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Abstract: Exchanging gradient is a widely used method in modern multinode machine learning
system (e.g., distributed training, Federated Learning). Gradients and weights of model has been
presumed to be safe to delivery. However, some studies have shown that gradient inversion technique
can reconstruct the input images on the pixel level. In this study, we review the research work of data
leakage by gradient inversion technique and categorize existing works into three groups: (i) Bias
Attacks, (ii) Optimization-Based Attacks, and (iii) Linear Equation Solver Attacks. According to
the characteristics of these algorithms, we propose one privacy attack system, i.e., Single-Sample
Reconstruction Attack System (SSRAS). This system can carry out image reconstruction regardless of
whether the label can be determined. It can extends gradient inversion attack from a fully connected
layer with bias terms to attack a fully connected layer and convolutional neural network with or
without bias terms. We also propose Improved R-GAP Alogrithm, which can utlize DLG algorithm
to derive ground truth. Furthermore, we introduce Rank Analysis Index (RA-I) to measure the
possible of whether the user’s raw image data can be reconstructed. This rank analysis derive
virtual constraints Vi from weights. Compared with the most representative attack algorithms, this
reconstruction attack system can recover a user’s private training image with high fidelity and attack
success rate. Experimental results also show the superiority of the attack system over some other
state-of-the-art attack algorithms.

Keywords: security and privacy; Federated Learning; data reconstruction attack; gradient leakage
attacks

1. Introduction

In order to protect user’s privacy and meet law regulations, Google proposes Feder-
ated Learning in 2016. Currently, Federated Learning is widely used in health care [1,2],
smart city [3], smart phone [4] and other fields. Although Federated Learning improves
the privacy of local training data by exchanging model updates between clients and
server, such as local gradients or updated parameters, and each client’s raw data is stored
locally [4–8], some studies have shown that sharing even the local gradients update still
have privacy risks. Adversary can make use of the updated gradients and weights to recon-
struct the local training data [9–11]. Therefore, it is a worthy issue to study the influence of
gradient on user’s private training image data disclosure.

Exchanging gradient is a widely used method in modern multinode machine learning
system (e.g., distributed training, Federated Learning). It is meaningful to research the
gradient’s safety. According to the research history of gradient leakage, we review relevant
work, which is listed in Figure 1.
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Figure 1. The history of gradient leakage.

In 2017, Phong et al. [12] first show that user’s private training data can be recovered
from gradient in theoretical. They make use of gradient of loss function about model weight
parameters σk and biases σb. From the Formula σk

σb
= xk, user’s private training data xk is

completely leaked. This suggests a single-sample recovery is possible. Because of the use
of biases, this type of attacks are called Bias Attacks.

Based on the conclude in [12] that gradient can compromise the privacy of user’s
private training, Wang et al. [13] propose mGAN-AI attack against the federated learning
for reconstructing private data of a specific victim. They first utilize an optimization
approach to minimize the distance between gradients. This approach is adopted as a
submodule in their Multitask GAN model. Their work first constructs a representation of
the input image, then improves with a GAN. The optimization approach is the origin of
the later Optimization-Based Attacks.

Salem et al. [14] aim at inferring different information of the updating set Dupdate
in the output of a black-box Machine Learning model. δ denotes the posterior difference
of both outputs. They propose a single-sample reconstruction attack ASSR to reconstruct
the updating set itself. Extensive experiments show that full reconstruction in challenging
conditions. However, the threat model in most distributed learning paradigms is not
common.

Melis et al. [15] demonstrate with both CNNs and RNNs that periodical gradient
updates during training can leak features as well as class memberships. Further, they also
show that possible defences, such as selective gradient sharing, reducing dimensionality,
and dropout are proved to be ineffective or have a negative impact on the quality of the
collaboratively trained model.

Chai et al. [16] show server can deduce user’s rating data. However, there need
knowing gradients of a user uploaded in two continuous steps. In the end, they enhance
the distributed matrix factorization framework with homomorphic encryption.

Subsequently [13], Zhu et al. [9] officially propose Optimization-Based Attacks. They
first randomly initialize a dummy input x′ and label input y′, then, feed these dummy data
into models and get dummy gradient, at last, there need optimize the dummy gradient
close as to original, which also makes the dummy data close to the real training data. They
use L-BFGS [17] to perform the optimization. Experiments show the recovery from gradient
is pixelwise accurate for images and tokenwise matching for texts, even if missing label
information. Zhao et al. [10] extend the algorithm of [9] and show that label information
can be computed analytically from the gradients of the last fully connected layer. They
reconstruct the one-hot label of multiclass classification in terms of a single input.

Jonas Geiping et al. [11] adopt Optimization-Based Attacks, and follow the conclude
of Bo Zhao et al. [10] who find the label information can be reconstructed analytically
for classification tasks. Thus, they consider label information to be known. Experiments
show that it is possible to faithfully reconstruct a image from parameter gradients. Further,
They discuss several images does not protect the user’s privacy in federated learning
applications.
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Wei et al. [18] continue to work on Optimization-Based Attacks. They show the algo-
rithm [9] is sensitive to initialization, and the same class image is an optimal initialization.

Fan et al. [19] analyze the Bias Attacks as a system of linear equations, and propose
a method of perturbing the gradients to protect personal privacy. They propose a Secret
Polarization Network (SPN). SPN consists of a public and a private network based on a
backbone network. Fully connected polarization layers are kept private with its parameters
not shared during the distributed learning process. Further, they first perform a rank
analysis about network’s security.

Milad Nasr et al. [20] investigate the impact of gradients of different layers on attack
accuracy, and show that the gradients of the later layers leak more membership information.
It belongs to white-box inference attack. In [20], they argue that parameter aggregation in
federated learning scenarios will have a negative impact on the accuracy of membership
inference attacks. Furthermore, they propose to isolate target participant and improve the
accuracy of attacker.

Pan et al. [21] show theory-oriented deep leakage from gradients via linear equation
solver. The concept of Linear Equation Solver Attacks is first proposed. They analysize
neural networks with ReLU activation function and use Optimization-Based Attacks tech-
nique to form a sparse linear equation system about gradients. In the process of solving the
gradient equation, they made use of the tricky properties of ReLU. They focus their attacks
on fully connected neural networks.

