of arrival (TDOA) was
used as the observation and then the distributed IMM-UKF was used to track the location
of the sound source.

In the actual environment, the existence of noise or reverberation usually produces
unreliable observations with false peaks, which may lead to serious performance degrada-
tion. Usually, the current observations contained in these methods are only extracted from
the largest peak value of a certain observation function. In some bad cases, the peak value
related to the real acoustic source may be masked by the stray acoustic source. Therefore, it
is more reasonable to extract multiple observations from the observation function, rather
than one observation, and then incorporate it into the above tracking scheme. Probabilistic
Data Association (PDA) [22] is an effective method to combine multiple observations into
Kalman filter state update, which has been proved to be suitable for target tracking in
clutter environment. In reference [23], an improved distributed unscented Kalman particle
filter (DUKPF) was proposed to track a single moving acoustic source using a distributed
microphone network in noise and reverberation environments. This method proposed to
extract multiple observations from the observation function of each node and combined
them into the status update of UKF through probabilistic data association (PDA) tech-
nology, so as to generate PDA-UKF, and then brought in particle filter. In reference [24],
a microphone array network distributed multi speaker tracking method based on taste-
less particle filter and data association was proposed. The available observations were
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associated with each speaker at each node using data association technology to track the
speaker. Reference [25] proposed a volume information filter based on joint probabilistic
data association (JPDA) for multi acoustic source tracking based on distributed acoustic
vector sensor (AVS) array, in which JPDA was used to deal with the correlation between
observations and targets. Issues related to multi-source tracking are beyond the scope of
this article. However, most of particle filter-based methods require excessive computational
costs, which limits them in real-time applications. Besides, in existing speaker tracking
methods, the PDA algorithm is applied to sift the observations without considering the
information from neighboring nodes.

Probabilistic data association with cubature Kalman filtering are combined in this
paper, and they are applied to the problem of single-acoustic source tracking in noisy and
reverberant environments with distributed acoustic sensor networks. The contributions of
this paper are as follows:

• Combining the cubature Kalman filter (CKF) with PDA, the probabilistic data association-
cubature Kalman filter (PDA-CKF) was developed. In PDA-CKF, multiple possible
observations were merged into the state update of CKF by the PDA technique.

• In this paper, PDA-CKF was applied to the distributed acoustic sensor network, and
the probabilistic data association-distributed cubature Kalman filter (PDA-DCKF) was
developed by combining the observation information of each node’s neighbor nodes
in the network.

• Considering the reliability of the local state, it was proposed to combine the mean
square error (MSE) of the position estimation of each node and the received signal
energy to adjust the weighting coefficient of distributed acoustic sensor data fusion. In
this way, the local state of high-quality nodes is enhanced, and each node can achieve
global consistency and good speaker tracking performance.

The structure of this paper is as follows. Section 2 presents the problem formu-
lation, background knowledge, and some prior knowledge of acoustic source tracking.
Section 3 first introduces the single-node PDA-CKF and then details the distributed PDA-
DCKF. Section 4 presents the experimental results and discussion. Section 5 summarizes
some conclusions.

2. Background Knowledge
2.1. Problem Formulation

Consider a distributed sensor network with N nodes deployed as shown in Figure 1.
The positions of the nodes can be obtained in advance by calibration [26]. Each node
in the DMA consists of two microphones at distance L. All nodes of the network are
modeled as vertices of the graph G1 = (ε, υ), where υ = {1, 2, . . . , N} is the vertex set,
ε ⊂ {(p, q)|p, q ∈ υ} is the edge set, and (p, q) ∈ ε represents the network’s commu-
nication constraints, i.e., node p can send information to node q, and vice versa. Let
Np,k = {q ∈ υ|(p, q) ∈ ε} ∪ {p} denote the set of neighbors of node p at time k, where a
node is a neighbor of itself certainly.
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Figure 1. Diagram of speaker tracking in the distributed acoustic sensor network. 
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2.2. Signal Model and TDOA Estimation

In acoustic sensor networks, the discrete-time signal acquired by the l− th microphone
(l = 1, 2) of node p can be modeled as [23]

yp,l(t) = hp,l(t) ∗ y(t) + ep,l(t), ∀p ∈ υ (1)

where t is the discrete-time index, hp,l(t) is the room impulse response (RIR) between the
microphone and the acoustic source, ∗ denotes the convolution operator, y(t) is the source
signal, and ep,l(t) is the additive noise.

Traditionally, the generalized cross-correlation function (GCC) [27] is used for TDOA
estimation. Assuming that Y1(k) and Y2(k) are the acoustic signal received by a microphone
pair at time k and Yl( f ) = FFT{Yl(k)}, l = 1, 2 is the frequency domain representation of
the corresponding acoustic signal in a time frame, the generalized cross-correlation function
of the acoustic signal received by the microphone pair is

R12(τ) =
∫ +∞

−∞

Y1( f )Y∗2 ( f )∣∣Y1( f )Y∗2 ( f )
∣∣ ej2π f τd f (2)

where Y1( f ) and Y2( f ) represent the frequency-domain microphone signals at the node,
and ∗ represents the complex conjugation operation. Therefore, the delay estimation is [27]

τ̂ =
∫ +∞

−∞
argmax

τ∈[−τmax,τmax]
R12(τ) (3)

τmax is the largest time delay estimation.
However, in the real indoor environment, reverberation and noise will bring false

maxima of R12(τ) and obtain invalid TDOA estimation. In order to solve this problem, the
local largest of the first Q largest peaks of R12(τ) are taken as the candidate measurement
value of multiple TDOA of node p at time k. In this paper, multiple TDOA observations
were extracted through a two-step selection process, taking node p as an example [23].