Zhu et al. [22] break the gradient attack down to a recursive process of solving systems
of linear equations and propose recursive procedure to recover data from gradients in deep
neural networks, which is named Recursive Gradient Attack. It belongs to Linear Equation
Solver Attacks. They achieve an analytic gradient attack from fully connected layers to
CNNs for the first time. Furthermore, they also propose a novel rank analysis to estimate
the feasibility of performing gradient based privacy attacks.

Yin et al. [23] extend single image label restoration [10], and formulate label restoration
algorithm for batch size K. They assume nonrepeating labels in batch. Furthermore, they
adopt Optimization-Based Attacks technique to realize a full recovery of detailed individual
images from batch averaged gradients in deep networks such as ResNet-50.

Scheliga et al. [24] introduce a PRivacy EnhanCing mODulE (PRECODE) that can
be used as generic extension for arbitrary model architectures. It can be used for privacy
leakage defense mechanisms.

In summary, the research history of gradient mainly focus on privacy attacks and
privacy defense strategies. Existing works about privacy attacks can be roughly categorized
into three groups: (i) Bias Attacks, bias reconstruction attacks mean to use gradients about
bias term and weights to realize attack [12,19]. This attack can be solved by removing the
bias term. (ii) Optimization-Based Attacks, the core idea of Optimization-Based gradient
attacks are to minimize the distance between gradients. It first appears in [13], subse-
quently [9–11,18] refine the method. (iii) Linear Equation Solver Attacks, the main idea is
to form gradient equation or weight equation, further, relizes reconstruct attacks [19,21,22].
In [19], they use a bias term and weights to form a gradient equation to realize attacks. It
only studys a single neuron. While in [21], they rely on Optimization-Based gradient tech-
nique to form a gradient equation. In [22], they break the gradient attacks from fully layer
to convolution layer, furthermore, make use of gradient constraints and weight constraints
to form a matrix, solving the matrix can derive training image data.

Usually, there is a paradox between privacy reconstruction and privacy protection.
Privacy-Preserving Deep Learning aims to collaboratively train and share a deep neural
network model among multiple participants, without exposing their private training data.
There are three common methods as privacy defense strategies: Differential-Privacy, Ho-
momorphic Encryption, and Secure Multiparty Computation. In [25], differential privacy
can be used for solving the privacy problem of crowdsourced. In [26], they focus on pri-
vacy leakage issue of publishing well-trained deep neural network models, differential
privacy can be used for solving the problem. In [16], they enhance the distributed matrix
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factorization framework with homomorphic encryption. In [27], They provide formal data
privacy guarantees using both differential privacy and secure multiparty computation
frameworks. In order to proptct privacy, there are also some researchers to study Machine
Learning Approaches for Malware Detection [28–30]. In this paper, our work mainly focus
on gradient inversion attack algorithms.

In this article, our work mainly studies the most representative gradient inversion
algorithms. DLG algorithm [9] belongs to Optimization-Based Attacks. It can recover
private training data pixelwise accurate for images without label. However, this algorithm
only can reconstruct image at the fully connected layer. Inverting Gradients [11] also be-
longs to Optimization-Based Attacks. It can faithfully reconstruct images at high resolution
to fully connected layer. However, this algorithm can work under the premise of label
information is known. R-GAP [22] belongs to Linear Equation Solver Attacks. It works as
well as or even better than Optimization-Based Attacks. This algorithm extends attack from
the fully connected layers to CNNs, However, this algorithm works under the premise of
label information is known. Therefore, according to the characteristics of these algorithms,
we propose one privacy attack system, i.e., Single-Sample Reconstruction Attack System
(SSRAS). This system combines the advantages of most representative attack algorithms,
which can realize image reconstruction regardless of whether the label can be determined.
It can extends gradient inversion attack from a fully connected layer with bias terms to
attack a fully connected layer and convolutional neural network with or without bias terms.
Further, we propose Improved R-GAP Alogrithm, which can utlize DLG algorithm to de-
rive ground truth. In short, compared with the most representative attack algorithms, this
reconstruction attack system can recover user’s private training image with high fidelity
and attack success rate. Experimental results also show the superiority of the attack system
over some other state-of-the-art attack algorithm.

Our main contributions are as follows:

• We propose one privacy attack system, i.e., Single-Sample Reconstruction Attack
System (SSRAS). This system combines the advantages of most representative attack
algorithms, which can realize image reconstruction regardless of whether the label can
be determined. It can extends gradient inversion attack from a fully connected layer
with bias terms to attack a fully connected layer and convolutional neural network
with or without bias terms.

• R-GAP works only if the label information is known. In this section, we propose
Improved R-GAP Alogrithm, which can utlize DLG algorithm to derive ground
truth. Further, it can extends the attack from the fully connected layer to the convolu-
tional layer.

• We introduce Rank Analysis Index (RA-I) to measure the possible of whether the user’s
raw image data can be reconstructed. This rank analysis derive virtual constraints Vi
from weights. This Rank Analysis Index(RA-I) is superior to [19].

• In order to guide attack from gradient towards natural images, we adoptRfidelity (·) to
the loss function to steer reconstructed image away from unrealistic image. Improved
R-GAP Alogrithm can make use of the difference of the reconstructed image, and
adopt smoothed version.

• Simulation experiments and analysis of the optimization scheme verify that gradi-
ents encode a large amount of information, and this reconstruction attack system
can recover user’s private training image with high fidelity and attack success rate,
regardless of whether the label can be determined.

The rest of the paper is organized as follows: Section 2 describe the fundamental
milestone framework of gradient leakage. Section 3 propose one privacy attack system, i.e.,
Single-Sample Reconstruction Attack System (SSRAS). Section 4 propose Improved R-GAP
Alogrithm. Section 5 the experimental results are shown. Section 6 conclude the paper and
give the further work.
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2. Related Work

In this section, we review existing works about privacy attacks, and explain three types
of attacks, for example Bias Attacks, Optimization-Based Attacks, and Linear Equation
Solver Attacks.

2.1. Bias Attacks

In [12], Phong et al. first show that recover user’s private training data from gradient
is possible. It is called Bias attacks. xi is the input data, 1≤ xi≤n, y is a corresponding truth
label, wi is the weight parameter to be learned, 1≤wi≤n, b is the bias, f is an activation
function. The loss function is defined as the distance between the predicted value and the
truth value. The predicted value is hw,b(x) = f

(
∑i=n

i=1 wixi + b
)

, the truth value is y. The
loss function

`(w, b, x, y) def
= (hw,b(x)− y)2 (1)

Gradient on the training sample is exactly the partial derivative of the loss function
w.r.t.the model weight parameter and the bias.

σk =
∂`(w, b, x, y)

∂wk
= 2(hw,b(x)− y) f ′

(
d

∑
i=1

wixi + b

)
· xk (2)

σb =
∂`(w, b, x, y)

∂b
= 2(hw,b(x)− y) f ′

(
d

∑
i=1

wixi + b

)
(3)

According to Formulas (2) and (3), we can have

σk
σb

= xk (4)

Therefore, from Formula (4), we can draw a conclude xk is completely leaked if the
gradients are shared to server. In theory, this suggests a single-sample recovery is possible.
However, we can simply disable this attack by removing the bias term. Besides, because of
dimension mismatch, this way can not work on convolutional neural networks.

Fan et al. [19] aim at sloving the Bias Attacks. They propose a Secret Polarization
Network(SPN), which is a method of perturbing gradients. The architecture of the SPN
contains backbone network, and fully connected polarization layers. Thereof, fully con-
nected polarization layers are devided into public and a private network. The parameters
of private network are not shared in distributed learning. The loss about gradients ∇w,bL
can be shown as follows,

∇w, bL = α1 · LCE(u, y) + α2 · LP(v, t)︸ ︷︷ ︸
secret perturbation

(5)

α1 and α2 denote hyperparameters, α1 + α2 = 1, LCE denotes cross-entropy loss, LP
denotes polarization loss. The function of LP is to introduce interference, α2 controls the
protection levels of training data. Fan et al. [19] also believe convolutional networks and
fully connected networks are equivalent. However, they do not take into account that
gradients are aggregated in a convolutional network. Further, they also first propose a rank
analysis to estimate the security of network.

2.2. Optimization-Based Attacks

Wang et al. [13] propose mGAN-AI attack against the federated learning for recon-
structing private data of a specific victim. They first utilize an optimization approach to
minimize the distance between gradients. This approach is adopted as a submodule in
their Multitask GAN model. Their work first constructs a representation of the input image,
then improved with a GAN.
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Subsequently [13], Zhu et al. [9] propose that even the absence of label information,
the recovery from gradient is pixelwise accurate for image. Zhao et al. [10] extend the
algorithm of [9] and show that label information can be computed analytically from the
gradients of the last fully connected layer. They reconstruct the one-hot label of multiclass
classification in terms of a single input.

The central recovery mechanism discussed in [9,10,23] is to recover the data from
gradients. Zhu et al. [9] first randomly initialize a dummy input x′ and label input y′,
then feed these dummy data into models and get dummy gradient, at last, they adopt L-
BFGS [17] to perform the optimization. Zhao et al. [10] make use of the shared gradients of
fully connected layer to extract the ground-truth label, then they can extract the data more
effectively based on correct label. Yin et al. [23] extend single image label restoration [10],
and formulate label restoration algorithm for batch size K. They assume nonrepeating labels
in batch. Furthermore, they adopt Optimization-Based Attacks technique to realize a full
recovery of detailed individual images from batch averaged gradients in deep networks,
such as ResNet-50.

In [9,10], they all optimize the dummy gradients close to original gradients, which also
make the dummy data close to the real training data. Their optimization adopts euclidean.

∇W ′ =
∂`(F(x′, W), y′)

∂W
(6)

x′∗, y′∗ = arg min
x′ ,y′

∥∥∇W ′ −∇W
∥∥2

= arg min
x′ ,y′

∥∥∥∥∂`(F(x′, W), y′)
∂W

−∇W
∥∥∥∥2 (7)

The cost function is minimized to recover the original input image x′∗,y′∗ from trans-
mitted gradient ∇θLθ(x, y). Note that, this optimization requires 2nd order derivatives.

Zhao et al. [10] firstly propose the ground truth label information can be derived from
gradients of the last fully connected layer. They adopt a classification scenario, the loss
function is defined as follows,

l(x, c) = − log
eyc

Σje
yj

(8)

x denotes input data, c denotes corresponding ground-truth label, yi denotes the
predicting score of the ith class. The loss about output yi partial can derived gradients
according to Formulas (9) and (10),

gi =
∂l(x, c)

∂yi
= −

∂ log eyc − ∂ log Σje
yj

∂yi
(9)

gi =

{
−1 + eyi

∑ jeyi if i = c
eyi

∑ jeyi else
(10)

The gradient vector∇Wi
L is the weight Wi

L connected to the ith logit in the output layer.
Usually, the gradients of model weights are shared. Combining with Formula (10), there are

∇Wi
L =

∂l(x, c)
∂Wi

L

=
∂l(x, c)

∂yi
· ∂yi

∂Wi
L

= gi ·
∂
(
Wi

L
TaL−1 + bi

L
)

∂Wi
L

= gi · aL−1,

(11)
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where the network has L layers, y = aL is the output of L layer, bi
L is the bias parameter of

L layer, yi = WiT
L aL−1 + bi

L.
Combining Formulas (10) and (11), the ground-truth label c can be predicted as follows,

c = i, s.t. ∇WiT

L · ∇Wj
L ≤ 0, ∀j 6= i (12)

The conclude of ground-truth c can be derived according to the sign of gradient. The
signs of ∇Wi

L and gi are the same. The negative gradient can be the index of the ground-
truth label. Note that, all the conclude need the assumption that there is non-negative
activation function.