(1) Select Q delays according to the peak amplitude of the GCC, i.e.,

zp,k = [τ̃
(1)
p,k , τ̃

(2)
p,k , . . . , τ̃

(Q)
p,k ] (4)

where τ̃
(i)
p,k is the delay of node p related to the i - th largest peak of R12(τ) at time k.

(2) Further, select mp,k observations from (4) as local observations, and the selection rules
are shown in Section 3.

^
z p,k = [τ̃

(1)
p,k , τ̃

(2)
p,k , . . . , τ̃

(mp,k)

p,k ] (5)

where each delay τ̂
(j)
p,k , j = 1, 2, . . . , mp,k is deemed as a TDOA candidate.

2.3. Dynamic Model of Acoustic Source

Without loss of generality, the two-dimensional tracking is considered herein, since
the height of a moving acoustic source would usually not change significantly. Speakers
move in a room with a distributed acoustic sensor network, and Langevin model [24] can
accurately and simply describe the time-varying position of speakers. At time k, the state
of the speaker is defined as xk = [xk, yk,

.
xk,

.
yk]

T , where (xk, yk)
T and (

.
xk,

.
yk)

T represent the
position and moving speed of the speaker, respectively. In this model, the speaker’s motion
in the Cartesian coordinate system is considered to be independent and modeled as [23]

xk =

[
I2 a∆T ⊗ I2
0 a⊗ I2

]
xk−1 +

[
b∆T ⊗ I2 0

0 b⊗ I2

]
uk−1 (6)
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where a = e−β∆T , and b = υ
√

1− a2; β and υ are the rate constant and the steady velocity
parameter, respectively. Is denotes the s-order identical matrix, ⊗ stands for the Kronecker
product, ∆T is the sampling period for position estimation, and uk−1 is the zero-mean white
Gaussian noise with identity covariance matrix, which describes the uncertainty of the
acoustic source motion.

2.4. Bayesian Framework for Speaker Tracking

Bayesian filtering is the basis of Kalman filtering. This section briefly reviews the basic
principles of the Bayesian filtering algorithm.

Assuming that the state variable at time k is xk ∈ Rp and its observation value is
yk ∈ Rq, where Rn represents the n-dimensional real vector space, the state equation and
observation equation are expressed as [21]:

xk+1 = fk(xk) + Γkwk (7)

yk = hk(xk) + vk (8)

where fk(·) is the nonlinear state transfer function, hk(·) is the nonlinear observation
function, Γk is the noise transfer matrix, wk is the process noise, and vk is the observation
noise, which meets [21]

E

{[
wk
vk

][
wl
vl

]T
}

=

[
Qkδk,l 0

0 Rkδk,l

]
(9)

where the superscript T represents the transpose of the matrix, E{·} represents the expected
operator, and δk,l represents the Kronecker delta function. Qk and Rk are the covariance ma-
trices of noise wk and vk, respectively, and it is assumed that they are both positive definite.

The Bayesian filtering problem is to infer the estimated value of the state variable xk
at time k given the observation information y1:k = {y1, . . . , yk} at time k, i.e., to estimate
the posterior probability density p(xk|y1:k) . Assuming that the initial probability density
function p(x0) of the state variable is known as prior knowledge, the posterior probability
density p(xk|y1:k) can be obtained recursively by the following equations [20]:

p(xk|y1:k−1) =
∫

p(xk
∣∣xk−1)p(xk−1

∣∣y1:k−1)dxk−1 (10)

p(xk|y1:k) =
p(yk

∣∣xk)p(xk
∣∣y1:k−1)

p(yk
∣∣y1:k−1)

(11)

In Equations (10) and (11), the state transition probability density function p(xk|xk−1)
is defined by the state equation; the observation likelihood probability density function
p(yk|xk) is defined by the observation equation.

3. Improved Distributed Cubature Kalman Filter

In the CKF, the observation corresponding to the largest peak of the observation
function is used for the state update. This approach works well under moderate acoustic
environments, while its performance degrades in severe noise and reverberation conditions
because the spurious peaks from noise or reverberation may cover up the peaks from
real acoustic sources. To alleviate this problem, multiple observations are selected from
the multiple local maxima of the observation function. A general framework for state
updates that integrates multiple possible observations is provided by the probabilistic data
association (PDA). Inspired by this idea, the probabilistic data association-cubature Kalman
filter (PDA-CKF) was derived in this paper. Next, PDA-CKF was used for acoustic source
tracking in distributed acoustic sensor networks, and an improved PDA-DCKF algorithm
was developed. The observations of multiple nodes in the neighborhood are filtered by
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PDA and then merged into the state update of CKF to integrate the information of multiple
nodes to realize distributed tracking.

Before introducing PDA-CKF, the preliminary knowledge of cubature Kalman—cubature
point set {ξ i, ωi} [28]—should be introduce first.