Jonas et al. [11] propose that it is no matter to architecture of training deep networks
or trained deep networks, any input to a fully connected layer can be reconstructed.
They consider that label information is known, this assumption base on the conclusion
of Zhao et al. [10]. They adopt cosine similarity loss function, and add αTV(x) to control
the image prior to the overall problem. Furthermore, they replace L-BFGS with Adam for
optimization about networks, such as ReLU or LeakReLU. The specific form is defined as
Formula (13),

arg min
x∈[0,1]n

1− 〈∇θLθ(x, y),∇θLθ(x∗, y)〉
‖∇θLθ(x, y)|‖| ∇θLθ(x∗, y)‖ + αTV(x) (13)

In [11], they also discuss that federated average algorithm can average gradients over
several iterations or several images in a batch, but it does not protect the user’s privacy in
federated learning applications. They use a ConvNet architecture, which is roughly similar
to AlexNet [31].

In [18,23], they propose to use L2 loss function to recover the original input image.
Wei et al. [18] show that the algorithm of Zhu et al. [9] is sensitive to initialization, the
optimal initialization is the same class image. The specific form is defined as Formula (14),

x′∗, y′∗ = arg min
x′ ,y′

‖∇wτ
att(t)−∇wk(t)‖2

+ α‖ f (xτ
rec, w(t))− yrec‖2

(14)

∇wk(t) is the gradient of local training on private training data, (x′, y′) is attack
seed, the gradient of attack seed is ∇wτ

att(t), (xrec, yrec) is reconstructed training data, α is
regularizer ratio.

Pan et al. [21] show theory-oriented privacy analysis in neural networks with ReLU
for data reconstruction attacks. They rely on Optimization-Based gradient technique to
form gradient equations, The specific form is shown as follows,

M

∑
i=1

∂`( f (Xi; W), Yi)

∂W
= MḠ (15)

{(Xi, Yi)}M
i=1 are variables in this equation. In solving the gradient equation, they take

advantage of ReLU’s properties.

2.3. Linear Equation Solver Attacks

In [19], they use a bias term and weights to form a gradient equation to realize attack.
While, in [21], they rely on Optimization-Based gradient technique to form a gradient
equation. In [22], they break the gradient attacks from fully layer to convolution layer,
furthermore, make use of gradient constraints and weight constraints to form a matrix,
solving the matrix can derive training image data. They also propose to estimate the
feasibility of performing gradient attacks by rank analysis. The most representative attack
is R-GAP [22]. The concrete form of gradient constraints can be described as Formula (16),
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Kixi = flatten
(

∂`

∂Wi

)
(16)

xi denotes the input in the ith layer, Ki denotes coefficient matrix containing all
gradient constraints in the ith layer.

The concrete form of weight constraints can be described as Formula (17). It needs
assumption that they know the input of the subsequent layer.

Wixi = Zi; Zi ← fi (17)

Wi represents convolutional kernel, |Zi| is weight constraints.
There is research about property inference attack in [32]. Researchers [32] explore to

infer properties of training data using the model parameters. It belongs to retrieving input
attributes from local updates, and is a shallow leak. Property inference can be derived
directly in the reconstruction phase or by classifying the reconstructed data.

Some researchers propose model inversion attack. They show that the attacker at-
tempts to obtain information of the training dataset from the trained model [13,33,34]. They
utilize data representation to infer attribute values of data samples. With the development
of Generative Adversarial Network, GAN-based reconstruction attack appear in [13]. The
participant utilizes GAN structure to construct sensitive information about the victim. They
can infer general image composition or dominating colors. Model inversion attack relies
on a given layer and only reconstructs similar image. Fredrikson et al. [33] demonstrate
that model inversion attack can recover similar image from facial recognition system. Pan
et al. [34] utilize the intermediate data representation to infer sensitive attribute values of
data samples. Model inversion attack generally is challenging for deeper neural network
architectures if no additional information is provided.

Model extraction attack refers to an attacker trying to steal the parameters and hyper-
parameters of the model, Further, it can break model confidentiality or infer user data sets
and model characteristics. In [35], they use model interpretation to reconstruct significant
parts of training set.

3. SSRAS: Single-Sample Reconstruction Attack System

According to the research of related work, we have the pros and cons of the main
gradients inversion algorithms. In this section, we propose one privacy attack system, i.e.,
Single-Sample Reconstruction Attack System (SSRAS). We first show threat model and
attack objective. Then, we explain the key components of the SSRAS.

3.1. Threat Model and Attack Objective

Federated Learning improves the privacy of local training data by exchanging model
updates, such as local gradients or updated parameters. Howerever, some attack algorithms
have shown that the adversary can utilize gradients to obtain user’s private training
image data. There are pros and cons of existing privacy attack algorithms. The most
representative attack algorithms are listed in Table 1. The first attack Algorithm 1 (DLG) [9]
and Algorithm 2 (Inverting Gradients) [11] belong to Optimization-Based Attacks from
Gradients. Algorithm 3 (R-GAP) [22] belongs to Linear Equation Solver Attacks. DLG
algorithm [9] belongs to Optimization-Based Attacks. It can recover private training data
pixelwise accurate for images without label. However, this algorithm only can reconstruct
image to fully connected layer. Inverting Gradients [11] also belongs to Optimization-
Based Attacks. It can faithfully reconstruct images at high resolution to fully connected
layer. However, this algorithm can work under the premise of label information is known.
R-GAP [22] belongs to Linear Equation Solver Attacks.
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Federated Learning trains a shared global model by a server and client working
together. This security threat may come from: honest-but-curious server or malicious
client. During training, server and client konw architecture of neural network, weights,
gradients and other relevant information. Weight and gradient are transmitted in plain-
text [4], instead of using privacy-preserving deep learning techniques [25–27,36], such as
Differential-Privacy, Homomorphic Encryption, and Secure Multiparty Computation. The
main purpose is to investigate whether user’s privacy security can be ensured by transmit-
ting only gradients and weights in federated learning. Furthermore, it is necessary to study
how to use gradients and weights to recover the private training image data of users.

Ihe goals of the experiment is to recover user’s private training image data, we first
focus on the reconstruction of a single input image and the label from the gradients and
model weights. In order to measure the effectiveness of data reconstruction attack, we
measure Attack Success Rate, Attack iteration and the reconstruction error between each
reconstructed image and it’s ground truth.

Table 1. Representative attack algorithms for gradient inversion.

Method Optimizer Gradient Loss
Function

Label Reconstruction
Method Categories of Attack

DLG [9] L-BFGS L2 norm NO Optimization-based
Inverting Gradients [11] Adam Cosine similarity Know label Optimization-based

R-GAP [22] Adam NO Know label Linear Equation Solver

3.2. Overview of Single-Sample Reconstruction Attack System (SSRAS)

In this paper, we propose a Single-Sample Reconstruction Attack System. The overall
framework of Single-Sample Reconstruction Attack System is illustrated in Figure 2.

Figure 2 shows the overview of Single-Sample Reconstruction Attack System. In
Federated Learning, this security threat may come from: honest-but-curious server or
malicious client. They can get gradients according to user’s private training image data,
the architecture of neural network and the associated weight information. Based on the
existing information, the server and client can reconstruct user’s private training image
data. Let us consider a classification scenario.

Step 1, Label Restoration. In Federated Learning, the malicious server or client can
make use of gradients according to the last fully connected layer to restore grouth truth
label. It needs base condition that the previous layer before fully connected layer, has used
non-negative activation functions, such as ReLU or sigmoid, which plays a key position.

Step 2, The way of Attacks. If the grouth truth label has been determined, we can use
algorithm 2 or 3 to reconstruct the image. If the label cannot be determined, we also can
use algorithm 1 to reconstruct the label, and then utilize R-GAP to recover user’s private
training image data. In this way, it can extends the attack from the fully connected layer to
the convolutional layer. Reconstructed image is better.

Step 3, Fidelity Regularization. In order to guide attack from gradients towards natural
images, we adoptRfidelity (·) to the loss function to steer reconstructed image away from
unrealistic image.

Step 4, Rank Analysis Index. Rank analysis Index provides an overall estimate of
whether the data can be reconstructed.

In short, by using step 1 and 2, we can get a reconstructed image with some noise
points. In order to make reconstructed image closer to the natural images, we can use step
3. The purpose of step 4 is to judge the security of the neural network according to the
existing gradient and weight information.
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Figure 2. Single-Sample Reconstruction Attack System (SSRAS).

3.2.1. Label Restoration

Zhao et al. [10] extract the ground-truth from the shared gradient based on the last
fully connected layer. It is single-sample batch as given gradient.

c = i, s.t. ∇WiT

L · ∇Wj
L ≤ 0, ∀j 6= i (18)

The negative gradient can be the index of the ground truth.
Multi-sample gradients are averaged over k images in a batch [23], Yin et al. [23]

propose an algorithm for target class label recovery from given gradients.

∇W(FC)
m,n =

(
1
k ∑

k
∇W(FC)

m,k

)
︸ ︷︷ ︸

give in ∇W(FC)

(19)

There can utilize column minimum values to formulate the final label restoration
algorithm for batch size k:

ŷ∗ = arg sort
(

min
m
∇

W(FC)
m,n L

(x∗, y∗)
)
[: K] (20)

x∗ =
[
x∗1 , x∗2 , . . . , x∗k

]
is the ground truth of batch size k. y∗ is the label corresponding

to x∗.
Yin et al. [23] extend label Restoration algorithm from single-sample [10] to multisam-

ple in a batch. Note that, whether the label can be recovered from the gradient depends
on the activation function of the last fully connected layer. It needs base condition that
the previous layer before fully connected layer, has used non-negative activation function,
such as ReLU or sigmoid, which plays a key position.

3.2.2. The Way of Attacks

The relevant technologies used in this privacy attack system are Algorithm 1 (DLG)
and Algorithm 2 (Inverting Gradients) belong to Optimization-Based Attack from Gradients.
Algorithm 3 (R-GAP) belongs to Linear Equation Solver Attack.

DLG [9] adopts Formula (21) to recover the original input image x′∗,y′∗ from a trans-
mitted gradient ∇W. The algorithm is described in Algorithm 1 in detail.

x′∗, y′∗ = arg min
x′ ,y′

∥∥∇W ′ −∇W
∥∥2

= arg min
x′ ,y′

∥∥∥∥∂`(F(x′, W), y′)
∂W

−∇W
∥∥∥∥2 (21)
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Algorithm 1 DLG

Input: F(x; W): Model; W: weights; ∇W: gradients of training data;
Result: X ,y private training data

1: /*Initialize dummy inputs and labels. */
2: x′1 ← N (0, 1), y′1 ← N (0, 1)
3: for i← 1 to n do
4: /*Compute dummy gradients. */
5: ∇Wt ← ∂`(F(x′t, Wt), y′t)/∂Wt

6: D← ‖∇W ′ −∇W‖2 + α`2R`2(x̂)
7: /*Update data to match gradients.*/
8: x′i+1 ← x′i − η∇x′i

D, y′i+1 ← y′i − η∇y′i
D

9: end for
10: return x′n+1,y′n+1
11: end procedure

Inverting Gradients [11] proposes to use cosine distance. The specific form is shown
in Formula (22). The algorithm is described in Algorithm 2 in detail.

x′∗, y′∗ = arg min
x∈[0,1]n

1− 〈∇θLθ(x, y),∇θLθ(x∗, y)〉
‖∇θLθ(x, y)‖‖| ∇θLθ(x∗, y)‖ + α TV(x) (22)

Algorithm 2 Inverting Gradients

Input: F(x; W): Model; W: weights; ∇W: gradients of training data;
Result: X ,y private training data

/*Initialize dummy inputs and labels. */
2: x′1 ← N (0, 1), y′1 ← N (0, 1)

for i← 1 to n do
4: /*Compute dummy gradients. */
∇Wt ← ∂`(F(x′t, Wt), y′t)/∂Wt

6: D ← 1− 〈∇W,∇W ′〉
‖∇W‖‖∇W ′‖ + αTVRTV(x̂)

/*Update data to match gradients.*/
8: x′i+1 ← x′i − η∇x′i

D, y′i+1 ← y′i − η∇y′i
D

end for
10: return x′n+1,y′n+1

end procedure

R-GAP [22] breaks the gradient attack down to a recursive process of solving linear
equations. They propose recursive procedure to recover data from gradient in deep neural
networks. However, the gradient is aggregation gradient in CNNs. In order to effective
analytic gradient attack for CNNs, there need peel off padding entries, and the stride
should be appropriate, it need equal the size of convolutional kernel. Gradient constraints
can be described as follows,

Kixi = flatten
(

∂`

∂Wi

)
(23)

xi denotes the input in the ith layer and Ki is a coefficient matrix containing all gradient
constraints in the ith layer.