The standard Gaussian weighted integral is calculated using the spherical-radial
cubature rule, i.e., [28]

E[x|z] =
∫
R

f (x)N (x; 0, P)dx ≈
2n

∑
i=1

ωi f (ξ i) (12)

In Equation (12), f (·) is the nonlinear state transfer function or observation function, n
is the dimension of the state variable, N (x; 0, P) is a Gaussian distribution function with a
mean of zero and a variance of P, and ξ i is the cubature points.

ξ i =
√

n[1]i, i = 1, 2, . . . , 2n (13)

ωi =
1

2n
(14)

[1]i represents the point set of n (n-dimensional state) dimensional space, i.e.,

[1]i =




1
0
...
0

,


0
1
...
0

, . . . ,


0
0
...
1

,


−1
0
...
0

,


0
−1

...
0

, . . . ,


0
0
...
−1


 (15)

3.1. PDA-CKF Algorithm

(a) Initialization

When k = 0, assuming x0 ∼ N (x0, P0), the initial value of the process noise and
observation noise matrix are set to Q0 and R0, respectively. Then, the optimal initialization
of the filter is

x̂p,0|0 = x0

P̂p,0|0 = P0
(16)

(b) State Prediction

For each node p, the state estimate and covariance matrix x̂p,k−1|k−1, P̂p,k−1|k−1 at time
k − 1 are given, and the positive definite noise matrix Qp,k−1, Rp,k−1 are given. Using
Equations (13) and (14), the state predicted cubature points χi

p,k−1|k−1 is calculated as:

Sp,k−1|k−1 =
√

P̂p,k−1|k−1 (17)

χi
p,k−1|k−1 = x̂p,k−1|k−1 + Sp,k−1|k−1ξ i, i = 1, 2, . . . , 2n (18)

According to the state transition model, the cubature points are propagated nonlinearly,
i.e.,

χi
p,k|k−1 = f (χi

p,k−1|k−1), i = 1, 2, . . . , 2n, p = 1, 2, . . . , N (19)

where n represents the dimension of the state variable, and N represents the number of
nodes in the distributed acoustic sensor network. At this time, the state prediction x̂p,k|k−1

and its error matrix P̂p,k|k−1 are calculated as:

x̂p,k|k−1 =
1

2n

2n

∑
i=1

χi
p,k|k−1, i = 1, 2, . . . , 2n, p = 1, 2, . . . , N (20)
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P̂p,k|k−1 =
1

2n

2n

∑
i=1

(χi
p,k|k−1 − x̂p,k|k−1)(χ

i
p,k|k−1 − x̂p,k|k−1)

T
+ Qp,k, p = 1, 2, . . . , N (21)

(c) Status Update

From the estimated x̂p,k|k−1 and variance P̂p,k|k−1 at time k, the state update cubature
points χi

p,k|k−1 is calculated as:

Sp,k|k−1 =
√

P̂p,k|k−1 (22)

χi
p,k|k−1 = x̂p,k|k−1 + Sp,k|k−1ξ i (23)

χi
p,k|k−1 is propagated through the observation equation,

Ẑi
p,k|k−1 = h(χi

p,k|k−1), i = 1, 2, . . . , 2n, p = 1, 2, . . . , N (24)

Further, the observation prediction ẑp,k|k−1 and the observation prediction error vari-
ance Pzz

p,k|k−1 are, respectively, obtained by

ẑp,k|k−1 =
1

2n

2n

∑
i=1

Ẑi
p,k|k−1 (25)

Pzz
p,k|k−1 =

1
2n

2n

∑
i=1

(Ẑi
p,k|k−1 − ẑp,k|k−1)(Ẑ

i
p,k|k−1 − ẑp,k|k−1)

T
+ Rp,k (26)

Then, according to the probabilistic data association, the verification area of node p
can be constructed by [29]:

{zp,k : (zp,k − ẑp,k|k−1)
T(Pzz

p,k|k−1)
−1(zp,k − ẑp,k|k−1) ≤ γ} (27)

where γ is the gate threshold. Suppose mp,k(mp,k ≥ 0) observations fall into the validated

region (27) at time k. Define validate observations
^
z p,k, i.e.,

^
z p,k = z(j)

p,k, j = 1, 2, . . . , mp,k (28)

Actually, only one of the above observations is related to the real source; the others are
due to noise or reverberation, or none of them are related to the real source. Correspond-
ingly, for mp,k validated observations, there maybe be mp,k + 1 possible hypothesis, i.e.,{

Hp,0 = {All observations are independent of real sound sources }, j = 0

Hp,j =
{

z(j)
p,k is associated with the true source

}
, j = 1, 2, . . . , mp,k

(29)

According to Equation (29), the equation for calculating x̂(j)
p,k|k, j = 0, 1, . . . , mp,k is

as follows:

x̂p,k|k =
mp,k

∑
j=0

E
{

xp,k|Hp,j, zp,1:k

}
p(Hp,j|zp,1:k) =

mp,k

∑
j=0

β
(j)
p,kx̂(j)

p,k|k (30)

where β
(j)
p,k , p(Hp,j|zp,1:k) is the prior probability of event Hp,j, 0 ≤ β

(j)
p,k ≤ 1, and

mp,k

∑
j=0

β
(j)
p,k = 1,x̂(j)

p,k|k , E{xp,k|Hp,j, zp,1:k} is the updated estimate conditioned on the event

Hp,j, j = 0, 1, . . . , mp,k, and
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x̂(0)p,k|k = x̂p,k|k−1 (31)

x̂(j)
p,k|k = x̂p,k|k−1 + Kp,kv(j)

p,k, j = 1, 2, . . . , mp,k (32)

where v(j)
p,k = z(j)

p,k − ẑp,k|k−1 is the innovation related to the observation z(j)
p,k, Kp,k is the