Weight constraints is shown in Formula (24), at the same time, it needs assumption
that they know input of the subsequent layer.

Wixi = Oi; Oi ← fi (24)

Wi is corresponding circulant matrix representing convolutional kernel, |Oi| is weight
constraints. The Formulas (23) and (24) can form matix A and B. The reconstructed user’s
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private training image data can be transformed into a matrix solution, AX∗ = B. The
condition of restoring user’s private training image is that the corresponding coefficient
matrix A is equal to the number of entries.

3.2.3. Fidelity Regularization

In order to guide attack from gradients towards natural images, we adoptRfidelity (·)
to the loss function to steer reconstructed image away from unrealistic image [23]. RTV
andR`2 denote standard image priors, with scaling factors αtv and α`2 . The cost function
of DLG is shown in Formula (25)

D ←
∥∥∇W ′ −∇W

∥∥2
+ α`2R`2(x̂) (25)

The cost function of Inverting Gradients is shown in Formula (26)

D ← 1− 〈∇W,∇W ′〉
‖∇W‖‖∇W ′‖ + αTVRTV(x̂) (26)

R-GAP can make use of difference between reconstructed image, and adopt smooth
version. The purpose of smooth version is to eliminate noise. There are two ways to do
it in spatial domain or in frequency domain. Low—Pass filtering can be used to remove
noise in spatial domain. While, the frequency domain can remove noise by removing high
frequency components.

3.2.4. Rank Analysis Index

Rank Analysis Index (RA-I) is used to measure the possible of whether the user’s raw
image data can be reconstructed.

Fan et al. [19] analyze the Bias Attacks as a system of linear equations, and perform a
rank analysis about network’s security. The matrix expression is as follows,

BI. X∗ = WI (27)

BI denotes the partial derivative of the loss function w.r.t.the model bias, WI denotes
the partial derivative of the loss function w.r.t.the model weight parameter.

The condition of restoring user’s private training image is that the corresponding
coefficient matrix BI is equal to the number of entries.

According to R-GAP algorithm, weight constraints can derived a new constraint,
which is named virtual constraints Vi−1. The virtual constraints Vi−1 can be derived from
the weight constraints of d-1 layer.

Wi−1xi−1 = Oi−1; Oi ← fi (28)

Split W, O into two parts,[
Wi−1

+

Wi−1
−

]
xi−1 =

[
Oi−1

+

Oi−1
−

]
(29)

Oi−1
+ = I+O

xi−1 = W+
i−1
−1I+O

Oi−1
− = I−O

Wi−1
−xi−1 = I−O

(30)

From Formula (28), we can get Formula (29) and Formula (30) .(
Wi−1

−1W+
i−1
−1I+ − I−

)
O = 0 (31)



Sensors 2022, 22, 7157 13 of 20

Because of the activation function is the identity function, there is O = xi−1. We can
draw a conclusion as follows.(

Wi−1
−1W+

i−1
−1I+ − I−

)
xi−1 = 0 (32)

Vi−1 = W−W−1
+ I+ − I−;Vi−1xi−1 = 0 (33)

From Formula (33), virtual constrains Vi−1 can be derived from weights. Further, the
virtual constrains of each layer can be derived, which based on the assumption that we
know the output of the current layer.

Rank analysis includes gradient constraints |Wi| , weight constraints |Oi| and virtual
constraints |Vi|. It is named Rank Analysis Index (RA-I). All conclusions are based on
assumption that the activation function is ReLU or LeakyRelu. The specific form of RA-I
can be described by Formula (34).

RA-I =

{
|xi| − |Wi| − |Oi| − |Vi| > 0 impossible
|xi| − |Wi| − |Oi| − |Vi| < 0 can

(34)

|xi| represents the number of input entries in i-th layer, |Wi| denotes gradient con-
straints in the ith layer, |Oi| represents weight constraints in the ith layer, |Vi| represents
the number of virtual constraints in the ith layer.

RA− i > 0, indicates that complete reconstruction cannot be performed. The larger
the index, the worse the reconstruction quality. RA− i < 0, indicates the ability to fully
recover the input.

4. Improved R-GAP Alogrithm

R-GAP works only if the label information is known. In this section, we propose
Improved R-GAP Alogrithm, which can utlize DLG algorithm to derive ground truth.
Further, it can extends the attack from the fully connected layer to the convolutional layer.
The framework of Improved R-GAP Alogrithm is illustrated in Figure 3.

Figure 3. The framework of Improved R-GAP Alogrithm.

4.1. Advantage of Improved R-GAP Alogrithm

DLG algorithm [9] can recover private training data pixelwise accurate for images
without label. However, this algorithm only can reconstruct image to fully connected layer.
R-GAP [22] belongs to Linear Equation Solver Attacks. It works as well as or even better
than Optimization-Based Attacks. This algorithm extends attack from the fully connected
layers to CNNs, However, this algorithm works under the premise of label information is
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known. Based on the above analysis, we first choose DLG algorithm to determine label.
Then, we choose R-GAP algorithm to recover user’s private training image data.

In summary, this Improved R-GAP Alogrithm can combine the advantage of the two
algorithms. This improved algorithm can carried out image reconstruction regardless of
whether the label can be determined.

4.2. Design about Improved R-GAP Alogrithm

Figure 3 shows design of the improved R-GAP algorithm. The algorithm consists of
four parts:

Step 1, the malicious server or client get gradients according to user’s private training
image data. At the same time, the architecture and weight information of neural network
are known in advance.

Step 2, combining model and gradients, the malicious server or client utilize DLG
algorithm to get reconstructed image.

Step 3, according to reconstructed image, the malicious server or client can infer
category of the image.

Step 4, in case of knowing ground truth, the malicious server or client uses R-GAP
algorithm to extend the attack from the fully connected layer to the convolutional layer.

In summay, the Improved R-GAP Alogrithm can represented as solving linear equa-
tions. The algorithm is described in Algorithm 3 in detail. The Formula (35) can form a
matrix. The solving of the matrix can derive training image data.{

Kixi−1 = flatten
(

∂`
∂Wi

)
Wixi = Oi; Oi ← fi

(35)

Algorithm 3 Improved R-GAP Alogrithm

Data: i: ith layer; Wi: weights; ∇Wi: gradients;
Result: X∗

i← d to 1
if i = d then

3: ∂l
∂u · u = ∇WdWd

u← ∂l
∂u · u; Kd = ∂l

∂u · y; Oi =
u
y ;

else
6: /* Derive σ′i and O′i from f ′i . Note that xi+1 = fi.*/

σ′i ← xi+1; Zi ← xi+1
Ki =

(
W>i+1 · Ki+1

)
� σ′i

9: end if
∇Wi = f latten∇(Wi)

A =

[
Ki
Wi

]
; B =

[
∇Wi
Oi

]
12: X∗ = A−1B return Outputs

5. Experiments and Results

In this section, we take the classification task as an example to verify the effect of the
single-sample reconstruction attack system on two datasets: MNIST and CIFAR-10.

We first performed comparison of different gradient leakage attacks, for example
DLG [9], Inverting Gradients [11], R-GAP [22], and our proposed attack system. Note that,
when label can be recovered, Algorithm 3 adopts R-GAP, when label cannot be recovered,
Algorithm 3 adopts Improved R-GAP Algorithm. Then, we showed the success of our
proposed attack system compared with other algorithms. Finally, we showed that RA-I can
predicts the risk of reconstruction.
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5.1. Experiment Setup

Our analyses started from a case where the gradients are only calculated on one
training sample (X,Y). We primarily focused on the CNN6 architecture for the classification
task, which is following the settings in [22]. The choose of the activation functions is
crucial, the last one is Sigmoid, the other are LeakyReLU. We used L-BFGS and Adam for
optimization (learning rate 0.05). The attack terminates when the reconstruction learning is
about to converge or the maximum number of attack iterations is reached.

5.2. Attack Effect and Cost Metrics

• Rank Analysis Index (RA-I). Rank analysis provides an overall estimate of whether
the data can be reconstructed [22] .

• Attack Success Rate (ASR). Attack Success Rate equals successfully reconstructed
training data devide all the number of training data being attacked. ASR-content
and ASR-label are two indicators about attack success rate on content and label,
respectively [18,21].

• Attack iteration (Ai). It measures the max of attack iterations to converge [18].
• MSE. It shows the similarity between reconstructed image f ′(i, j) and ground-truth

image f (i, j). A smaller MSE means the more similar to the private ground truth [9,10].

MSE =
1

M× N

M

∑
i=1

N

∑
j=1

(
f ′(i, j)− f (i, j)

)2 (36)

M and N represent the length and width of the image, respectively
• PSNR. It measures the ratio of effective information and noises in the reconstructed

images, this indicator also is used in [11,21]. x′ denotes reconstructed image and x
denotes ground-truth image.

PSNR
(
x, x′

)
= −10× logMSE(x,x′)

10 (37)

• SSIM. It measures the structural similarity between two images, which is used in [18].
The structural similarity ranges from 0 to 1. When two images are identical, the value
of SSIM is equal to 1.

SSIM
(
x, x′

)
=

(2µxµx′ + c1)(2σxx′ + c2)(
µ2

x + µ2
x′ + c1

)(
σ2

x + σ2
x′ + c2

) (38)

where ux and µx′ denote the average of x and x′, σ2
x and σ2

x′ denote the variance of x
and x′. σxx′ denotes the covariance of x and x′. c1 = (k1255)2, c2 = (k2255)2 are two
variables to maintain stability. k1 = 0.01 and k2 = 0.03 are constants by default.

5.3. Results and Analysis
5.3.1. Comparsion with Other Gradient Leakage Attacks

For the four algorithms DLG [9], Inverting Gradients [11], R-GAP [22], our proposed
attack system, we performed experiments on the classification task over MNIST and CIFAR-
10. The performance are shown in Table 2.

R-GAP [22] and Inverting Gradients [11], they can use the conclude that the value
of ground-truth label y∗1 can be derived from the sign of the gradients according to [10].
That is to say, R-GAP [22] and Inverting Gradients [11] work based on the assumption
that the label can be analytically recovered. While DLG [9] can work, even if there is no
ground-trouth label. Our proposed attack system combined the advantage of R-GAP [22]
and DLG [9], this system can carried out image reconstruction regardless of whether the
label can be determined. It can extends gradient inversion attack from fully connected layer
with bias terms to attack fully connected layer and convolutional neural network with or
without bias terms. When comparing attack iterates, we always provide DLG, Inverting
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Gradients, R-GAP and our proposed attack system the ground-truth label and let it recover
the image only. DLG adopts L2 distance between the private training data and the dummy
inputs. Inverting Gradients replaces the L2 distance function with cosine similarity.

Table 2. Comparison of Different Gradient Leakage Attacks.

MNIST CIFAR10

DLG [9] Inverting [11] R-GAP [22] Ours DLG [9] Inverting [11] R-GAP [22] Ours

ASR-content 70.4% 78.4% 96% 97% 73.3% 82.1% 95% 96%

ASR-label 88.9% 100% 100% 100% 80.4% 100% 100% 100%

Ai 33 3216 1 1 80.2 6725 1 1

MSE 3.7× 10−5 2.6× 10−5 1.9× 10−5 0.8× 10−5 0.8× 10−4 0.5× 10−5 0.12× 10−5 0.1× 10−5

PSNR 33 36.3 40.1 40.6 34.2 36.8 40.8 41.8

SSIM 0.903 0.918 0.986 0.988 0.831 0.865 0.891 0.91

From Table 2, according to attack iteration, our proposed attack system and R-GAP
had lowest attack iterations on both content and label reconstruction respectively for all
two datasets. We also observed that the algorithm of Inverting Gradients [11] can lead to
high ASR-content compared with DLG [9], but at a great cost of attack iterations. R-GAP
had a better quality of the reconstructed image than DLG [9] and Inverting Gradients [11].
Our attack system had a best performce on the high PSNR, SSIM and low MSE, because of
adopting auxiliary regularizationRaux (·).