Kalman gain of node p, and

Pxz
p,k|k−1 =

1
2n

2n

∑
i=1

(χi
p,k|k−1 − x̂p,k|k−1)(Ẑ

i
p,k|k−1 − ẑp,k|k−1)

T
(33)

Kp,k = Pxz
p,k|k−1(P

zz
p,k|k−1)

−1 (34)

where Pxz
p,k|k−1 is the cross covariance between the state and observation zp,k of node p.

Given the innovation v(j)
p,k and its covariance Pzz

p,k|k−1, the probability β
(j)
p,k is generally

computed as [30]

β
(j)
p,k =


ep,j

bp+∑
mp,k
i=1 ep,i

, j = 1, 2, . . . , mp,k

bp

bp+∑
mp,k
i=1 ep,i

, j = 0

ep,j = e−
1
2 (v

(j)
p,k)

T
(Pzz

p,k|k−1)
−1v(j)

p,k

bp = λ|2πPzz
p,k|k−1|

1
2

1−Pp,D PG
Pp,D

(35)

where λ is the spatial probability, Pp,D is the probability that the acoustic source is detected
by sensor p, and PG is the gate probability.

Finally, the state estimate value x̂p,k|k and error covariance P̂p,k|k can be obtained by

x̂p,k|k = x̂p,k|k−1 + Kp,kvp,k (36)

P̂p,k|k = β
(0)
p,kP̂p,k|k−1 + (1− β

(0)
p,k)

.
Pp,k|k +

..
Pp,k|k (37)

where vp,k = ∑
mp,k
j=1 β

(j)
p,kv(j)

p,k is the probability weighted innovation, and the covariances
.
Pp,k|k and

..
Pp,k|k are respectively given by [29,30]

.
Pp,k|k = p̂p,k|k−1 −Kp,kPzz

p,k|k−1KT
p,k (38)

..
Pp,k|k = Kp,k{

mp,k

∑
j=1

β
(j)
p,k(v

(j)
p,k − vp,k)(v

(j)
p,k − vp,k)

T
}KT

p,k (39)

To summarize, the pseudo-code of the PDA-CKF method of using the observations
from a single node is depicted in Algorithm 1.

The PDA-CKF algorithm makes full use of the observation information of the node
itself, which improves the tracking accuracy. However, this algorithm will fail when a
node is damaged or the environmental noise and reverberation are severe. Therefore,
this paper generalized PDA-CKF to a distributed version that can be used in distributed
sensor networks. The improved method was named the probabilistic data association-
based distributed cubature Kalman filter (PDA-DCKF). The specific process is shown
in Section 3.2.
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Algorithm 1: PDA-CKF Algorithm

Initialization: x̂p,0|0 = x0, P̂p,0|0 = P0
Input: x̂p,k−1|k−1, P̂p,k−1|k−1, zp,k
Output: x̂p,k|k, P̂p,k|k
Iteration: for k = 1, 2, . . .
1: Prediction step:
2: Compute the state predicted cubature points χi

p,k−1|k−1 at time k− 1 with (18).
3: Compute the predicted estimate x̂p,k|k−1 and covariance P̂p,k|k−1 with (20) and (21),
respectively.
4: Update step:
5: Compute the state update cubature points χi

p,k|k−1 with (23).
6: Compute the predicted observations ẑp,k|k−1 with (25).
7: Compute the innovation covariance Pzz

p,k|k−1 with (26).

8: Select the validated observations
^
z p,k according to (28).

9: Compute the cross-covariance Pxz
p,k|k−1 with (33).

10: Compute the Kalman gain Kp,k with (34).

11: Compute the association probability β
(j)
p,k with (35), j = 1, 2, . . . , mk

12: Compute the covariances
.
Pp,k|k and

..
Pp,k|k with (38) and (39), respectively.

13: Compute the updated estimate x̂p,k|k and covariance P̂p,k|k with (36) and (37), respectively.

3.2. PDA-DCKF Algorithm
3.2.1. PDA-DCKF

The neighborhood information of nodes are fused in PDA-DCKF to form local node
networks. Then, the local state estimations and error covariances for the local node net-
works are calculated separately. Finally, the local results are fused to obtain the global
state estimation.

On the basis of the above steps, the following is defined:

Ẑi
Np,k|k−1 = [Ẑi

p,k|k−1; Ẑi
q,k|k−1]num(Np,k)×2n

, i = 1, 2, . . . , 2n, p = 1, 2, . . . , N,

q ∈ Np,k = {q ∈ υ|(p, q) ∈ ε} ∪ {p}
(40)

where q represents the neighborhood nodes adjacent to node p, υ = {1, 2, . . . , N} is the
vertex set, ε ⊂ {(p, q)|p, q ∈ υ} is the edge set of the distributed acoustic sensor network,
num(Np,k) indicates the number of nodes in the neighborhood of node p. Np,k = {q ∈
υ|(p, q) ∈ ε} ∪ {p} denotes the set of neighbors of node p at time k, where a node is a
neighbor of itself certainly.

Further, the resulting observations are fused into a matrix. Then, the observed predic-
tion and prediction error variance are, respectively, given by

ẑNp,k|k−1 =
1

2n

2n

∑
i=1

Ẑi
Np,k|k−1 (41)

Pzz
Np,k|k−1 =

1
2n

2n

∑
i=1

(Ẑi
Np,k|k−1 − ẑNp,k|k−1)(Ẑ

i
Np,k|k−1 − ẑNp,k|k−1)

T
+ [RP,k; Rq,k]num(Np,k)×num(Np,k)

(42)

For single node p, v(j)
p,k = z(j)

p,k − ẑp,k|k−1 is the innovation vector related to observation

z(j)
p,k, and Kp,k is the Kalman gain of node p. As far as multiple nodes are concerned, the

information of node p and surrounding nodes q is fused to obtain

Pxz
Np,k|k−1 =

1
2n

2n

∑
i=1

(χi
p,k|k−1 − x̂p,k|k−1)(Ẑ

i
Np,k|k−1 − ẑNp,k|k−1)

T
(43)



Sensors 2022, 22, 7160 10 of 21

KNp,k = Pxz
Np,k|k−1(P

zz
Np,k|k−1)

−1 (44)

where Pxz
Np,k|k−1 is the cross covariance between the state and the observed value of node p

after fusing the information of neighboring nodes, and KNp,k is the Kalman gain of node p
at time k after the fusion.

The probability weighted innovation vector of local nodes is defined as

vNP,k = [vp,k; vq,k]num(Np,k)×1, p = 1, 2, . . . , N, q ∈ Np,k = {q ∈ υ

∣∣∣∣(p, q) ∈ ε} ∪ {p} (45)

The following is defined as

β
(0)
Np,k = (β

(0)
p,k +

num(Np,k)−1

∑
q=1

β
(0)
q,k )/num(Np,k) (46)

where {
mp,k

∑
j=1

β
(j)
p,k(v

(j)
p,k − vp,k)(v

(j)
p,k − vp,k)

T
} is defined in the covariance

..
Pp,k|k of node p as

wp; when the information of node p and surrounding nodes is fused, the expression of wp
is computed as

wNp = diag(wp, wq)num(Np,k)×num(Np,k)
, p = 1, 2, . . . , N,

q ∈ Np,k = {q ∈ υ|(p, q) ∈ ε} ∪ {p}
(47)

where wq = {
mq,k

∑
j=1

β
(j)
q,k(v

(j)
q,k − vq,k)(v

(j)
q,k − vq,k)

T
}.

Finally, the state estimate x̂Np,k|k and the error covariance P̂Np,k|k for node p are
expressed as

x̂Np,k|k = x̂p,k|k−1 + KNp,kvNp,k (48)

P̂Np,k|k = β
(0)
Np,kP̂p,k|k−1 + (1− β

(0)
Np,k)

.
PNp,k|k +

..
PNp,k|k (49)

.
PNp,k|k = p̂p,k|k−1 −KNp,kPzz

Np,k|k−1KT
Np,k (50)

..
PNp,k|k = KNp,kwNpKT

Np,k (51)

3.2.2. Fusion Strategy

After calculating the estimation of each local node in the distributed acoustic sensor
network, these data need to be fused to obtain a global estimate. Since nodes in a sensor
network have different reliabilities, the final tracking result integrates the estimations from
the local nodes, which are weighted with the parameters depending on the mean square
error of the estimation and the energy of the received signal.

(a) Energy

The energy of the signal received by each node in the acoustic sensor network is
calculated [31], and the equation is described as:

Ep = lim
T→∞

∫ T

−T

∣∣xp(t)
∣∣2dt (52)

where xp(t) represents the sound signal received by node p. In practice, analog signal x(t)
is converted into digital signal x(n), and x(n) needs to be framed and windowed. Then, the
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framed signal is donated by x(n) ·ω(n). In this paper, the Hamming window was selected
for the window function ω(n). Further, the energy of each frame can be obtained by

Ep,n =
∞

∑
m=−∞

[xp(m)ω(n−m)]2 =
∞

∑
m=−∞

xp
2(m)h(n−m) = xp

2(n) ∗ h(n) (53)

where h(n) = ω2(n), and Ep,n represents the short-term energy of node p when the window
function starts at the n− th point of the signal. The short-term energy can be regarded as
the output of the square of the speech signal passing through a linear filter, and the unit
impulse response of the linear filter is h(n).