From Figure 4, we saw our proposed attack system had a best performance on ASR-
content. R-GAP [22] performed better than Inverting Gradients [11] on ASR-content.
DLG [9] was worst on ASR-content. These concludes can be drawn under the assumption
that the ground truth can be known. DLG [9] has its advantage, when there is no ground
truth lable, it also can work.

Figure 4. Comparison of gradient inversion attacks on two datasets.

Figure 5 shows reconstructed image by our attack system and DLG algorithm. (a) is
reconstructed image by our attack system. The upper layer is ground truth, The lower
layer is reconstructed image. (b) is visualization showing from CIFAR-10 by DLG [9]. As
the number of attack iterations increases, the reconstructed images are almost identical
to ground truth, despite few negligible artifact pixels. But there need more time than our
proposed attack system.
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Figure 5. Ground truth and Reconstructed image by our attack system and DLG.

The activation function used in the neural network has a great influence in Gradient
Inversion Attacks. In [18], the authors analyze the different characters of activation function,
the most popular activation function ReLU can takes out the gradient information needed
for attack, while sigmoid and tanh can transmit the gradient from layer to layer in almost
lossless manner. In [21], they find the attacker can exploit the risky property of neural
networks with ReLU, the single-sample can be reconstructed with low errors. We compared
proposed attack system with R-GAP [22], Inverting Gradients [11] and DLG [9] on LeNet
architecture. This architecture has been benchmarked in DLG [9], the statistical results are
shown in Table 3. Our proposed attack system performed well on LeNet, however, we
surprisingly found that by replacing the activation function Sigmoid with ReLU at fully
conneted layer, the reconstruction of DlG algorithm and Inverting Gradients were hard to
converge. The reason is the activation fuction can effect the security level of Net, which can
reflect by RA-I. According to matrix A, the activation function sigmoid can lead to a higher
virtual constrains condition numbers at each convolutional layer. It make our proposed
attack system perform well. Yet, in the subsequent layer, the reconstruction error could be
amplified, this make DLG [9] and Inverting Gradients [11] hard to converge. Our proposed
attack system further adopted auxiliary regularizationRaux (·) based on image fidelity to
steer enhanced image away from unrealistic image, which was best of all.

Table 3. Comparison of different activation function.

MSE

DLG [9] Inverting Gradients [11] R-GAP [22] Ours

LeNet 5.2× 10−2 3.4× 10−2 0.25× 10−4 0.2× 10−5

LeNet* 0.6× 10−4 0.4× 10−4 0.44× 10−4 0.4× 10−4

LeNet* is identical to LeNet but uses ReLU activation function instead of Sigmoid.

From Table 4, experiments show MSE of the reconstruction over CIFAR10. The RA-I
predicts the risk of reconstruction. It can be refelected by MSE. RA− I > 0 indicates it is
not possible to perform a complete reconstruction of the input. We can consider security
level of the LeNet* can bear optimization-based attack. RA− I < 0 implies the ability to
fully recover the input. It means security level of the LeNet* can be attacked by R-GAP
and our attack system. Because of adopting auxiliary regularization, our attack system had
a best performce than other algorithms. Experiment results demonstrate Rank Analysis
Index can estimate whether the data can be reconstructed. Further, it can provides an
overall estimate of the security ot the neural network.
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Table 4. RA-I predicts the risk of reconstruction.

LeNet*

DLG [9] Inverting [11] R-GAP [22] Ours

RA− I 405 105 −208 −208

MSE 5.2× 10−2 3.2× 10−3 0.5× 10−4 0.4× 10−4

LeNet* is identical to LeNet but uses ReLU activation function instead of Sigmoid.

5.3.2. Mitigation Strategies

In order to measure the effectiveness of the proposed algorithm (Improved R-GAP
Alogrithm), we evaluated one attack mitigation strategy, which was gradient perturbation
with additive noise. In this experiments, we adopted Gaussian noise. The Improved
R-GAP Alogrithm was mitigated at cost of accuracy. As the Gaussian noise increases, the
MSE becomes larger and larger. When we added sufficient Gaussian noise (10× 10−2), it
made larger MSE. That showed poor quality of reconstruction attack, Table 5 provides the
mitigation results.

Table 5. Mitigation strategies by Gaussian noise.

CIFAR10

Gaussian noise 10× 10−2 10× 10−3 10× 10−4 No noise

MSE 3.0× 10−1 4.4× 10−3 6.9× 10−4 0.1× 10−4

The values of Gaussian noise: means were zero, variance were different magnitude.

6. Conclusions

In this paper, we make the first step towards a comprehensive survey about history of
gradient leakage, and propose a privacy attack system, i.e., Single-Sample Reconstruction
Attack System (SSRAS). This system can carried out image reconstruction regardless of
whether the label can be determined. It can extends gradient inversion attack from fully
connected layer with bias terms to attack fully connected layer and convolutional neural
network with or without bias terms. We also propose Improved R-GAP Alogrithm, which
can utilize DLG algorithm to derive ground truth. Furthermore, we introduce Rank
Analysis Index (RA-I) to measure the possible of whether the user’s raw image data can be
reconstructed.

We can see that it is not absolutely safety to exchanging model updates. If the relevant
gradient protection measures are not used, personal privacy is at stake. Gradient contains
a lot of useful information. There need a deeper understanding of gradient leakage attacks
and privacy secure Federated Learning. We hope our study can arouse more research
interests and efforts on the privacy properties of gradients and weights, in order to build
more secure and privacy-preserving intelligent systems.
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Abbreviations
The following abbreviations are used in this manuscript:

FL Federated Learning
SSRAS Single-Sample Reconstruction Attack System (SSRAS)
RA-I Rank Analysis Index
ASR Attack Success Rate
LD Linear dichroism
mGAN-AI Multitask Generative Adversarial Network in artificial intelligence
CNN Convolutional Neural Network
RNN Recurrent Neural Network
DLG Deep Leakage from Gradients
R-GAP Recursive Gradient Attack on Privacy
SPN Secret Polarization Network
CE Cross-Entropy
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