(b) MSE

In Equation (48), the local estimate x̂Np,k|k of node p(p = 1, 2, . . . , N) is calculated, and

r̂p,k = [
1 0 0 0
0 1 0 0

]x̂Np,k|k is expressed as the estimated acoustic source position of node p

at time k. The following is defined:

r̂N,k =
1
N

N

∑
p=1

r̂p,k (54)

where r̂N,k represents the global position estimation result weighted with the average
consensus coefficients and calculates the MSE between the position obtained by each local
node and r̂N,k, defined as

Mp = ||r̂p,k − r̂N,k||2 (55)

After calculating the energy Ep and the mean square error Mp of node p at time k, the
following is defined:

Cp =
Ep

Mp
(56)

ηp =
Cp

∑N
p=1 Cp

(57)

where ηp represents the weight of node p during global fusion. A global consistency
analysis is performed on the results obtained by each node according to ηp, p = 1, 2, . . . , N:

x̂k|k =
N

∑
p=1

ηpx̂Np,k|k (58)

P̂k|k =
N

∑
p=1

ηpP̂Np,k|k (59)

To summarize, the PDA-DCKF is depicted in Algorithm 2.
The advantages of probabilistic data association and distributed acoustic sensor net-

works are combined in the PDA-DCKF proposed in this paper. In this method, the PDA
algorithm is used to sift the observations from neighboring nodes. Then, the sifted obser-
vations are fused to update the state vectors in the CKF. This method not only makes the
observation value obtained by each node more accurate, but also makes full use of the
information of neighborhood nodes.

Meanwhile, a weighted fusion method based on local node-received signal energy and
position estimation mean square error was proposed. This dynamic weighted consistency
fusion considers the reliability of the local state of the nodes and provides a good global
estimation performance.
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Algorithm 2: PDA-DCKF Algorithm

Initialization: x̂p,0|0 = x0, P̂p,0|0 = P0
Input: x̂k−1|k−1, P̂k−1|k−1, zk
Output: x̂k|k, P̂k|k
Iteration: for k = 1, 2, . . .
For any node p(p = 1, 2, . . . , N) in sensor network
1: Prediction step:
2: Compute the state predicted cubature points χi

p,k−1|k−1 at time k− 1 with (18).
3: Compute the predicted estimate x̂p,k|k−1 and covariance
P̂p,k|k−1 with (20) and (21), respectively.
4: Update step:
5: Compute the state update cubature points χi

p,k|k−1 with (23).
6: Compute the observed values of predicted local nodes ẑNp,k|k−1 with (41).
7: Compute the innovation covariance of predicted local nodes Pzz

Np,k|k−1 with (42).

8: Select the validated observations
^
z p,k according to (28), p = 1, 2, . . . , N.

9: Compute the cross-covariance of predicted local nodes Pxz
Np,k|k−1 with (43).

10: Compute the Kalman gain KNp,k with (44).
11: Compute the probability weighted innovation vector of local nodes vNp,k with (45)

12: Compute the association probability β
(j)
p,k with (35), j = 1, 2, . . . , mp,k.

13: Compute the association probability β
(0)
Np,k with (46).

14: Compute v1Np with (47).
15: Compute the updated estimate x̂Np,k|k and covariance P̂Np,k|k of local nodes with (48)
and (49), respectively.
16: Compute the weight ηp of node p(p = 1, 2, . . . N) with (57).
17: Compute the updated estimate x̂k|k and covariance P̂k|k with (58) and (59), respectively.

4. Experiments and Results Discussion

To verify the performance of the proposed speaker tracking method, the evaluations
are performed in a simulated room environment. Under the same conditions, the compar-
ative experiments between PDA-DCKF and current methods are carried out, including
centralized method (CCKF), DUKF, DCKF, iteration based DCKF [20] (DICKF) and DEKF.
The results obtained by all methods are the average of 100 Monte Carlo runs.

The root mean square error (RMSE) is used here to evaluate the tracking performance.
rk is expressed as the ground truth value of time k, and r̂N,k represents the global consistency
position calculated by the acoustic sensor network at this time. The RMSE is defined as [32]

RMSE =

√√√√ 1
K

K

∑
k=1

∣∣∣∣rk − r̂N,k
∣∣∣∣2 (60)

where K denotes the number of frames. Generally, the smaller the RMSE, the better the
tracking result.

4.1. Simulation Setups

The simulation environment was a typical room of size 6 m × 6 m × 3 m, with an
acoustic sensor network of 12 nodes (N = 12). Each node contained a pair of microphones
0.5 m apart. The communication diagram of the distributed acoustic sensor network is
shown in Figure 2, where the communication radius is 2.5 m, and each circle represents
a node. The simulated trajectory 1 was a line from (0.5,0.8) to (2.5, 2.8), and trajectory 2
was an arc from (1, 2) to (4.86, 2.1), as shown in Figure 3. In different experiments, the
speech sampled at the frequency of Fs = 16KHZ was used as the acoustic source signal; the
speech was a female recording, and the waveform and spectrum of the signal are shown
in Figure 4a. The sound speed was c = 342 m/s. The microphone signals were simulated
with the Image method [33]. Specifically, different RIRS are generated by virtual sound
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source method to reflect different reverberation time. These RIRSs were convolved with
the speech signal and then added to the Gaussian white noise with a determined mean
and covariance to produce a received microphone signal with a mixture of reverberation
and noise. The different covariance of Gaussian noise determines the different value of
the signal-to-noise ratio (SNR), which reflects different environmental noise conditions.
The microphone signal was divided into different signal frames along the sound source
track, where the frame length of speech signal was N f = 512 and each signal frame was
used for state estimation. Taking node 1 as an example, Figure 4b shows the waveform
and spectrum of the speech signal received by the first microphone of node 1. For the
observation TDOA, a total of eight time delays were chosen according to the magnitude of
the GCC peak. From these delays, further TDOA observations were selected, where the
relevant parameters were set as λ = 10, γ = 4, PG = 0.93, and PD = 0.95. The standard
deviation of TDOA measurement error was σ = 50 µs. In the acoustic dynamical model,
the parameters were β = 10 s−1 and υ = 1 ms−1. In the average consistency calculation of
the global state estimation and its error covariance, the Metropolis weight was used, the
number of consistency iterations [34] was Ncon = 10, and the number of iterations in the
iterative CKF was 3.
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Figure 2. Diagram of a distributed acoustic sensor network with 12 nodes; circles represent nodes
in the network. A pair of microphones was placed on each node, and the lines between the nodes
indicate that the nodes can communicate with each other.
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Figure 3. Microphone deployments and acoustic source trajectories: the black line denotes trajectory
1, the black dashed arrow denotes the motion direction of trajectory 1, the red semicircle denotes
trajectory 2, the red dashed arrow denotes the motion direction of trajectory 2.
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Figure 4. (a) The waveform and spectrum of the original speech signal, and (b) the waveform and
spectrum of node 1 speech signal.

This paper conducted four experiments to evaluate the tracking performance of PDA-
DCKF. In Experiment 1, trajectory 1 was used as the acoustic source trajectory. The initial
prior p(x0) of the acoustic source position was set as a Gaussian distribution with mean
x0 = [0.5, 0.8, 0.02, 0.02]T and covariance P0 = diag([0.05, 0.05, 0.0025, 0.0025]). In experi-
ment 2, the sound source signal and track were the same as experiment 1. Using simple
average fusion rules, the influence of fusion rules on PDA-DCKF tracking performance was
discussed. Experiment 3 discussed the robustness of the algorithm. The acoustic source
and trajectory were the same as the previous two experiments. In Experiment 4, trajectory
2 was used as the acoustic source track to check the tracking results of the acoustic source
when the track was nonlinear.

4.2. Simulation Results
4.2.1. Experiment 1

In this experiment, the tracking performance was evaluated under different ambient
and reverberant conditions. First, the impact of environmental noise on tracking perfor-
mance was investigated. Figure 5 depicts the RMSE results as a function of SNR for a
reverberation time of T60 = 200 ms. In Figure 5, it is observed that the RMSE of all methods
decreases with the increase of SNR, which means that the tracking accuracy increases with
the increase of SNR. This is because when the SNR becomes larger, the microphone signal
is less affected by ambient noise, resulting in better tracking performance. In addition,
under the same SNR, PDA-DCKF performs better than traditional distributed Kalman
filtering, such as extended Kalman filtering, unscented Kalman filtering, and cubature
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Kalman filtering. Since only one time-delayed observation of the GCC largest peak is used
in traditional methods, peaks associated with real sources may be masked by spurious
peaks caused by noise or reverberation, resulting in erroneous state estimates. In contrast,
multiple time-difference observations of multiple largest peaks of GCC are employed in
PDA-DCKF, resulting in ideal tracking performance. At the same time, compared with
DICKF in this experiment, the results show that the effect of PDA-DCKF is better than that
of DICKF. Because DICKF is aimed at the DCKF method, and DCKF has problems such as
slow response speed and low tracking accuracy. However, the tracking performance and
convergence speed of the algorithm can be improved through several local iterations in
DICKF. However, still only one time-delay observation of the GCC largest peak is used
in DICKF, which also causes it to be inaccurate, but as can be seen from Figure 5, as the
SNR increases, the gap between DICKF and PDA-DCKF becomes smaller because the
observations are more reliable when the SNR becomes larger. In addition, Figure 5 shows
that PDA-DCKF is not as good as CCKF because the observation information of all nodes
is used in CCKF, but PDA-DCKF achieved an effect very close to the CCKF effect, and its
computational cost and the burden of the network is less than that of CCKF.
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Figure 5. RMSE versus SNR for different tracking algorithms with T60 = 200 ms.

The effect of reverberation on tracking performance was also studied in this paper.
Figure 6 depicts the RMSE results as a function of T60 with SNR = 20 dB. From the results,
we can observe that the RMSEs of all the methods increased as T60 became larger, which
signifies the degradation of the tracking accuracies. This may be because the microphone
signal is more affected by reverberation as T60 becomes larger, the time difference observa-
tions extracted from only the largest peak or multiple largest peaks are not reliable, and
the tracking performance of these methods deteriorates. In addition, it can be found from
Figure 6 that the tracking performance of PDA-DCKF is better than DEKF, DUKF, DCKF,
and DICKF. In fact, in traditional methods, the time-difference observations included in
the scheme are only extracted from the largest peak of the GCC, while the peaks associ-
ated with the true hypocenter may be masked by false peaks caused by reverberation. In
contrast, PDA-DCKF incorporates TDOA observations of multiple largest peaks of GCC
into the scheme, which can alleviate the adverse effects of reverberation to a certain extent.
Furthermore, the effect is not as good as CCKF showed in Figure 6, but it also achieves a
very close effect.

4.2.2. Experiment 2

The effect of the fusion strategy proposed in this paper on the results is discussed in
Experiment 2. When PDA-DCKF adopts a simple average fusion rule, it is called PDA-
DCKF-avg. In this section, different SNR and different reverberations are used to test the
effectiveness of the fusion strategy. The experimental results are shown in Figures 7 and 8.
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Figure 6. RMSE versus T60 for different tracking algorithms with SNR = 20 Db.
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As depicted in Figure 7, with the increase of the SNR, the RMSEs for the PDA-DCKF
methods with both these two fusion strategies decrease, but the proposed one is more
effective. Figure 8 also shows that, with the increase of the reverberation time, the error
also increases. In addition, only under 50 ms reverberation, the error of the average fusion
strategy is smaller than that proposed in this paper, and the fusion strategy proposed in this
paper was better than the average fusion effect under 100–600 ms. Comparing Figures 5–8,
it can be found that, even if the average fusion strategy is used, the PDA-DCKF in this
paper is still smaller than the error obtained by the above comparison test, which further
proves the effectiveness of the method in this paper.
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4.2.3. Experiment 3

In practical applications, a network may be damaged by nodes, and when a node in a
network is damaged, whether the network can still work normally will test the robustness
of the system. In this subsection, the node damage in the distributed acoustic sensor
network is simulated, and the tracking results of the acoustic source after the damage are
compared with those before the damage. When node 1 in the network is damaged, it is
called graph G2, as shown in Figure 9a. When node 1 and node 6 in the acoustic sensor
network are damaged, it is called graph G3, as shown in Figure 9b. The experimental
results are shown in Tables 1 and 2.
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Figure 9. (a) Indicates that node 1 is broken, (b) indicates that node 1 and node 6 are broken. The
solid line indicates that the nodes can communicate with each other, and the dotted line indicates
that they cannot communicate with each other.
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Table 1. RMSE versus SNR under different graphs with T60 = 200 ms.

SNR (dB) G1 G2 G3

5 0.3363 0.3521 0.3637

10 0.1735 0.1803 0.2057

15 0.1457 0.1511 0.1786

20 0.1201 0.1284 0.1543

25 0.1161 0.1203 0.1457

30 0.1101 0.1169 0.1376

Table 2. RMSE versus T60 under different graphs with SNR = 20 dB.

T60 (ms) G1 G2 G3

50 0.0992 0.1013 0.1164

100 0.1108 0.1195 0.1351

200 0.1201 0.1284 0.1543

300 0.1393 0.1501 0.1754

400 0.1824 0.1903 0.2158

500 0.2187 0.2305 0.2439

600 0.4703 0.4897 0.5062

It can be seen from Tables 1 and 2 that the acoustic source can still be tracked in the
case of node damage. Although the accuracy has decreased, the amplitude of the drop is
not large and the acoustic source can still be tracked accurately. This can prove that the
method proposed in this paper has good robustness under this network.

4.2.4. Experiment 4

In order to further verify the effectiveness of the algorithm in this paper, the semicircle
of trajectory 2 was used as the acoustic source trajectory, and comparative experiments
were carried out under different SNR and reverberation. The experimental data are shown
in Tables 3 and 4. Figure 10 shows the tracking results with SNR = 15 dB and T60 = 400 ms.

Table 3. RMSE versus SNR with T60 = 200 ms.

SNR (dB) RMSE

5 0.3751

10 0.1869

15 0.1423

20 0.1299

25 0.1214

30 0.1167

Table 4. RMSE versus T60 with SNR = 20 dB.

T60 (ms) RMSE

50 0.1174

100 0.1251

200 0.1299

300 0.1322

400 0.1635

500 0.2216

600 0.5027
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Figure 10. The tracking result of the semicircle trajectory when the SNR = 15 dB and T60 = 400 ms.

From the above Tables 3 and 4 and Figure 10, it can be seen that the algorithm
in this paper can still accurately track the sound source in the face of such a strong
nonlinear trajectory.

5. Conclusions

An improved PDA-DCKF method was proposed in this paper, which proved to be able
to solve the problem of tracking a single mobile acoustic source with distributed acoustic
sensor networks in the noise and reverberation environment. First, in order to reduce the
adverse effects of noise and reverberation, the prediction value of observation is obtained
by using the prediction state and the observation model of distributed nodes. Secondly,
the actual observations are screened according to the predicted value. Multiple TDOA
observations are extracted at each node and incorporated into the status update of CKF
through PDA to generate PDA-CKF. PDA-CKF was applied to distributed acoustic sensor
networks, and PDA-DCKF was further developed. In PDA-DCKF, the PDA algorithm is
first used to sift the observations from neighboring nodes. Then, the sifted observations
are fused to update the state vectors in the CKF. Each node runs PDA-DCKF for local
state estimation and TDOA observation. Then, a new fusion strategy is proposed using
energy and MSE to merge all single local estimates in a distributed manner for global state
estimation. In order to apply the improved PDA-DCKF to the acoustic source tracking
problem, the Langevin model was used to model the acoustic source dynamics, and a
method to extract the time difference observation was proposed. Finally, a distributed
acoustic source tracking framework was obtained. In order to evaluate the effectiveness
of PDA-DCKF in acoustic source tracking, comparative experiments were carried out
with existing methods (DCKF, DUKF, DEKF, and DICKF) under different ambient noise
and reverberation conditions. The results show that the PDA-DCKF has better tracking
performance than DCKF, DUKF, DEKF, and DICKF under most noise and reverberation
conditions. In addition, the PDA-DCKF achieved the same tracking performance as the
centralized CKF. Furthermore, it can even track the acoustic source stably in the case of
node damage.
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